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ABSTRACT In this paper, a derivative-free conjugate gradient method for solving nonlinear equations
with convex constraints is proposed. The proposed method can be viewed as an extension of the three-
term modified Polak-Ribiére-Polyak method (TTPRP) and the three-term Hestenes-Stiefel conjugate gra-
dient method (TTHS) using the projection technique of Solodov and Svaiter [Reformulation: Nonsmooth,
Piecewise Smooth, Semismooth and Smoothing Methods, 1998, 355-369]. The proposed method adopts
the adaptive line search scheme proposed by Ou and Li [Journal of Applied Mathematics and Computing
56.1-2 (2018): 195-216] which reduces the computational cost of the method. Under the assumption that
the underlying operator is Lipschitz continuous and satisfies a weaker condition of monotonicity, the global
convergence of the proposed method is established. Furthermore, the proposed method is extended to solve
image restoration problem arising in compressive sensing. Numerical results are presented to demonstrate
the effectiveness of the proposed method.

INDEX TERMS Unconstrained optimization, nonlinear equations, convex constrained, conjugate gradient
method, projection method, compressive sensing.

I. INTRODUCTION
Let ϕ : Rn

→ Rn be a map, and � be a nonempty closed,
convex set ofRn. We consider the following problem: finding
a vector v such that

ϕ(v) = 0, v ∈ �. (1)

The problem (1) exist in a wide variety of applications that
includes chemical equilibrium systems [1], economic equi-
librium problems [2], power flow equations [3], non-negative
matrix factorisation [4], [5], phase retrieval [6], [7], nonlinear
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compressed sensing [8], learning constrained neural networks
[9] and financial forecasting problems [10]. Iterative meth-
ods such as the Newton method, fixed-point method, quasi-
Newtonmethod and the conjugate gradient method have been
used to solve the unconstrained version of (1), that is, when
the constraint set � = Rn.

Among the above-mentioned methods, the conjugate
gradient methods (see [11] for instance) are well known
and particularly effective for solving large-scale uncon-
strained optimization problems due to their simplicity and
low storage requirement. On this note, motivated by the
projection scheme in Solodov and Svaiter [12], several
researchers have extended the conjugate gradient methods
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FIGURE 1. Performance profiles of iterations.

FIGURE 2. Performance profiles of function evaluations.

for unconstrained optimization to solve large-scale nonlinear
equations. Wang et al. [13] extended the work by Solodov
and Svaiter [12], then proposed a projection-type method
to solve the nonlinear equation (1) based on the inexact
Newton backtracking approach. Furthermore, Ma and Wang
[14] presented a modification of the extra gradient algorithm
with a projection for solving constrained nonlinear monotone
equations. By popularizing the idea of Zhang and Zhou [15],
Yu et al. [16] proposed a constrained version of the spectral
gradient projection algorithm for solving nonlinear monotone
equations in which computing the sequence of steps does not
need matrix storage as well as the solution of linear systems
of equations. For recent articles see ([17]–[28]) and references
therein.

In [29] and [30] Zhang, Zhou and Li proposed the three-
term modified Polak-Ribiére-Polyak (TTPRP) and the three-
term Hestenes-Stiefel (TTHS) conjugate gradient method.

FIGURE 3. Performance profiles of CPU time.

Also, Cheng [31] proposed the three-term Hestenes-Stiefel
conjugate gradient method (TTHS). The search directions of
these methods are sufficiently descent and independent of
the line search. They were also used to solve unconstrained
optimization problems. Quite recently, Cheng, Xiao and
Hu [32] proposed a derivative-free conjugate gradient
method for large-scale systems of equations. The pro-
posed method combines a derivative-free form of the three-
term modified Polak-Ribiére-Polyak method (TTPRP) [29]
and the two-term modified PRP method (TMPRP) pro-
posed by Cheng [31] using a line combination. The numer-
ical results reported indicates that they compete with the
CG_DESCENT [33].

Inspired by [32], as an attempt, using the projectionmethod
[12] and the modified line search scheme proposed in [34],
we effectively extend the TTPRP method and the TTHS
to solve the nonlinear equation with convex constraint (1).
Our proposed search direction can be viewed as an affine
combination of the derivative-free version of TTPRP and
TTHS method, which also satisfies the descent condition.
It is worth noting that, unlike the mainstream line search,
the modified line search scheme proposed in [34] has an
adaptive property that gives it a suitable performance, which
reduces the computation cost of the line search. Furthermore,
under the assumption that the underlying operator is Lipschitz
continuous and satisfies a weaker condition of monotonicity,
we establish the global convergence of the proposed method.
We note that, with a weaker condition of monotonicity,
a larger class of functions can be considered. Numerical
experiments are reported to show the robustness and effec-
tiveness of the proposed method. Furthermore, the method
is extended to solve the image restoration problem arising in
compressive sensing.

