IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 26, 2020, accepted September 5, 2020, date of publication September 10, 2020,

date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023200

Cooperative Pathfinding Based on
Memory-Efficient Multi-Agent RRT*

JINMINGWU JIANG ~ AND KAIGUI WU

College of Computer Science, Chongqing University, Chongging 400044, China
Corresponding author: Kaigui Wu (kaiguiwu@cqu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61662083.

ABSTRACT In cooperative pathfinding problems, non-conflict paths that bring several agents from their
start location to their destination need to be planned. This problem can be efficiently solved by Multi-agent
RRT*(MA-RRT#*) algorithm, which is still state-of-the-art in the field of coupled methods. However,
the implementation of this algorithm is hindered in systems with limited memory because the number of
nodes in the tree of RRT* grows indefinitely as the paths get optimized. This paper proposes an improved
version of MA-RRT#*, called Multi-agent RRT* Fixed Node(MA-RRT*FN), which limits the number of
nodes stored in the tree of RRT* by removing the weak nodes on the path which are not likely to reach the
goal. The results show that MA-RRT*FN performs close to MA-RRT* in terms of scalability and solution

quality while the memory required is much lower and fixed.

INDEX TERMS Cooperative pathfinding, collision avoidance, multi-agent motion planning, path planning.

I. INTRODUCTION

The problem of planning a series of routes for mobile robots
to destinations and avoiding collisions can be modeled as a
cooperative pathfinding problem. Traditionally, this problem
is often simulated in highly organized environments such as
grids, which include several obstacles and agents. To find the
paths of these agents, the straightforward method is looking
for the answer in a joint configuration space which is com-
posed of the state spaces of single agents. Such a space is
typically searched using a heuristic guided function such as
A* [1]. However, the problem of cooperative pathfinding is
proved to be PSAPCE-hard [2].

To solve cooperative pathfinding problems, many works
were proposed in the last decades. All these methods can
be divided into three categories: decoupled method, coupled
method, and hybrid method. Each method has its disad-
vantages. For example, the computational cost of coupled
approaches is sensitive to the increase of agents, while the
decoupled methods cannot guarantee their completeness. The
hybrid approaches, which inherit the advantages of the cou-
pled and decoupled approaches, seem promising. But when
the decoupled planner fails, it may be more time-consuming
than just using a single planner.

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

After Karaman and Frazzoli introduced an asymptotically
optimal algorithm, RRT* [3], Cép combined RRT* with
the classical multi-agent motion-planning algorithm and pro-
posed Multi-agent RRT*(MA-RRT*) [4]. MA-RRT* is a
coupled algorithm, but, unlike other coupled approaches,
it alleviates the increase of computational cost as the number
of agents increases by leveraging the idea of the Monte
Carlo method. Thus, it can solve the multi-agent path plan-
ning problem efficiently. Besides, MA-RRT* comes close
to the decoupled planner in terms of the efficiency while
still maintaining the completeness and optimality, which
makes the MA-RRT* still advanced in the field of coupled
techniques.

There are many state-of-the-art works that aim to improve
the MA-RRT¥*, such as [5] in 2019, which improves the
efficiency of MA-RRT* at the expense of optimality and
completeness. Unlike MA-RRT¥*, [5] applies RRT* for each
agent in turn, and the agents whose paths have been planned
by RRT* are treated as moving obstacles.

However, the application of the MA-RRT¥* is hindered in
systems with limited memory, because as the solution gets
optimized, the number of nodes in the tree grows indefinitely.
The closest work to this problem is the RRT* Fixed Nodes
(RRT*FN) proposed by Adiyatov and Atakan Varol [6],
which only focuses on improving the memory efficiency of
RRT#*. Up to now, there is no prior work which limits the
memory required for the MA-RRT* algorithm.

168743

https://orcid.org/0000-0003-0180-867X
https://orcid.org/0000-0003-3187-3106
https://orcid.org/0000-0002-4408-9153

IEEE Access

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

MA-RRT*

MA-RRT*FN

FIGURE 1. Single agent navigation using MA-RRT* and MA-RRT*FN respectively.

