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ABSTRACT Decision tree method has been applied to POLSAR image classification, due to its capability
to interpret the scattering characteristics as well as good classification accuracy. Compared with popular
machine learning classifiers, decision tree approach can explain the scattering process of certain type
of targets by use of the polarimetric features at the tree nodes. Except the interpretability, decision tree
approach could be transplanted to other data set without training process for the same terrain types, since
the polarimetric features are inherently connected to the physical scattering properties. Currently, decision
tree based classifiers, typically employ one single polarimetric feature at the nodes of the tree. The idea
to increase the number of the polarization features at the decision tree node is expected to improve the
classification result, which combine two or more polarimetric features to form a two or high dimension
feature space. In this way, the classes which cannot be discriminated with one feature could possibly be
separated with the space constructed by several features. However, it also inevitably leads to an increase in
the computational burden. In fact, not all nodes require very high-dimensional feature space to achieve high
classification precision. Therefore, in this article we proposed that the dimension of the feature space used in
the decision tree nodes is adaptively changed from one to three, due to the separability of the classes under
this node. The developed classification method is examined by the classical AIRSAR data in Flevoland
area of the Netherlands, as well as GaoFen-3 data in Hulunbuir of China. The experiments show that the
classification performance is superior to the fixed dimension feature decision tree methods, with less and
reasonable computation time. Besides, the transferability of polarimetric features obtained by decision tree
is preliminarily demonstrated in the application to another AIRSAR data.

INDEX TERMS Polarimetric SAR, feature space, decision tree, terrain classification.

I. INTRODUCTION
Polarimetric Synthetic Aperture Radar (POLSAR) is a multi-
parameter, multi-channel microwave imaging radar system,
which is widely used in vegetation distribution [1], ocean
research [2], [3], disaster assessment [4], [5] and so on. The
backscatter information of POLSAR contains the complex
scatteringmechanism of the observed target [6]. For example,
the geometry, dielectric constant and roughness of scatterers
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are closely related to the scattering mechanism. Polarization
can distinguish basic scattering mechanisms, such as volume
scattering, double-bounce scattering, surface scattering and
so on. However, the scatterers in nature often exhibit compli-
cated scattering characteristics, so describing the scattering
mechanism of target is a difficult and important research topic
in the application of POLSAR images.

Polarimetric features are useful information extracted from
complex scattering mechanisms, which include the geomet-
ric structure, distribution direction, dielectric property, and
so on of targets. How to interpret and utilize polarimetric
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features has become one of the central tasks of POLSAR
image processing [7]. Combining polarimetric features with
different classification methods to achieve more effective
PolSAR image classification is an important research field.
According to whether there exists data label andmanual inter-
vention, the classificationmethods can bemainly divided into
two types, supervised and unsupervised methods. The unsu-
pervised classification methods classify data according to
their statistical characteristics without prior knowledge, such
as complex Wishart [8]–[10], k-means clustering [11], [12],
fuzzy c-means clustering [13], Expectation Maximiza-
tion [14] and so on. The unsupervised classification methods
cannot obtain satisfactory classification accuracy, when the
difference in scattering characteristics of targets is small.
There are a lot of supervised classification methods have
been proposed, such as Support Vector Machine (SVM) [15],
Random Forest (RF) [16], [17], deep learning [18], [19],
Nearest-Regularized Subspace(NRS) [20] and so on [21].
Although the differences of polarimetric features are used
to classify targets in these supervised classification methods,
which are data-driven, the scattering characteristics of targets
are not mapped to the certain features.

Compared to those popular machine learning and deep
learning methods, the classical decision tree approach has its
own advantages over several aspects. By reviewing the related
work in the literature, the advantages are briefly summarized
as follows:
1) Interpretability: The polarimetric radar data could cap-

ture the geometrical and bio-physical information about
targets, which is the key capability for realizing unsuper-
vised classification. Geometrical and bio-physical prop-
erties of targets decide their radar scattering process.
In the decision tree method, the polarimetric features
used in the tree nodes for discriminating certain cate-
gories are clear, so it is possible explain the scattering
characteristics of these categories.