The paper is organized as follows. In the next section,
we recall the key methods relevant to this work. In the core
Section III, the global convergence of the proposed method is
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FIGURE 4. The original test images: the first row, from the left is Image 1, 2 and 3; the second row, from
the left is Image 4,5,6 and 7.

FIGURE 5. Restoration comparison of the test images. Column (a) Noisy and blurred images; Column (b) Restored
images by DF-PRPMHS; Column (c) Restored images by IST and Column (d) Restored images by PSGM.

established. In Section IV we provide numerical experiments
to validate the efficiency of the proposed method. Finally,
in Section V, the proposed algorithm is used to solve the `1
norm regularized compressive sensing problem.

II. ALGORITHM
In this section, we begin by focusing on the conjugate gra-
dient method designed to solve the following unconstrained

optimization problem:

min{φ(v) : v ∈ Rn
}, (2)

where φ : Rn
→ R is a smooth nonlinear function whose gra-

dient at point vt is ψ(vt ). The iterative formula of a nonlinear
conjugate gradient method for solving (2) generate sequences
of iterates recurrently by

vt+1 = vt + αtdt , t = 0, 1, 2 · · · , (3)
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FIGURE 6. Restoration comparison of the test images. Column (a) Noisy and blurred images; Column (b) Restored
images by DF-PRPMHS; Column (c) Restored images by IST and Column (d) Restored images by PSGM.

TABLE 1. Comparison result of DF-PRPMHS, IST, PSGM in terms of SNR, PSNR and SSIM.

with

dt = −ψ(vt )+ βtdt , d0 = −ψ(v0), (4)

where βt is a suitable scalar parameter known as the conjugate
gradient parameter and αt is a positive stepsize determined by
a line search.

Recently, Zhang, Zhou and Li [29] proposed a three term
Polak-Ribiére-Polyak (TTPRP) conjugate gradient method
with its search direction defined as follows

dt=


−ψ(v0) if t=0,

−ψ(vt )+
ψ(vt )T y∗t−1
‖ψ(vt−1)‖2

dt−1−
ψ(vt )T dt−1
‖ψ(vt−1)‖2

y∗t−1 if t>0,

(5)

where y∗t−1 = ψ(vt )−ψ(vt−1).Note, throughout, ‖·‖ denotes
the Euclidean norm.

It is easy to see that the above search direction generated
by (5) satisfy

ψ(vt )T dt = −‖ψ(vt )‖2. (6)

Thus, this implies that dt provides a sufficient descent direc-
tion of φ at vt . Zhang et al. [30] proposed the TTHS method.
The search direction of the TTHS method has the following
form

dt=


−ψ(v0) if t=0,

−ψ(vt )+
ψ(vt )T y∗t−1
dTt−1y

∗

t−1

dt−1+
ψ(vt )T dt−1
dTt−1y

∗

t−1

y∗t−1 if t≥1,

(7)
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TABLE 2. Numerical results of Problem 1.

It is also evident that the search direction defined by TTHS
method also satisfies (6). In both work, that is [29] and [30],
numerical results indicates that bothmethods are efficient and
outperforms the CG_DESCENT method [33].

Motivated by the good practical behaviour of TTPRP and
TTHS, as an attempt, we extend the TTPRP and TTHS
method to solve (1). We consider the search direction d∗t
(denotes dt determined by (5)) and d∗∗t (denotes dt deter-
mined by (7)), a line combination

dt = (1− λt )d∗t + λtd
∗∗
t , (8)

where {λt } is a bounded sequence. The direction (8) can be
rewritten as

dt :=


−ψ(v0), if t = 0,
−ψ(vt )+ (1− λt )