This paper presents a new MA-RRT* based algorithm,
called Multi-agent RRT* Fixed Nodes (MA-RRT*FN),
which works by employing a node removal procedure to limit
the maximum number of nodes in the tree. The properties
of our algorithm can be observed in Fig. 1, which shows the
two search trees for single-agent navigation using MA-RRT*
and MA-RRT*EN respectively in a 2D grid map with the
same number of iterations. As shown in Fig. 1, the tree
MA-RRT*FN generated is more sparse than MA-RRT*.

In our previous work [7], an extended abstract of our
algorithm, we only illustrate our basic ideas and experiments
roughly. In this paper, we present a review of related algo-
rithms, a better formulation of the problem, the details of
algorithms and pseudocodes, the illustrations of the theoreti-
cal principle, the interpretations of the experimental part and
the discussions of limitations.

The main contributions of this paper are as follows:
1) The proposed MA-RRT*FN requires a fixed memory,
which is much less than MA-RRT* (whose memory cost
grows indefinitely), while the scalability and convergence
rate of MA-RRT*FN are very close to MA-RRT*. 2) The
informed-sampling MA-RRT*FN (isSMA-RRT*FN), which
is the improved version of MA-RRT*FN, performs very close
to informed-sampling MA-RRT* (isMA-RRT*) concerning
the suboptimality of solutions, while its convergence rate and
scalability are better than isSMA-RRT*.

Il. RELATED WORK

The methods of cooperative pathfinding can be classified
into three categories: coupled method, decoupled method,
and hybrid method.

A. COUPLED APPROACHES

In coupled approaches, all agents’ routes are computed as
a union. The algorithm searches agents’ joint configuration
space to find the solution, which can provide a stronger guar-
antee of the feasible path and minimum cost. For example,
Standley [8] proposed two techniques which take account
of all agents at once, called Independence Detection (ID)

168744

and Operator Decomposition (OD). The combination of these
two techniques, the ID4-OD algorithm, which is capable of
solving relatively large problems within milliseconds, is both
complete and optimal. Standley then refined the algorithm
into an anytime algorithm called Optimal Anytime (OA) [9],
which first finds out a solution rapidly, and then utilizes any
spare time to improve that solution incrementally.

Alternative methods such as [10] and [11] model the
cooperative pathfinding problem as Integer Linear Pro-
gramming (ILP) and Boolean Satisfiability (SAT) problems,
respectively. In [10], Jingjin established a one-to-one solution
mapping between multi-robot path planning problems and a
special type of multi-flow network and used the Integer Lin-
ear Programming to optimize the four goals: the makespan,
the maximum distance, the total arrival time, and the total
distance.

However, all these coupling methods are sensitive to the
increase in agents. The computational cost of these technolo-
gies increases dramatically with the increase in robots.

There are also many attempts to use the sampling-based
method, such as RRT [12]-[14], PRM [15], to solve
multi-agent motion planning problems. These algorithms
alleviate the increase of computational cost as the number of
agents increases by leveraging the idea of the Monte Carlo
method. However, for the reason that they are based on the
RRT and PRM, these algorithms are not optimal. After the
RRT* is proposed, Cdp combined RRT* with OA and pro-
posed MA-RRT* [4]. Unlike other sampling-based methods,
MA-RRT* is both optimal and complete, and it outperforms
many classical algorithms such as ID+OD and OA in terms
of efficiency and scalability.

B. DECOUPLED APPROACHES

In decoupled approaches, all agents’ paths are planned
individually. For example, in [16], David Silver intro-
duced three decoupled approaches which decompose the
cooperative pathfinding problem into several single-agent
navigations: Local Repair A*(LRA*), Hierarchical Cooper-
ative A*(HCA*) and Windowed Hierarchical Cooperative

VOLUME 8, 2020

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

IEEE Access

A*(WHCA¥*). In [17]-[20], the path of each agent is com-
puted individually based on the pre-assigned priorities. The
same case can also be seen in the recent works [5], [21].

Alternative method utilizes conflict based search
(CBS) [22] to find the solution. Such as the ByPass-CBS
and Continuous-Time-CBS proposed in recent work [23]
and [24], which push the performance of CBS further.