2) Transferability: Generally, the observation capability of
the certain POLSAR sensor keeps stable, hence the
polarimetric features for classification can be probably
applied to the data in different area acquired by the
same sensor, without training process. Furthermore, for
different sensor data, it is also possible to be utilized in a
proper way, because the similar targets also show close
scattering properties and polarimetric features as well.

3) Adjustability: The hierarchical structure of decision
tree presents the role of the used polarimetric features,
as well as their relations with terrain types, thus we could
increase the classification accuracy of our concerned
type through adjusting the tree structure such as branch
order or employed features, according to the needs in
reality.

At present, almost all decision tree based classifiers
employ only one single polarimetric feature at the nodes
of the decision tree. Zhang et al. used one-dimensional
feature decision tree to classify crops and explained the
scattering mechanism of crops through the classification

results [22]. Zhang and Yan inputted 72 polarimetric fea-
tures to establish a one-dimensional feature decision tree, and
pointed out that with the increase of polarization character-
istics, the useful information for classification may also be
increase, and the classification results of terrain objects tend
to be accurate [23]. In the [24], Jain and Singh proposed
a decision-tree-based approach for land cover classification
of Radarsat-2 data, multiple inequalities containing polari-
metric parameters are used, but no feature space is formed.
Thakur et al. developed a decision tree based on separability
index to classify ALOS-PALSAR data [25]. And G. S. Phar-
tiyal et al. attempt to analyze the polarimetric signature to
decide the individual class boundary values which will help
in building a decision tree based classification technique [26].
Those above methods focus on the feature selection or opti-
mization before decision tree algorithm, not on the improve-
ment on the tree nodes.

In the field of decision tree application, the focus of
research is mostly on extending feature set, but the nodes of
decision tree still adopt one polarimetric feature. Traditional
one-dimensional feature decision tree has poor classification
ability among targets with similar scattering characteristics.
Due to the complexity of the physical properties of the
actual targets, they often show more than one kind of mixed
scattering characteristics. Therefore, the scattering charac-
teristics of an actual target cannot be explained completely
by one polarimetric feature. One dimensional polarimet-
ric feature could discriminate the basic type of scattering
mechanism well, such as surface scattering, double-bounce
scattering, and volume scattering. However, it could not
separate the vegetation very well because almost all the veg-
etation contains not only volume scattering by branches and
leaves, but also some double-bounce scattering mechanisms
from the dihedral constructed by soil surface and trunks.
Shao and Hong [27] increased the dimension of the decision
tree nodes to two and verifies that it can improve the accu-
racy of classification. As the number of polarimetric features
increases, the separability of classes increase as well, so as the
accuracy of classification [28], [29]. In this article, the maxi-
mum dimension of decision tree nodes reaches to three, and a
classification method of adaptive-dimension feature decision
tree is proposed. The dimension of the nodes starts from one,
and expands to two or three, depending on the purity of the
linearly separable clusters. In the continuously updated train-
ing sample set, the Fisher Linear Discriminant analysis [30],
[31] was used to project the multidimensional space into one
dimension. Then Jeffries-Matusita (J-M) distance [32], [33]
is adopted to calculate the thresholds which used to divide
the boundary. The determinant of confusion matrix [34] is
calculated as purity and the linearly separable clusters are
selected with the highest purity. The end of the decision tree
branch is decided when there is only one category label in
both groups. The proposed classification method is examined
by the widely tested AIRSAR data in Flevoland area of
the Netherlands, as well as GaoFen-3 data in Hulunbuir of
China.
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The main contribution of this article is to develop a
new decision tree method for POLSAR data classification,
in which the dimension of polarimetric feature space is adap-
tively decided at the tree nodes. Traditional fixed dimensional
decision tree approaches are comparedwith the proposed one,
including one to three dimension cases. Besides, classical
SVM method is also experimented for comparison. Among
them, the method developed in this study shows the best
compromise between classification accuracy and computa-
tion efficiency. By the use of adaptive dimensional feature
space, actually the better features for discriminating certain
class groups are founded. It achieves the grained interpreta-
tion of similar scattering mechanisms of terrain types, and
is preliminarily demonstrated by transplanting the features
obtained at the tree nodes directly to another data sets of the
same sensor for classification without training process.