(
β∗PRPt dt−1 − η∗t y

∗

t−1

)
+ λt

(
β∗HSt dt−1 − θ∗t y

∗

t−1

)
, if t ≥ 1,

(9)

where

β∗PRPt :=
ψ(vt )T y∗t−1
‖ψ(vt−1)‖2

, η∗t :=
ψ(vt )T dt−1
‖ψ(vt−1)‖2

,

β∗HSt :=
ψ(vt )T y∗t−1
dTt−1y

∗

t−1

, θ∗t :=
ψ(vt )T dt−1
dTt−1y

∗

t−1

We construct the search direction with the form (9) only
from theoretical point of view. Observe that if we set
λt = 0, then we get the TTPRP method, while λt = 1 yields
the TTHS method. In the following, we focus on solving
(1). Projection procedure systematic generates a sequence of
iterates {xt } by

xt = vt + αtdt , t = 0, 1, 2 · · · (10)

where αt is the stepsize determined by a line search procedure
that is later described and the search direction dt has the
following form

dt :=


−ϕt , if t = 0,
−ϕt + (1− λt )(βPRPt dt−1 − ηtyt−1)
+ λt (βHSt dt−1 − θtyt−1), if t ≥ 1,

(11)

where ϕt = ϕ(vt ) for simplicity and

βPRPt :=
ϕTt yt−1
‖ϕt−1‖2

, ηt :=
ϕTt dt−1
‖ϕt−1‖2

,

βHSt :=
ϕTt yt−1
dTt−1yt−1

, θt :=
ϕTt dt−1
dTt−1yt−1

, (12)

with yt−1 defined as

yt−1 = ϕt − ϕt−1.

162718 VOLUME 8, 2020



A. H. Ibrahim et al.: Family of Derivative-Free Conjugate Gradient Methods

TABLE 3. Numerical results of Problem 2.

In order to ensure boundedness of the proposed direction (11),
motivated by the idea of Li and Fukushima [35], we intro-
duced the following modification. Define ut−1 by

ut−1 :=yt−1+jt−1dt−1, jt−1 :=1+max

{
0,−

dTt−1yt−1
dTt−1dt−1

}
.

(13)

Based on the above, we next describe our algorithm for
solving the nonlinear equation (1). But first, we recall the
fundamental concept and property of the projection operator.
The operator of the projection P� defined as a mapping from
Rn to a nonempty closed convex set �, that is

P�[u] := argmin{‖u− y‖, y ∈ �}, ∀u ∈ Rn.

The projection operator P� has a well-known property, that
is, for any u, y ∈ Rn the following nonexpansive property
hold

‖P�[u]− P�[y]‖ ≤ ‖u− y‖. (14)

Algorithm 1:
Input. Choose any arbitrary initial point v0 ∈ �, the positive
constants: Tol ∈ (0, 1), % ∈ (0, 1), ζ ∈ (0, 1), ς > 0, λ >
0, τ ∈ (0, 2). Set t := 0.

Step 1. If ‖ϕt‖ = 0, stop. Otherwise go to step 2.
Step 2. Compute the search direction dt by the following
formula:

dt :=


−ϕt , if t = 0,
−ϕt + (1− λt )(βPRPt dt−1 − ηtyt−1)
+ λt (βMHSt dt−1 − θMt yt−1), if t ≥ 1,

(15)

where

βMHSt :=
ϕTt yt−1
dTt−1ut−1

, θMt =
ϕTt dt−1
dTt−1ut−1

and βPRPt , ηt are defined as in (12).
Step 3. Determine the step-size αt = ζ%m where m is the
smallest non-negative integer such that the following line
search is satisfied:

−ϕ(vt + αtdt )T dt ≥ ςαtξt‖dt‖2 (16)

where ξt is defined as

ξt := µt + (1− µt )‖ϕ(vt + αtdt )‖ (17)

with µt ∈ [µmin, µmax] ⊆ (0, 1].
Step 4. Compute

xt := vt + αtdt . (18)
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TABLE 4. Numerical results of Problem 3.

Step 5. If xt ∈ � and ϕ(xt ) = 0, stop. Otherwise, compute
the next iterate by

vt+1 := P�[vt − τρtϕ(xt )], (19)

where

ρt :=
ϕ(xt )T (vt − xt )
‖ϕ(xt )‖2

(20)

Step 6. Finally we set t := t + 1 and return to step 1.
Lemma 2.1: Let the direction {dt } be generated by (15),

it holds that for every t ≥ 0,

ϕTt dt ≤ −‖ϕt‖
2. (21)

Proof: Remember, λt is a bunded sequence. For t = 0,
(21) obviously holds. For t ∈ N, we have

ϕTt dt = −‖ϕt‖
2
+ (1− λt )(βPRPt ϕTt dt−1 − ηtϕ

T
t yt−1)

+ λt (βMHSt ϕTt dt−1 − θ
M
t ϕ

T
t yt−1)

= −‖ϕt‖
2
+ βPRPt ϕTt dt−1 − ηtϕ

T
t yt−1

− λtAβPRPt ϕTt dt−1 + λtηtϕ
T
t yt−1

+ λtβ
MHS
t ϕTt dt−1 − λtθ

M
t ϕ

T
t yt−1

≤ −‖ϕt‖
2
+ βPRPt ϕTt dt−1 − ηtϕ

T
t yt−1

−βPRPt ϕTt dt−1 + ηtϕ
T
t yt−1

+βMHSt ϕTt dt−1 − θ
M
t ϕ

T
t yt−1

= −‖ϕt‖
2.