Although those decoupled methods can efficiently find
the solution, their completeness and optimality cannot be
guaranteed.

C. HYBRID APPROACHES
The hybrid approaches, which leverage the strengths of both
coupled and decoupled techniques, find the solution by firstly
employing decoupled methods, and if the decoupled tech-
niques fail, the coupled approaches will be employed. For
example, M* [25] solves the multi-agent path planning prob-
lem by taking the decoupled manner first, and when the
robots’ paths conflict, the conflicting agents will be merged
into a meta-agent and planned the path by a coupled planner.

The recent works based on CBS also take the idea of
hybrid approaches, for example, MetaAgent-CBS [26], and
its improved version [27], which employ the decoupled tech-
niques first to detect conflicts, then merge the conflicting
agents and apply coupled methods.

Although it seems that the hybrid approaches inherit the
advantages of both coupled and decoupled approaches, it may
take more time when the decoupled planner fails.

Ill. PROBLEM FORMULATION

To make a fair comparison with the MA-RRT* algo-
rithm, which is simulated on graphs, the paper tests both
the two algorithms (MA-RRT* and MA-RRT*FN) in a
four-connected grid world Gy, and uses the following defi-
nition: Assume that n agents labeled 1, ..., n running on a
Euclidean space, and each agent, which takes up a single cell
xi(i € [1, n]) of the grid world, has a unique start location s;
and destination d;. For each timestep, all agents can move to
its four neighbor cells x/(x] € children(Gy, x;)) if it is free
or stay at its current location [9]. Besides, the transitions in
which agents pass through each other are prohibited.

A cell is free means that it will not be occupied by an agent
at the end of the timestep and does not include an obstacle [9].
The timesteps that a single agent stays on a grid cell are
represented as dur(x;). The total number of timesteps ¢ that
the agent has taken from its start state s; to the goal location
d; is regarded as the cost of the individual agent’s path path;.
If all the agents can reach their goal without collision, then the
sum of each path cost is taken as the cost of the final solution,
which is the metric of solution quality. Formally,

n

cost(p) = Z Z dur(x;)

i=1 xiepi

where p stands for an n-tuple of paths (py, ..., p,y). To sim-
plify the representation of nodes in the rapidly random

VOLUME 8, 2020

(0—0)

FIGURE 2. A small random grid world instance, in which the cars
represent initial agent positions, the flags represent destinations and the
obstacles are in black.

tree, this paper uses x to represent the n-tuple of position
(x1, ..., xn). The starting positions of all agents are given
as s, which is an n-tuple (sq, ..., s,). Similarly, the n-tuple
(dy, ..., d,)is the destination d. Thus, a node in the tree can
be denoted as an n-tuple joint state, and each state stands for
the position of a single agent.

IV. MA-RRT* FIXED NODES ALGORITHM

The multi-agent RRT* algorithm is designed based on
the RRT* algorithm, which can quickly find a path from a
specific start location to a given target region in continuous
state space by incrementally building a tree [3]. When the
first solution is found, the RRT* algorithm will continue
to improve the solution by sampling new random states in
the configuration space, which leads to the discovery of a
lower-cost path.

The MA-RRT* inherits all the properties of RRT*. For
RRT#* in a continuous configuration space, if two nodes are
mutually visible, then they can be connected. While in a dis-
crete space such as a graph, two nodes can only be connected
if a valid path between the two nodes can be found by the
heuristic search. Thus, the MA-RRT* is more like a graph
version of RRT*(G-RRT#*), unless it searches for the shortest
path in a configuration space which stands for the joint-state
of all agents [4].

Algorithm 1 shows the skeleton of the MA-RRT* algo-
rithm. It begins with a tree that is rooted at the joint initial
state x;n;; and continues to sample the random state x,4,4 from
the free joint configuration space before extending the tree to
Xrand - This loop will continue until it is interrupted.