In the following sections, the theory and classification
methods for this article are described in Section II, the exper-
imental data sets and results analysis are given in Section III,
the discussion is given in Section IV, and conclusion is given
in Section V.

II. METHODS
A. POLARIMETRIC FEATURES
In this article, eight polarimetric features [27], [35] are
selected for the decision tree, as shown in Table 1.
The 8 features can be divided into two categories, one
is from the second-order backscattering matrix, includ-
ing

〈
|SHH |2

〉
(the backscattering power of HH),

〈
|SVV |2

〉
(the

backscattering power of VV),
〈
SHHS∗VV

〉
(the co-polarization

cross product), CPR(the ratio of co-polarization compo-
nent to cross-polarization component) and Span(the total
backscattering power). And the other is from the polar-
ization decomposition components, including α(the scat-
tering angle), H (1 − A)(the combination of entropy and
anisotropy) and PV (the volume scattering component from
Freeman-Durden decomposition).

TABLE 1. Polarimetric features for decision trees.

In full polarization observation, assuming that the mode of
transmission and reception is linear horizontal and vertical
polarization, the backscattering matrix [S] is expressed as

[S] =
[
SHH SHV
SVH SVV

]
, (1)

where SHH and SVV contain the backscattering power of the
co-polarization channel, SHV and SVH contain the backscat-
tering power of cross-polarized channel. If the transmitted
and received signals are transmitted in the medium that sat-
isfies the reciprocity, the backscattering matrix also satisfies
the reciprocity theorem, i.e., SHV = SVH .
According to the backscattering matrix, and assuming reci-

procity, the following three circular polarization components

can be derived
SRR =

SHH − SVV + iSHV
2

SLL =
SVV − SHH + iSHV

2

SRL =
i (SHH + SVV )

2
,

(2)

where SRR and SLL represent right-right circular polariza-
tion component and left-left circular polarization component
respectively, SRL represents right-left circular polarization
component.

Circular Polarization Ratio (CPR) can be used to clas-
sify three scattering mechanisms, i.e. surface, volume and
double-bounce scatterings, respectively [36]. It is defined as

CPR =

〈
|SRR|2

〉〈
|SRL |2

〉 = 〈
|SHH − SVV |2

〉
+ 4

〈
|SHV |2

〉〈
|SHH + SVV |2

〉 . (3)

The polarimetric covariance matrix is derived from the
scattering matrix, and assuming reciprocity, it is defined as

C3 =

 〈
|SHH |2

〉 √
2
〈
SHHS∗HV

〉 〈
SHHS∗VV

〉
√
2
〈
SHV S∗HH

〉
2
〈
|SHV |2

〉 √
2
〈
SHV S∗VV

〉〈
SVV S∗HH

〉 √
2
〈
SVV S∗HV

〉 〈
|SVV |2

〉
 , (4)

where * represents the complex conjugation, 〈·〉 represents
the ensemble average of time or space, and SXY represents
the complex scattering amplitude when the transmitted and
received signals have a polarization X and Y , respectively.〈
|SHH |2

〉
and

〈
|SVV |2

〉
can effectively improve classification

accuracy [37]. While
〈
SHHS∗VV

〉
could distinguish three types

of scattering: single bounce, volume and double bounce
scattering [38].

Total scattering power is an important representation of
spatial information can be used for image edge extraction,
texture analysis etc., which is the sum of the diagonal ele-
ments of the covariance matrix.