III. CONVERGENCE ANALYSIS
To give the convergence result, the following assumptions are
required.

Assumption 1:
A1. The solution set of (1), denoted by Solϕ,� is nonempty.
A2. The mapping ϕ : Rn

→ Rn is Lipschitz continuous
on Rn, that is, there exists a constant L > 0 such that
∀u, y ∈ Rn,

‖ϕ(u)− ϕ(y)‖ ≤ L‖u− y‖ (22)

A3. For any v ∈ Solϕ,� and w ∈ Rn, it holds that

ϕ(w)T (w− v) ≥ 0. (23)

The Assumption A3 is obviously a weaker condition than
monotonicity.
Lemma 3.1: Let the sequences {dt } and {vt } be generated

by the Algorithm 1, then there always exists a step-size αt
satisfying the line search (16).

Proof: Suppose for the sake of contradiction there exist
t0 ≥ 0 such that the line search (16) fails to hold for any
nonnegative integer m, then we have

−ϕ(vt0 + ζ%
mdt0 )

T dt0 < ςζ%mξt0‖dt0‖
2, ∀m ≥ 0.

where ξt0 is defined by (17). It is clear that

µmin ≤ ξt0 ≤ max{1, ‖ϕ(vt0 + ζ%
mdt0 )‖}. (24)
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TABLE 5. Numerical results of Problem 4.

By continuity of ϕ and setting m→∞ yields

−ϕTt0dt0 ≤ 0,

which contradicts (21). Hence, proved.
Lemma 3.2: Suppose the mapping ϕ is Lipschitz continu-

ous and the sequences {vt } and {xt } are generated by Algo-
rithm 1, then

αt≥max

ζ, %‖ϕt‖
2[

L + ς
(
µt+(1−µt )‖ϕ(vt+

αt
%
dt‖
)]
‖dt‖2


(25)

Proof: As we can see, from the line search procedure
(16), if αt 6= ζ, then %−1αt fail to hold for the line search
procedure. That is,

−ϕ(vt+
αt

%
dt )T dt≥ς

αt

%
(µt+(1−µt )‖ϕ(vt+

αt

%
dt )‖)·‖dt‖2

(26)

From the sufficient descent condition (21) and Lipschitz con-
tinuity, we have

‖ϕt‖
2
= −ϕTt dt
= (ϕ(vt +

αt

%
dt )− ϕt )T dt − ϕ(vt +

αt

%
dt )T dt

≤
αt

%

[
L + ς

(
µt + (1− µt )‖ϕ(vt +

αt

%
dt‖
)]
‖dt‖2

This yields the desired inequality (25).

Lemma 3.3: Suppose that Assumption 1 hold. Let the
sequences {vt } and {xt } be generated by Algorithm 1, then
for any solution v∗ ∈ Solϕ,�, it holds that

‖vt+1 − v∗‖2 ≤ ‖vt − v∗‖2 − τ (2− τ )
ς2µ2

min‖vt − xt‖
4

‖ϕ(xt )‖2

(27)

Moreover, the sequence {vt } is bounded and

∞∑
t=0

‖vt − xt‖4 < +∞. (28)

Proof: Using the weaker condition of monotonicity
given by Assumption A3, we have

ϕ(xt )T (vt − v∗) = ϕ(xt )T (vt − xt + xt − v∗)

= ϕ(xt )T (vt − xt )+ ϕ(xt )T (xt − v∗)

≥ ϕ(xt )T (vt − xt )

≥ ςα2t ξt‖dt‖
2. (29)

Since for all t , it holds that ξt ≥ µmin > 0, we have

ϕ(xt )T (vt − xt ) ≥ ςµminα
2
t ‖dt‖

2

= ςµmin‖vt − xt‖2. (30)

VOLUME 8, 2020 162721



A. H. Ibrahim et al.: Family of Derivative-Free Conjugate Gradient Methods

TABLE 6. Numerical results of Problem 5.