The MA-RRT* Fixed Nodes (MA-RRT*FN) utilizes
the skeleton of the MA-RRT* algorithm (shown on
Algorithm 1, 4) and extends it with some node removing

168745

IEEE Access

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

Algorithm 1 MA-RRT*

Algorithm 3 EXTEND(T, x)

1: V<« {xjnit}; E <0

2: while not interrupted do

3 T <~ (V,E),

4 Xpgnd <— SAMPLE

5 (V,E) < EXTEND(T, Xrand)
6: end while

Algorithm 2 MA-RRT*FN
12V < {Xinie}; E < 0,
2: while not interrupted do
3: if M = NodesInTree(v) then
4 Votd» Eola) < (V, E)
5. endif
6: T < (V,E),
7.
8
9

Xrand < SAMPLE;
(V,E) < EXTEND(T , Xyqnq); (See in algorithm 3)
. if M > NodesInTree(v) then
10: (V, E) < ForceRemoval(V , E);

11: endif

12: if No ForceRemovalPerformed() then
13: (V, E) < RestoreTree();

14: end if

15: end while

procedures (shown on Algorithm 2, 3). Therefore, the MA-
RRT#*EN behaves like MA-RRT* before the maximum num-
ber of nodes is reached, and after the number of nodes reaches
a threshold, it continues to optimize the tree by removing the
weak nodes that are not likely on the path to reach the goal
while adding a new node.

The skeleton of MA-RRT*FN is shown in Algorithm 2. Ini-
tially, the tree grows before the maximum number of nodes M
is attained, after which the MA-RRT*FN removes a node
with one or no child in the tree before adding a new node.
The MA-RRT* and MA-RRT*FN use the same skeleton of
EXTEND and GREEDY procedure, shown in Algorithm 3
and 4 respectively.

Like the MA-RRT*, in each iteration of MA-RRT*FN,
the SAMPLE routine randomly chooses a free state in the
joint space. Then, the EXTEND function generates a new
node x,,,, in the free space by steering from the nearest node
to the new random sample, and then check whether x,,, is
contained in this tree. If s0, x;,,, Will be deleted from the tree,
and the EXTEND function will restart. If not, x,,,, will be
added to the tree. After that, the algorithm searches the nodes
near Xy, to construct the node-set X,,.-, and then chooses a
node which makes x,,.,, have the lowest cost to initial state
from Xeqr and Xpeqresr @s its parent. Finally, it updates the
cost of X,,0qr by rewiring to x,,,, if these nodes decrease the
total cost by assigning x,,, as the parent.

Unlike MA-RRT#*, the MA-RRT*FN employs a node
removing procedure in the EXTEND function, shown on lines
24 and 25 in Algorithm 3. During the EXTEND procedure,

168746

1: V<« V: E «E
2: Xpearest < NEAREST(T, x)

: (Xnew, Pnew) < GREEDY (G, Xnearest, X) (See in algo-

rithm 4)

4: if x4ey € V then

5: return G=(V,E)
6: end if
7
8
9

(95}

o if ppeyw # @ then
V' <= V' U {Xpew}
: Xmin <~ Xnearest
10: for all x,.0r € X100y do

11: (x', p") < GREEDY (Gy, Xnear s Xnew)
12: if x' = x,,.,, then

13: ¢ <« cost(Xpear) + cOSt(Xnear , Xnew)
14: if ¢/ < cost(x,e) then

15: Xmin < Xnear

16: end if

17: end if

18: end for

19: parent(Xpew) < Xmin

20 E' < E'U (Xmins Xnew)

21: for all X,eqr € Xnear \{Xmin} do

22: (", p") <= GREEDY (Gp1, Xnew» Xnear)
23: if cost(xXyear) > cost(Xpew) + cost(Xpew, Xnear) and
x" = Xpeqr then
24: if onlyChild(parent (x,0qr)) and
M = NodesInTree(v) then
25: RemoveNode(parent (Xpear))
26: end if
27: parent(Xpear) <— Xnew
28: E' < E'N {(xparent» Xnear)}
29: E' < E" U {(Xnew: Xnear)}
30: end if

31: end for
32: return G = (V' E')
33: end if

the algorithm updates the cost of nodes near the newly added
node X, If a node x;,04 from X, can reach a lower cost
to the initial state by reconnecting to the newly added node,
then the algorithm will check whether the parent of this node
contains only one child and whether the number of nodes in
the tree reaches a threshold M. If so, x4 Will be rewired as
a child of xy,,,, and the parent of x,.,, will be deleted.