Cloude and Pottier proposed a eigenvalue based decom-
position theory using second-order statistics to extract the
average parameters of samples [39]. Three averaged param-
eters can be derived from the covariance matrix [C3]: mean
scattering angle (α), entropy (H ), and anisotropy (A), which
are defined as

α =

3∑
k=1

pkαk , (5)

H = −
3∑

k=1

pk log3(pk ), (6)

A =
λ2 − λ3

λ2 + λ3
, (7)

where pk = λk/
∑3

k=1 λk , (k = 1, 2, 3). And the eigen-
values are arranged in order from large to small (λ1 >

λ2 > λ3 > 0). The mean scattering angle α, ranging
from 0◦ to 90◦, describes the continuous variation of scat-
tering mechanism, varying from surface scattering(α ≈ 0◦)
to dipole scattering(α ≈ 45◦) and then to double bounce
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scattering(α ≈ 90◦). The entropy H , ranging from 0 to 1,
represents the randomness of the scatterer from isotropic
scattering (H = 0) to totally random scattering (H = 1).
The anisotropy A is very useful for discriminating scattering
mechanisms, especially for those with different eigenvalue
distributions but similar entropy values. The combination
of entropy and anisotropy H (1 − A) represents the random
scattering process, which satisfies the high value of H , and
the low value of A, which means λ2 ≈ λ3 ≈ λ1.
Freeman-Durden decomposition is an incoherent matrix

decomposition method based on three physical scatter-
ing models, for surface, dihedral and volume respectively.
Assuming that these components of are not correlated,
the polarimetric covariance matrix [C3] can be expressed as

C3 =

 fS |β|2 + fD|α|2 +
3fV
8 0 fsβ + fDα +

fV
8

0 2fV
8 0

fSβ∗ + fDα∗ +
fV
8 0 fS + fD +

3fV
8

 , (8)

where fV , fS , and fD is the contribution of volume, surface
and double-bounce scattering component. The 5 parameters
α, β, fS and fD are estimated from the actual radar data.
The results of F-D target decomposition are PS , PD, and PV ,
which represent the power of three scattering mechanism
components, respectively.

Span =
〈
|SHH |2

〉
+ 2

〈
|SHV |2

〉
+

〈
|SVV |2

〉
= PS + PD + PV , (9)

where PS = fS
(
1+ |β|2

)
, PD = fD

(
1+ |α|2

)
, PV = fV .

B. FISHER LINEAR DISCRIMINANT ANALYSIS
When the decision tree nodes employ the feature space
instead of the single feature, the feature space needs to be pro-
jected to certain direction so as to judge the linear separability
of classes. In this article, Fisher Linear Discriminant Analysis
(FLD) [30], [31] is adopted to obtain the projection direction
with the largest degree of dispersion between classes, and
projects the feature space into one dimension. The formula
is as follows

y = ωT x, (10)

where ωT is the projection direction.
However, projecting multidimensional space into one

dimensionwill result in loss of data. Originallywell-classified
classes in the multidimensional space will be severely over-
lapped after being projected to one dimension. Therefore,
Fisher proposed a standard function (Fisher’s ratio). The
formula is as follows

J (ω) =
(m2 − m1)

2

S21 + S
2
2

, (11)

where m1 and m2 represent the intra-class mean of the pro-
jected samples, S1 and S2 represent the standard deviations
of the intra-class scatters of the projected samples.

C. J-M DISTANCE
In this article, J-M distance [32], [33] is used to calculate
the degree of separation between the samples. The range of
distance is [0, 2]. ‘‘0’’ means that two sample categories are
completely confused while ‘‘2’’ represents two sample cate-
gories are completely separated. The J-M distance formula is
as follows

J = 2
(
1− e−B

)
, (12)

where B is the Bhattacharya distance

B =
1
8
(m1 − m2)

2 2

σ 2
1 + σ

2
2

+
1
2
ln

[
σ 2
1 + σ

2
2

2σ1σ2

]
, (13)

where m1 and m2 represent the mean value of two categories,
σ1 and σ2 represent the standard deviation of them.