Combining the property of the projection operator (14) and
(30) we have

‖vt+1 − v∗‖2

= ‖P�[vt − τρtϕ(xt )]− v∗‖2 (31)

≤ ‖vt − τρtϕ(xt )− v∗‖2

= ‖vt − v∗‖2 − 2τρtϕ(xt )T (vt − v∗)+ ‖τρtϕ(xt )‖2

≤ ‖vt − v∗‖2 − 2τρtϕ(xt )T (vt − xt )+ τ 2ρ2t ‖ϕ(xt )‖
2

= ‖vt − v∗‖2 − τ (2− τ )
(
ϕ(xt )T (vt − xt )
‖ϕ(xt )‖

)2

≤ ‖vt − v∗‖2 − τ (2− τ )
ς2µ2

min‖vt − xt‖
4

‖ϕ(xt )‖2
(32)

We can infer from the above that the sequence {‖vt − v∗‖}
is therefore non-increasing and convergent, therefore {vt } is
bounded, that is there exist a positive constant say k0 such that
for all t ≥ 0,

‖vt‖ ≤ k0.

Since ϕ is continuous and {vt } is bounded, then {ϕ(vt )} is
bounded. That is, there exist a positive constant k1 such that
for all t ≥ 0,

‖ϕt‖ ≤ k1. (33)

Moreover, by using the boundedness of ϕt , we can deduce
that

ϕ(xt )T (vt − xt ) = (ϕ(xt )− ϕt )T (vt − xt )+ ϕTt (vt − xt )
≤ ‖ϕt‖‖vt − xt‖
≤ k1‖vt − xt‖.

Thus, since from (30), it holds that

ϕ(xt )T (vt − xt ) ≥ ςµmin‖vt − xt‖2,

we have

‖vt − xt‖ ≤
k1

ςµmin
.

Then, we obtain,

‖xt‖ ≤
k1

ςµmin
+ ‖vt‖

Hence the sequence {xt } is bounded owing to the boundedness
of {vt }. That is, there exist a positive k2 > 0 such that

‖ϕ(xt )‖ ≤ k2, (34)

and furthermore

τ (2− τ )
ς2µ2

min

k22

∞∑
t=0

‖vt − xt‖4 < ‖v0 − v∗‖2 < +∞.
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TABLE 7. Numerical results of Problem 6.

Remark 3.4: By the definition of xt and (28), we have

lim
t→∞

αt‖dt‖ = lim
t→∞
‖vt − xt‖ = 0. (35)

Theorem 3.5: Suppose that Assumption 1 hold, and the
sequences {dt } and {vt } are generated by Algorithm 1, respec-
tively. Then we have

lim inf
t→∞

‖ϕt‖ = 0. (36)

Furthermore, the sequence {vt } converges to a solution of (1).
Proof: We proof by contradiction. Suppose (36) fails to

hold. That is, there exists a constant r > 0 such that for all
t ≥ 0, ‖ϕt‖ ≥ r . Combining this with the sufficient descent
condition implies that ∀t ≥ 0

‖dt‖ ≥ cr . (37)

Using Lipschitz continuity property on the definition of yt−1,
we deduce that

‖yt−1‖ ≤ ‖ϕt − ϕt−1‖

= L‖vt − vt−1‖

≤ Lαt−1‖dt−1‖

Also, from the definition of ut−1 in (13), it holds that

uTt−1dt−1≥y
T
t−1dt−1 + ‖dt−1‖

2
− yTt dt−1 = ‖dt−1‖

2. (38)

Since the sequences ‖{ϕt }‖ and ‖{ϕ(xt )}‖ are bounded by
(33) and (34) respectively, it follows that for all t ≥ 1,

‖dt‖≤ ‖ϕt‖ + |(1− λt )|
(
|βPRPt |‖dt−1‖

+ |ηt |‖yt−1‖
)
+ |λt |

(
|βMHSt |‖dt−1‖ + |θMt |‖yt−1‖

)
≤ ‖ϕt‖ + |(1− λt )|

(
2‖ϕt‖‖yt−1‖
‖ϕt−1‖2

‖dt−1‖
)

+ |λt |

(
2‖ϕt‖‖yt−1‖
‖dt−1‖2

‖dt−1‖
)

≤ ‖ϕt‖ + |(1− λt )|
(
2L‖ϕt‖‖dt−1‖
‖ϕt−1‖2

αt−1‖dt−1‖
)