Fig.3 visualizes this procedure in a simple 2D case. The red
node in this figure represents a new node x;,,, which is going
to be added to the tree, and the red dotted circle indicates
the near domain of x;,,, represented as Xj,eq-. If none of the
nodes in the near domain of x,.,, has only one child to remove,
then the ForcedRemoval procedure in Algorithm 2 will be
employed, which searches the entire tree, except the xy,,, and
the goal node, to find the nodes without children and deletes

VOLUME 8, 2020

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

IEEE Access

Algorithm 4 GREEDY (Gy,, s, d)
I: x < 5; ¢c < 0; path < (@, ...,9)
2: while x # d and ¢ < ¢yax do

3 (pathi, ..., path,) < path

4: forallx; € x do

5: N < children(Gyy, x;)

6: x' <« argminxechildren(GM,x,-)h(xi)

7 ¢ < ¢+ cost(x;, x]); path; < path; U (x;, X});
8 X < X]

9: end for

10: if not COLLISIONFREE (path,, ..., path,) then
11: return path

12: else

13: path < (pathy, ..., pathy)

14: end if

15: end while
16: return (x,path)

Algorithm 5 isMA-RRT*FN
1: while not interrupted do
22 fori=1...ndo
3 run the G-RRT* algorithm for agent i
4: end for
5
6

if all agnents find the paths though G-RRT* then
run MA-RRT*FN algorithm based on biased sam-
pling

end if

8: end while

>

Zinit

Zinit

Zinit

FIGURE 3. Visualization of the MA-RRT*FN for a simple 2D case depiction
node insertion, rewiring and removal.

one randomly [6]. In case no nodes are deleted in EXTEND

and ForceRemoval function, x;,, is removed from the tree.
MA-RRT*FN has the same GREEDY procedure as

MA-RRT*. In the GREEDY procedure, the joint state is

VOLUME 8, 2020

decomposed into n single-agent states. Thus, the algorithm
can steer each agent from its start node s to the destination d
for one timestep separately by merely depending on heuris-
tic guided search, which utilizes Euclidean distance as the
metric, and then check the path of agents conflicting or not.
If those paths are conflicted, the algorithm will return the
path calculated in the prior timestep; if not, the algorithm
will check whether all agents reach the target. If they do,
the algorithm will return the path of all agents as a series
of joint transitional states between s and d, forming an edge
in the tree. If the goal is not attained and the cost of paths
exceeds the user-specified threshold ¢y, the algorithm will
return the path between the s and the currently arrived node.

Both MA-RRT* and MA-RRT*FN evenly sample the ran-
dom states in agents’ joint configuration space, which would
cause a relatively low convergence rate. To improve the speed
of MA-RRT*FN in finding the solution, we take the idea
from isMA-RRT*, the improved version of MA-RRT* pro-
posed in [4]. The improved algorithm is called informed sam-
pling MA-RRT*FN (isMA-RRT*FN), shown in Algorithm 5,
which runs G-RRT* for every single agent to find some
high-quality solutions and then runs MA-RRT*FN for all
agents together with biased sampling, which samples states
near the single-agent optimal path.

V. EXPERIMENTS AND RESULTS

This paper chooses MA-RRT* and isMA-RRT* as the
benchmark and compares the ability of MA-RRT*, MA-
RRT*FN, isMA-RRT* and isMA-RRT*FN in terms of per-
formance, convergence rate and memory cost. All experi-
ments are performed on matlab 2018a 64-bit in a common
program framework and tested on intel core i7 8700k 3.7 GHz
CPU.

To make a fair comparison between these four algorithms,
this paper utilizes the problem instance set of [4], mentioned
as follows: The agents run in a grid-like square-shaped world,
where each agent occupies a single cell. At each timestep, all
agents can stay on the cell waiting for other agents or move to
the 4-neighborhood cell of its location if these cells are free.
Ten percent of the grids are removed to represent obstacles or
barriers. A unique start location and destination are selected
randomly for every agent.