When the J-M distance on one feature satisfies a linearly
separable condition between two categories, the thresholds of
the two categories in this feature can be calculated, according
to the Gaussian probability distribution density function

P(x) = P (x|ω1)P (ω1)+ P (x|ω2)P (ω2) , (14)

where ω1 and ω2 represent two classes, P(ω1) and P(ω2)
represent the prior probability, and P (x|ω1) and P (x|ω2)

represent the posterior probability. When x0 is present, and
P (x0|ω1) = P (x0|ω2) is established, the two classes have
the best separation effect. Therefore, the value can be used as
the threshold. The formula for calculating the threshold T is
as follows

T =
m2σ

2
1 − m1σ

2
2 ± σ1σ2

√
(m1 − m2)2 + 2A(σ 2

1 − σ
2
2 )

(σ 2
1 − σ

2
2 )

,

(15)

where A = log10(
σ1
σ2
×

m2
m1

).

D. PROPOSED METHOD
The traditional one-dimensional decision tree cannot satisfy
the classification requirement very well, especially has poor
classification ability among targets with similar scattering
characteristics. Due to the complexity of the physical charac-
teristics of the actual target, it often showsmore than one kind
of scattering properties. Therefore, selecting several polari-
metric features to form feature space at some nodes is not
only expected to improve classification accuracy, but also to
explain the scattering mechanism of targets more comprehen-
sively. However, when more than three polarimetric features
are selected at tree nodes, the computational complexity will
increase to an unacceptable level. In this article, an improved
decision tree classification method is proposed, and the core
part is to construct the adaptive-dimension feature space,
which could contain one, two and three dimension. FLD and
J-M distances are used as the linear separability measurement
and the boundary partition algorithm, and ‘‘purity’’ is used as
the branching criterion of the decision tree. Here we adopt the
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determinant of the confusion matrix as purity. The confusion
matrix [C] is defined as follows:

[C] =
[
c11 c12
c21 c22

]
, (16)

where c11 and c22 represent the number of correctly classified
samples, c12 and c21 represent the number of wrong classified
ones. Then, the normalized confusion matrix is calculated as
purity, i.e. p = |

∼

C |. There is no doubt that the more samples
are correctly classified, the closer the calculated purity is
to ‘‘1’’. The method of calculating the purity, taking into
account the number of correctly and incorrectly classified
samples, ensures that the combination of terrain types is
optimal.

In this article, a classification method of adaptive-
dimension decision tree is proposed. At first, we need to
construct the decision tree with training samples, then the
classification of testing samples with the tree is implemented.
The construction of decision tree is as shown in Algorithm. 1,
and the diagram of classification with adaptive-dimension
decision tree is shown in Fig. 1.

III. EXPERIMENTS
This section consists of three subsections. Subsection III-A
introduces the information of experimental data set. Sub-
section III-B analyses the fine-grained interpretability of
the adaptive-dimension feature decision tree. Subsection
III-C gives the classification accuracy comparison of different
methods.

A. DATA SET
The experimental data set is the widely-used L-band data
acquired by NASA/JPL AIRSAR system over the Flevoland
test site in mid-August of 1989. The incidence angles are
around 20◦ at the near range and 44◦ at the far range. There
are 15 different terrain types were marked in the ground truth
image, including stem bean, forest, potatoes, alfalfa, wheat,
bare soil, beets, rapeseed, peas, grasses, water, barley, build-
ings, wheat2 and wheat3. The size of the datum is 750×1024
pixels. It is filtered to reduce the speckle noise by using
refined Lee filter (7 × 7 window size). The Pauli image and
the ground truth image are shown in Fig. 2. And 5% of the
labeled pixels are selected as training pixels. The number of
samples is shown in Table 2.

B. FINE-GRAINED INTERPRETABILITY
The decision tree classification method is different from
other POLSAR image classification methods, for it retains
the polarimetric features used in tree nodes which can be
used to describe target scattering mechanism and interpret
classification rules. Compared with the classical polarimetric
feature decision tree, the proposed method can realize the
one-time classification of a single terrain type, that is, a single
terrain type only corresponds to one leaf node in the decision
tree.