+ |λt | (2Lαt−1‖ϕt‖)

≤ (2L|λt | + 1)‖ϕt‖

+ |(1− λt )|
(
2L‖ϕt‖‖dt−1‖
‖ϕt−1‖2

αt−1‖dt−1‖
)

≤ (2L|λt |+1)k1+|(1−λt )|
(
2Lk1αt−1‖dt−1‖

r2
‖dt−1‖

)
Since the sequence {λt } is a bounded sequence, we get from
(35) that there exist a constant b ∈ (0, 1) and an integer n0
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TABLE 8. Numerical results of Problem 7.

such that for all t > n0 with t ∈ N,

|(1− λt )|
(
2Lk1αt−1‖dt−1‖

r2
‖dt−1‖

)
< b.

Hence for any t > n0 with t ∈ N, we have

‖dt‖ ≤ k1 + b‖dt−1‖

≤ k1(1+ b+ b2 + · · · + bt−n0+1)+ bt−n0‖dn0‖

≤
k1

1− b
+ ‖dn0‖.

Setting M = max
{
‖d1‖, ‖d2‖, · · · , ‖dn0‖,

k1
1−b + ‖dn0‖

}
,

we have ‖dt‖ ≤ M .
Since by the Lipschitz continuity of the mapping ϕ,

we have established that the sequences {ϕt } and {ϕ(xt )} are
bounded, it holds that ‖ϕ(vt +

αt
%
dt‖ and the sequence {dt }

are bounded. Thus, we set

3 = ‖ϕ(vt +
αt

%
dt‖ ≤ k3, k3 > 0.

Now, by (25), we have that

αt‖dt‖ ≥ max
{
ζ,

%‖ϕt‖
2

[L + ς (µt + (1− µt )3)] ‖dt‖2

}
‖dt‖

≥ max
{
ζcr,

%r2

[L + ς (µt + (1− µt )k3)]M

}
> 0,

which contradicts (35). Thus, (36) holds.

IV. NUMERICAL EXPERIMENT
We present some numerical examples in this section to visu-
alize the behaviour of Algorithm 1. In what follows, Algo-
rithm 1 is referred to as DF-PRPMHS. The performance of
DF-PRPMHS is compared with three related algorithms of
the same class, namely a modified Hestenes-Stiefel projec-
tion method (MHSPM) in [36], the New hybrid conjugate
gradient projection method (NHCGPM) in [37], and a self-
adaptive three-term conjugate gradient method (STTCGM) in
[38]. The test problems are listed below, where the ϕ mapping
is taken as

ϕ(v) = (ϕ1(v), ϕ2(v), · · · , ϕn(v))T ,

where the associated initial points for these problems are

v1 = (0.1, 0.1, · · · , 0.1)T v2 = (0.2, 0.2, · · · , 0.2)T

v3 = (0.5, 0.5, · · · , 0.5)T , v4 = (1.2, 1.2, · · · , 1.2)T ,

v5 = (1.5, 1.5, · · · 1.5)T , v6 = (2, 2, · · · , 2)T ,

v7 = rand(n, 1).

Problem 1: This problem is the Exponential function [39]
with constraint set � = Rn

+, that is,

ϕ1(v) = ev1 − 1,

ϕi(v) = evi + vi − 1, for i = 2, 3, . . . , n.
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TABLE 9. Numerical results of Problem 8.

Problem 2: Modified Logarithmic function [39] with con-
straint set � = {v ∈ Rn

:
∑n

i=1 vi ≤ n, vi > −1, i =
1, 2, . . . , n}, that is,

ϕi(v) = ln(vi + 1)−
vi
n
, i = 2, 3, . . . , n.

Problem 3: The Nonsmooth Function [40] with constraint
set � = Rn

+.

ϕi(v) = 2vi − sin |vi|, i = 1, 2, 3, . . . , n.

Problem 4 [41]: with � = Rn
+ defined by,

ϕi(v)=min
(
min(|vi|, v2i ),max(|vi|, v3i )

)
for i = 2, 3, . . . , n.