The problem instance set varies in the following two
parameters. The grid sizes: 10 x 10, 30 x 30, 50 x 50, 70 x 70,
90 x 90. Number of agents: 1,2,3,4,5,6,7, 8,9, 10, which
are the same as in [4]. The two parameters are combined in
each grid size and number of agents. For each combination,
this paper randomly sets 120 instances based on different
obstacles and destinations of agents. Therefore, the first
experiment contains 6000 different problem instances in total.
All algorithms are implemented on the same instance set,
and the runtime of each instance is limited to 5 seconds. For
MA-RRT*FN and isMA-RRT*FN algorithm, the maximum
number of nodes was set to 200. To speed the procedure of
spanning towards the target, all algorithms choose the final
goal state as the new random sample with the probability

168747

IEEE Access

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

First-solution performance curve
: . .

runtime(ms)
3000 4000 5000

2000

1000

0

0 1000 2000 3000 40()0 5000 6000
instances

|——MARRTs~ —MARRTsFN

iSMARRT ===~ isMARRTsFI\h

FIGURE 4. Performance curve.

Ly

Eolp. i

\|'\mn \1\|m| \w\mm\ \I\RI(!I\ isSMA-RRT isMA-RRT isMA-RRTFN i \Mmm\
sol. 1st, sol hest sol st sol

200

100 150
T T
oo o©

0

Suboptimality(extra %)
5

FIGURE 5. Suboptimality.

of p, which is the user-specified parameter in the sampling
procedure.

One more thing we need to clarify is that we tried various
different maximum numbers of nodes, ranging from 20 to
2000 in the experiment. The results show that the different
parameters have little influence on the quality of the final
solution and the speed of finding the first solution under
the settings of this experiment. We finally chose 200 as the
uniform parameter for different scales of configuration space
(ranging from 1 to 10 agents in cooperative navigation). The
reason is that we found that when the maximum number of
nodes in the tree increases to a certain level (approximately
>= 100), the continuing increase of nodes did not help to
improve the final solution a lot (compare to the unlimited
version), but cost a lot of memory.

The results are plotted in Fig. 4 and Fig. 5. In Fig.4,
the values in the x-axis are the index of instances which
are sorted according to the runtime needed when the first
valid solution is found. The values in the y-axis are the
runtime when the algorithm finds the first solution. For each
algorithm, the ordering can be different. The last point of
x-position in the performance curve indicates how many
instances are solved within 5 seconds. It can be seen that
MA-RRT#* resolves 66% of the instances, MA-RRT*FN
65%, is MA-RRT* 86% and isMA-RRT*FN 87%, from the
problem instance set. It can be seen that MA-RRT*FN and

168748

Three Agent Navigation

(=3
<

Path cost

90

0 1000 2000 3000 4000 5000
Number of iterations

|——MARRTs- ~MARRTSFN-*-isMARRTs=-—=-isMARRTsFIj

FIGURE 6. Solution quality.

iSMA-RRT*FN come close to MA-RRT* and isMA-RRT*
respectively in terms of the performance.

The relative solution quality is shown in Fig. 5. The exper-
iment compares all algorithms in terms of the first returned
solution and the best solution found within 5 seconds run-
time limit. The suboptimality is calculated by the following
formula:

suboptimality
(the cost of returned solution

- 1>. 100. (1)

the cost of optimal solution

As shown in Fig. 5, the suboptimality of first and best
solution of MA-RRT*FN and isMA-RRT*FN are very close
to MA-RRT* and isMA-RRT*FN respectively, which indi-
cates that the convergence rate of MA-RRT*FN and isMA-
RRT*FN comes close to MA-RRT* and isSMA-RRT*FN.

In order to further visualize the memory cost and conver-
gence process, we did a second experiment which shows their
gap in a specific instance in which 3 agents navigate in a
30 x 30 grid. This problem instance set also randomly sets
120 instances based on different obstacles and locations of
agents. To facilitate the observation of solution quality cor-
responding to the different iterations, we extend the running
time and utilize the iterations as the running time criterion.
All algorithms will be terminated as the iterations reach a
threshold. The iterations of each instance are limited to
5000. For MA-RRT*FN and isMA-RRT*FN, the maximum
number of nodes is set to 1000.