Algorithm 1 Construction of Adaptive-Dimension Decision
Tree
Require: Fully polarimetric SAR image
Ensure: Class labels of the entire test image pixels.
1: Preprocessing← refined Lee filter
2: Feature set← stack 8 categories of polarimetric features

3: Classification process of the node:
4: H ← 1 (high threshold)
5: L ← 0.97 (low threshold)
6: Construct one-dimensional feature space:
7: for each f ∈ [1, 8] do
8: classification result of the node← J-M distance
9: p← |

∼

C | (C : confusion matrix)
10: purity← max {p}
11: end for
12: if purity ≥ H then
13: break
14: else if H ≥ purity ≥ L then
15: Construct two-dimensional feature space:
16: for each f1 ∈ [1, 8] do
17: for each f2 ∈ [1, 8] do
18: dimensionality reduction← FLD
19: classification result of the node← J-M distance
20: p← |

∼

C | (C : confusion matrix)
21: purity← max {p}
22: end for
23: end for
24: else
25: Construct three-dimensional feature space:
26: for each f1 ∈ [1, 8] do
27: for each f2 ∈ [1, 8] do
28: for each f2 ∈ [1, 8] do
29: dimensionality reduction← FLD
30: classification result of the node ← J-M dis-

tance
31: p← |

∼

C | (C : confusion matrix)
32: purity← max {p}
33: end for
34: end for
35: end for
36: end if
37: Select the node with the highest purity for branching
38: repeat
39: carry out processing: 3 ∼ 37
40: until the node contains only one terrain type

Because of the complexity of the physical characteristics
of the actual targets, they often shows more than one kind
of mixed scattering phenomena. In this case, if single polar-
ization feature is used at the tree nodes, then the dominant
scattering mechanism of the target is identified, and the
description of the scattering mechanism for complex areas
(such as agricultural regions) is incomplete. Therefore, in this
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FIGURE 1. Diagram of classification with adaptive-dimension decision
tree.

FIGURE 2. Pauli image (left) and ground truth image (right) of Flevoland
data.

article, we replaces a single feature with the adaptive dimen-
sional feature space which adaptively selects the number of
dimensions according to the degree of separation difficulty.
Here the maximum value of the feature space dimension is
increased to three, which enhances the fine-grained interpre-
tation ability of the decision tree.

The branch order of the proposed decision tree for the
AIRSAR Flevoland data is shown in Figure 3. It can be seen

TABLE 2. Number of labeled pixels and training pixels of AIRSAR data.

FIGURE 3. Decision tree of AIRSAR data.

that, those targets with significant differences in the scat-
tering mechanism will be separated firstly with low dimen-
sional polarimetric feature space. As the separation difficulty
increases, the number of polarimetric features selected at the
decision tree nodes will increase up to two or three, such as
N8-N13.

In the structure of the decision tree, the polarimetric fea-
tures for node classification can be seen visually. Therefore,
the polarimetric features are connected with the physical
characteristics of the targets, which can explain the role of
polarimetric features in classification. For example, the HH
backscattering power of the buildings is greater than that
of other targets, which could be easily separated by HH
scattering power at the node N0. The scattering mechanism
of bare soil is similar to surface scattering, but the mean
scattering angle is smaller than that of other targets except
rapeseed. Considering that the total scattering power of bare
soil is also small, hence, with both α and Span bare soil
can be discriminated from others. Following that, the water
surface is relatively simple with roughness surface scattering,
so the entropy value is much smaller than other unclassified
targets, thus water can be separated by using the feature
H (1−A). Stem bean, forest, and potatoes have dense leaves,
so they have volume scattering which could distinguish them
from other targets. Usually the volume scattering intensity
of stem bean is smaller than that of forest and potatoes.
Further research found that

〈
|SHH |2

〉
can be used to subdivide
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stem bean and potatoes, while
〈
|SVV |2