Problem 5: Strictly convex function [13], with constraint
set � = Rn

+, that is,

ϕi(v) = evi − 1, i = 2, 3, · · · , n

Problem 6: Strictly convex function II [13], with con-
straint set � = Rn

+, that is,

ϕi(v) =
i
n
evi − 1, i = 2, 3, · · · , n

Problem 7: Tridiagonal Exponential function [42] with
constraint set � = Rn

+, that is,

ϕ1(v) = v1 − ecos(h(v1+v2)),

ϕi(v) = vi − ecos(h(vi−1+vi+vi+1)), for 2 ≤ i ≤ n− 1,

ϕn(v) = vn − ecos(h(vn−1+vn)), where h =
1

n+ 1

Problem 8: Nonsmooth function [43] with with constraint
set � = {v ∈ Rn

:
∑n

i=1 vi ≤ n, vi ≥ −1, 1 ≤ i ≤ n}.

ϕi(v) = vi − sin |vi − 1|, i = 2, 3, · · · , n

Problem 9: The Trig exp function [39] with constraint set
� = Rn

+, that is,

ϕ1(v) = 3v31 + 2v2 − 5+ sin(v1 − v2) sin(v1 + v2)

ϕi(v) = 3v3i + 2vi+1 − 5+ sin(vi − vi+1) sin(vi + vi+1)

+ 4vi − vi−1evi−1−vi − 3 for i = 2, 3, . . . , n− 1

ϕn(v) = vn−1evn−1−vn − 4vn − 3, where h =
1

n+ 1
.

Problem 10: The function ϕi(v) with � = Rn
+ defined by,

ϕi(v) = 8
1
2 vi − 1 i = 1, 2, 3, . . . , n.
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TABLE 10. Numerical results of Problem 9.

We take the parameters for DF-PRPMHS in the numerical
experiment as ζ = 1, % = 0.8, ς = 10−4, τ = 1.2,Tol =
10−6, and the sequences λt = 1

(2t+5)2
and µt = 1

exp (t+1)t+1
.

The parameter for the algorithms compared with are chosen
as given in their various papers. We considered dimensions
ranging from n = 1000, 5000, 10000, 50000, 100000
for each test problem. The algorithms are terminated either
by using the stop criterion set at ‖ϕt‖ ≤ 10−6, or if the
iteration number exceeds 1000. Whenever the algorithm does
not converge within 1000 iterations a failure is recorded. The
performance profile developed byDolan andMoré [44] based
on the number of iterations, function evaluations and CPU
computing time is used to obtain the performance profile
of the methods in order to assess the detailed output of the
techniques.

All the methods successfully solve all the test problems in
the numerical experiments. Figures 1, 2, and 3 plot the DF-
PRPMHS, NHCGPM, MHSPM, and STTCGM performance
profiles in terms of number of iterations, number of func-
tion evaluations and CPU time. From the Figures 1, 2 and 3,
we note that DF-PRPMHS has substantially improved over
NHCGPM, MHSPM and STTCGM in terms of number of
iterations, function evaluations and computing time. The
methods were however very competitive for the CPU time,

with DF-PRPMHS slightly outperforming the methods com-
pared. Based on the performance profile of the number
of iterations, it is clear that DF-PRPMHS outperforms
comparative methods as we can see from Figure 1 that
DF-PRPMHS is a better algorithm for solving (1) since it
solved about 62% of test problems with fewer iterations com-
pared to NHCGPM, MHSPM and STTCGM which solved
15%, 10% and 18% of test problems with less number
of iterations.

From Figure 2, it is easy to see that DF-PRPMHS also
outperforms NHCGPM, MHSPM and STTCGM in terms
of number of function evaluations, since DF-PRPMHS is a
better solver for approximately 69% of test problems, while
NHCGPM, MHSPM and STTCGM were better solvers for
approximately 10%, 10% and 18%. Finally, regarding the
CPU time, we can see the competitive nature of the time from
Figure 3, but DF-PRPMHS is slightly faster than the com-
pared methods. On the overall, it is clear that DF-PRPMHS
is superior to NHCGPM, MHSPM, and STTCGM based on
the performance profile metrics of Dolan and Moré, that is,
number of iterations, number of function evaluations and
CPU processing time.

It is worth mentioning that the compared methods
(NHCGPM, MHSPM and STTCGM) made use of the
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TABLE 11. Numerical results of Problem 10.

mainstream line search, that is

−ϕ(vt + αtdt )T dt ≥ ςαt‖dt‖2. (39)

It can be observed that the right hand side of (39) will be too
largewhen vt is far from the solution of the nonlinear equation
with convex constraints problem (1). As such, the computing
cost of the line search increases. To reduce the computation
cost of the line search, the adaptive line search scheme pro-
posed in [34] is adopted. This gives an insight of the good
numerical performance of the proposed algorithm.