Fig.6 and Fig.7 shows the average minimum path cost and
the average number of nodes in the tree versus the iterations
of all algorithms in terms of the solutions of 120 instances,
respectively. The first point of the x-position in the path cost
curve can be interpreted as the solution quality at the first
iteration. The last point of the x-position in the path cost
curve indicates the final solution quality after 5000 iterations.
It can be observed from Fig.6 that MA-RRT*FN has a similar
convergence rate to MA-RRT* while its number of nodes in
the tree is much less. As shown in Fig.7, memory required for
MA-RRT* grows linearly with the iterations increase, while

VOLUME 8, 2020

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

IEEE Access

Three Agent Navigation

3000 4000 5000

Number of nodes
2000

N] ——

1000

e
/"‘

0

0 1000 2000 3000 4000 5000
Number of iterations

‘ ——MARRTs- =MARRTsFN iSMARRTg====-isMARRTsFN|

FIGURE 7. Memory required.

the number of nodes stored in MA-RRT*FN is much lower
and fixed after the iterations reach about 1000 (which is to say
the number of nodes in MA-RRT*FN reaches the maximum).

The results also indicate that the iSMA-RRT*FN performs
better than iSMA-RRT* concerning the convergence rate to
the optimal path, while it also has a lower and fixed mem-
ory. Finally, MA-RRT* is proved to be convergent in [4].
Although the experimental results strongly imply that the
MA-RRT*FN and isMA-RRT*FN also have the theoretical
guarantee of converging to the optimal path, the optimality
of MA-RRT*FN and isSMA-RRT*FN remains to be proved
theoretically.

VI. CONCLUSION AND FUTURE WORK

This paper proposes MA-RRT*FN, an anytime algorithm
that has lower demands on the memory requirements, to solve
the multi-agent path planning problem in the systems with
limited storage. Unlike MA-RRT*, whose memory cost is
indefinite as the solution converges to the optimal path, our
techniques employ some node removing procedures to limit
the number of nodes stored in the tree and keep on optimizing
the path when finding the solution in agents’ joint-state space.
We compare the capability of our algorithm with MA-RRT*
and isMA-RRT*. The experimental results show that the MA-
RRT*FN, which has a fixed number of nodes in the tree,
performs as well as MA-RRT#* in terms of scalability, solu-
tion quality and convergence rate in solving multi-agent path
planning problems. Besides, the improved version, isMA-
RRT*FN, has a better convergence rate and scalability than
iSMA-RRT* while its memory requirement is much lower
and fixed.

This paper simulates the algorithm on a motion graph,
which connects the states in the tree by a valid path. However,
the algorithm can also be extended to continuous space by
using the straight-line visibility approach in place of the
GREEDY function.

In the future, we will continue to explore the theoreti-
cal proof of the convergence rate of MA-RRT*FN and the

VOLUME 8, 2020

tradeoff between the performance and the maximum nodes.
Another area we would like to explore is the application of
the MA-RRT*FN algorithm in a more dense environment.

REFERENCES

[1] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100-107, Dec. 1968.

[2] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; PSPACE- hardness of
the ‘“Warehouseman’s Problem,” Int. J. Robot. Res., vol. 3, no. 4, pp. 7688,
Dec. 1984.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp.846-894,

Jun. 2011.

J. Vokranek, and M. Pichoudek, “Multi-agent RRT: Sampling-based

cooperative pathfinding,” in Proc. Int. Conf. Autonomous, 2013,

pp. 1263-1264.

P. Verbari, L. Bascetta, and M. Prandini, “Multi-agent trajectory planning:

A decentralized iterative algorithm based on single-agent dynamic RRT,”

in Proc. Amer. Control Conf. (ACC), Jul. 2019, pp. 1977-1982.

[6] O. Adiyatov and H. A. Varol, “Rapidly-exploring random tree based

memory efficient motion planning,” in Proc. IEEE Int. Conf. Mechatronics

Autom., Aug. 2013, pp. 354-359.

J. Jiang and K. Wu, “Multi-agent path planning based on ma-rrt

fixed nodes,” in Proc. 19th Int. Conf. Auto. Agents MultiAgent Syst.,

pp. 1875-1877, 2020.