〉
can be used to sub-

divide stem bean and forest. Therefore, using PV ,
〈
|SHH |2

〉
,

and
〈
|SVV |2

〉
simultaneously can be more accurate for the

separation of stem bean. The scattering angle and canopy
scattering intensity of forest are both greater than those of
potatoes, also because of the complex scattering phenomenon
in the forest area, the entropy value is greater than that of
potatoes. Therefore, the simultaneous use of α,H (1−A), and
PV can separate the forest and potatoes. The total scattering
power of wheat3, grasses, alfalfa, and barley is much larger
than other unclassified targets, hence using Span can put
them into a group. And since the circular polarization ratio
of this group is slightly larger than the unclassified targets,
using CPR can further improve classification accuracy. The
scattering mechanism of beets, peas, and wheat is the combi-
nation of surface scattering and volume scattering. However,
the co-polarization cross product of beet is smaller than that
of wheat and peas. Although the scattering mechanism of
peas and wheat is similar, but their HH backscattering ability
is significantly different.

FIGURE 4. Classification result images of one-dimensional feature
decision tree(a), two-dimensional feature decision tree(b),
three-dimensional feature decision tree(c), and adaptive-dimension
feature decision tree(d) of AIRSAR data.

C. CLASSIFICATION ACCURACY
In order to highlight the advantages of the proposed method,
based on the same training samples and test samples, classical
decision tree, that is the one dimensional polarimetric feature
decision tree, as well as two and three-dimensional deci-
sion tree and classic Support Vector Machines(SVM) clas-
sifier are performed. The images of classification results are
shown in Fig. 4. The classification accuracy of five methods

is compared, as shown in Table 3. Because the number of
samples is quite different, it is unreasonable to use the total
classification accuracy to measure the classification results,
so the average accuracy (AA) is used to compare the classi-
fication results in this study.

TABLE 3. Comparison of the classification accuracies (%) for AIRSAR data.

As shown in Table 3, the one-dimensional polarimetric
feature decision tree has good classification accuracy only
for easily separable terrain types, such as bare soil, buildings
and so on. However, the classification accuracy of stem beans
and water is only 45.13% and 42.75%, respectively. This
situation has been greatly improved in the two-dimensional
polarimetric feature decision tree, but using two-dimensional
feature space caused feature redundancy and reduced classi-
fication accuracy for easily separated terrain types, such as
buildings and bare soil. It is worth noting that in the classifi-
cation results of the three-dimensional polarimetric feature
decision tree, the classification accuracy of water is only
51.86%, which further indicates that only simply increas-
ing the number of features at the tree nodes will cause the
polarimetric feature redundancy and reduce the classification
accuracy.

The average classification accuracy of the proposed
method is 8.18% higher than that of one-dimensional polari-
metric feature decision tree and 0.95% higher than that
of two-dimensional polarimetric feature decision tree and
1.61% higher than that of three-dimensional decision tree.
It can be seen that the one-dimensional tree has the low-
est result, where specific type has very low accuracy; the
two-dimensional tree improves the phenomenon a lot; while
the three-dimensional tree causes the accuracy lower than
the two-dimensional one. Our proposed adaptive dimensional
tree achieve the better results than all, especially for those
complicated types, but with better interpretability on scatter-
ing properties as well as relatively reasonable computation
complexity. Although the SVM classifier cannot explain the
role of polarimetric features in classification, we still compare
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its performance with the proposed method. The average clas-
sification accuracy of the proposed method is 9.81% higher
than that of SVM. The penalty parameter in SVM is set to
1000 in our experiment.

The experimental environment is as follows: MAC
OS operating system, Intel Core i5 processor, 8G mem-
ory, Inter Iris Graphics 6100 graphics card and Matlab
software. By calculating the running time of the code,
it is concluded that the running time of nodes using
one-dimensional feature space is about 3.5 seconds, the clas-
sification time of nodes using two-dimensional feature
space is about 40 times of one-dimensional feature space,
about 130 seconds, and the classification time of nodes
using three-dimensional feature space is about 2 times of
two-dimensional feature space, about 260 seconds. Since
the adaptive-dimension polarimetric feature decision tree
has seven nodes using three-dimensional feature space, four
nodes using two-dimensional feature space and two node
using one-dimensional feature space, so the running time is
reduced by 28% compared to the three-dimensional decision
tree.