Table 2-11 lists the numerical results for the different test
problems obtained by the different methods. In the tables,
‘‘DIM’, ‘‘INTP’, ‘‘NIT’,’ ‘‘NFE’,’ ‘‘CPU(s)’’ and ‘‘NM’’
represent the dimension, initial points, number of iterations,
number of function values, CPU time (second) and final value
of ‖ϕt‖, respectively.

V. APPLICATION TO IMAGE RESTORATION PROBLEMS
Image restoration is about reconstructing or estimating uncor-
rupted images from noisy, blurred ones. This blurring may
be caused by optical distortions, motion of objects during
imaging, or turbulence in the atmosphere. Many science
and engineering areas, such as aerial photography, remote
sensing electron microscopy, and medical imaging, have

current or potential applications of image restoration [45].
For instance, in medical imaging, since the human visual
system can be the key to decoding the elusive functions of the
brain, a large amount of medical and neuroscience research
is devoted to understanding the human visual system (see, for
example, [46], [47]).

In this section, we focus on the first problem, i.e. the use of
mathematical algorithms to perform image processing tasks.
The general image restoration problem can be formulated by
the inversion of the following observation model:

b = Av+$, (40)

where b ∈ Rm is representing the observed data, v ∈ Rn is the
unknown image,$ is the noise andA is a linearmapping such
that A ∈ Rm×n(m < n). In order to address problem (40),
one of the tools usually employed is the `1-regularization.
The restoration is obtained by approximating the following
unconstrained optimization

min
v

1
2
‖Av− b‖2 +2‖v‖1, (41)

where 2 is a positive regularization parameter and ‖ · ‖1 is
the `1-regularization term. With the approximate equivalence
between problem (1) and (41) (see [48], [49]), in what
follows, we illustrate the efficiency of our algorithm in
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approximating (41). Some recent methods for image restora-
tion includes; multi-channel and multi-model based auto
encoding prior for gray scale image restoration [50]; format-
ted learning for image restoration [51], image restoration by
combined order regularizationwith optimal spatial adaptation
[52], multi-Level encoder-decoder architectures for image
restoration [53], riemannian loss for image restoration [54]
and modulating image restoration with continual levels via
adaptive feature modification layers [55].

In this test, the efficiency of the proposed algorithm
(DF-PRPMHS) is illustrated in restoring blurred and noisy
images. We considered four images of different sizes which
are degraded using a Gaussian blur operator and a Gaussian
noise with standard deviation 10−2. The parameters selected
to implement the algorithm are: τ = 1; ς = 10−4; % =
0.55; λt = 1

(2t+5)2
; ζ = 1; µ = 1.

In addition, we compare its performance with the itera-
tive shrinkage/thresholding (IST) [56] designed for wavelet-
based image deconvolution and the PSGM method [57] to
reflect the performance of the DF-PRPMHSmethod in restor-
ing the blurred and noisy images. It is worth noting that
the iterative procedure for all the algorithms starts using the
same initial point and ends when the tolerance, Tol < 10−5.
Figure 4 shows the original images. In Figures 5 and 6,
the blurred and noisy images, and the restored images by
the various algorithms are presented. Images on the column
labelled (a) are the blurred and noisy images, images on
column (b) are the restored images by DF-PRPMHS, images
on column (c) are the restored images by IST and images on
column (d) are the restored images by PSGM. In Table 1,
numerical result obtained from the implementation of the
algorithms are presented. The performance of the methods
are analysed based on the signal-to-noise ratio (SNR), [58]
peak signal-to-noise ratio (PSNR), and the Structural Sim-
ilarity Index (SSIM) [59] metric. From the outcome of the
experiment as reported in Table 1, we can see that the restored
images by DF-PRPMHS are closer to the original than those
from IST and PSGM for all the test images. This is reflected
by their Larger SNR, PSNR, and SSIM.

CONCLUSION
We have presented a derivative-free conjugate gradient
method that combines the conjugate gradient direction of the
three-term modified PRP method (TTPRP) and the three-
term HS conjugate gradient method (TTHS) to solve con-
strained nonlinear equation with convex constraints using a
projection and a modified line search procedure. Under the
assumption that the underlying operator is Lipschitz continu-
ous and satisfy a weaker monotonicity assumption, the global
convergence of the proposed method is established. Another
contribution from this paper is the use of our approach to
solve the regularized `1-norm compressive sensing problems.
The computational experiments in restoring blurred and noisy
images have shown that the proposed approach is competitive
with the comparative ones.
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