[8] T. S. Standley, “Finding optimal solutions to cooperative pathfinding

problems,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 1-8.

T.S. Standley and R. Korf, “Complete algorithms for cooperative pathfind-

ing problems,” in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 668—673.

[10] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Trans. Robot., vol. 32,
no. 5, pp. 11631177, Oct. 2016.

[11] E. Erdem, D. G. Kisa, U. Oztok, and P. Schiiller, “A general formal
framework for pathfinding problems with multiple agents,” in Proc. Conf.
Artif. Intell., Jun. 2013, pp. 1-8.

[12] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,” in
Proc. 8th Conf. Italian Assoc. Artif. Intell., 2018, pp. 834-841.

[13] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Citeseer, Tech. Rep., 1998.

[14] D.Ferguson and A. Stentz, “Anytime RRTSs,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2006, pp. 5369-5375.

[15] L.E.Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566-580, Dec. 1996.

[16] D. Silver, “Cooperative pathfinding,” in Proc. AIIDE, vol. 1, 2005,
pp. 117-122.

[17] A. Geramifard, P. Chubak, and V. Bulitko, “Biased Cost Pathfinding,” in
Proc. AIIDE, Marina Del Rey, CA, USA, 2018, pp. 112-114.

[18] V.R.DesarajuandJ. P. How, “Decentralized path planning for multi-agent
teams with complex constraints,” Auto. Robots, vol. 32, no. 4, pp. 385-403,
May 2012.

[19] R.Regele and P. Levi, “Cooperative multi-robot path planning by heuristic
priority adjustment,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2006, pp. 5954-5959.

[20] J.P. van den Berg and M. H. Overmars, “Prioritized motion planning for
multiple robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2005,
pp. 430-435.

[21] M. Ragaglia, M. Prandini, and L. Bascetta, ““Multi-agent poli-rrt,” in Proc.
Int. Workshop Model. Simul. Auto. Syst., 2016, pp. 261-270.

[22] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘“Conflict-based
search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219,
pp. 40-66, Feb. 2015.

[23] E. Boyrasky, A. Felner, G. Sharon, and R. Stern, “Don’t split, try to work
it out: Bypassing conflicts in multi-agent pathfinding,” in Proc. Int. Conf.
Autom. Planning Schedule, 2015, pp. 47-51.

[24] A. Andreychuk, K. Yakovlev, D. Atzmon, and R. Stern, “Multi-agent
pathfinding (MAPF) with continuous time,” 2019, arXiv:1901.05506.
[Online]. Available: https://arxiv.org/abs/1901.05506

[25] G. Wagner and H. Choset, “Subdimensional expansion for multirobot path
planning,” Artif. Intell., vol. 219, pp. 1-24, Feb. 2015.

[4

=

[5

—

[7

—

[9

—

168749

IEEE Access

J. Jiang, K. Wu: Cooperative Pathfinding Based on Memory-Efficient MA-RRT*

[26] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘““Meta-agent conflict-
based search for optimal multi-agent path finding,” in Proc. SoCS, 2012,

pp- 3940.

[27] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and
E. Shimony, “ICBS: Improved conflict-based search algorithm for multi-
agent pathfinding,” in Proc. Int. Joint Conf. Artif. Intell., 2015, pp. 1-5.

168750

JINMINGWU JIANG received the B.S. degree
from the Department of Mechanical and Power
Engineering, Chongqing University of Science
and Technology, Chongqing, China, in 2016.
He is currently pursuing the M.S. degree with the
School of Computer Science, Chongging Univer-
sity, China. His main research interests include
mobile robot motion planning and multi-agent
motion planning.

KAIGUI WU received the bachelor’s degree from
the Department of Mathematics, Sichuan Nor-
mal University, in 1989, the master’s degree from
the Department of Computer Science, Chongqing
University, in 1993, and the Ph.D. degree in
power system and automation from the School
of Electrical Engineering, Chongqging University,
in December 1999. He is currently a Professor
and a Doctoral Tutor with Chongqing University.
His research interests include cryptography and
information security.

VOLUME 8, 2020