Another dataset is empolyed to test the effectiveness of
the proposed method. The data is the fully polarimetric
C-band image collected by the GaoFen-3 SAR system over
the Hulunbuir test site. In this GaoFen-3 data set, four cate-
gories are known, including forest, bare land, cole and wheat.
According to the unsupervised classification and experience,
the other four categories were found, which were assumed
to be grasses, water, sand and wetland. The Pauli image and
ground truth are shown in Fig. 5. 3% of the labeled pixels
were selected as training pixels. The number of samples is
shown in Table 4.

FIGURE 5. Pauli image (left) and ground truth image (right) of
GaoFen-3 data.

TABLE 4. Number of labeled pixels and training pixels of GaoFen-3 data.

The experimental environment is the same as the pre-
vious data. Fig. 6 gives out the classification results of
four methods, and Table 5 indicates the classification accu-
racies of them. As shown in Table 5, the average clas-
sification accuracy of adaptive dimension decision tree is

FIGURE 6. Classification result images of one-dimensional feature
decision tree(a), two-dimensional feature decision tree(b),
three-dimensional feature decision tree(c), and adaptive-dimension
feature decision tree(d) of GaoFen-3 data.

TABLE 5. Comparison of the classification accuracies (%) for
GaoFen-3 data.

7.32% higher than that of one-dimensional decision tree
and 0.17% higher than that of two-dimensional decision
tree. When using the three-dimensional decision tree clas-
sification method, the classification accuracy is reduced by
3.82% compared with the proposed method, which is due
to redundancy of nodes, which further proves the neces-
sity of adaptive dimension. In this data experiment, SVM
achieved a bit higher classification accuracy of 0.43%, since
the 8 terrain types here has larger differences between each
other, which makes the discrimination much easier. Even
from the Pauli image in Fig. 5 the scattering diversity could
be observed. However, in the first data experiment, many
types all belong to vegetated/agricultural areas with similar
scattering characteristics. So the advantage of the proposed
approach is more obvious in the previous experimentation.
Considering that two-dimensional decision tree runs 40 times
of one-dimensional feature space, three-dimensional decision
tree runs 80 times of one-dimensional feature space, and
because that the adaptive dimension decision tree has one
node using three-dimensional feature space and six nodes

VOLUME 8, 2020 173833



Q. Yin et al.: Interpretable POLSAR Image Classification Based on Adaptive-Dimension Feature Space Decision Tree

using two-dimensional feature space, so the running time is
reduced by 43% compared to the three-dimensional decision
tree.

From the comparison of classification experiments for all
thesemethods, it could be seen that the proposed decision tree
with adaptive dimensional feature space is optimal to other
fixed dimensional decision tree approaches, with the consid-
eration of improved classification accuracy and acceptable
computation complexity. SVM could achieve similar or a bit
lower classification results with ourmethod, however, it could
not provide the relation between polarimetric features and the
terrain types. Therefore, SVM is not interpretable method,
which cannot be extended to other datasets of the same sensor
for unsupervised or low-supervised classification. In the fol-
lowing discussion section, the transplantation of polarimetric
features obtained by decision tree is implemented. It could
not only achieve high classification accuracy, but also save
the time for training process.

IV. DISCUSSIONS
A. NECESSITY OF ADAPTIVE DIMENSION FEATURE SPACE
The necessity of using adaptive-dimension feature space
for decision tree nodes is demonstrated by classifying bare
soil from other targets from Flevoland data set. As shown
in Fig. 7, when the bare soil and other targets are classified
by the feature f1 (α) or f8 (Span) respectively, it is difficult
to achieve separation of them. However, as shown in Fig. 8,
the two-dimensional scatter plots distributed on f1 and f8
could clearly separate the bare soil from other targets.

FIGURE 7. Distribution of bare soil and other targets on the feature f1
(left) or f8 (right).

On the contrary, for certain terrain types, one single feature
is enough to be discriminated from others. As shown in Fig. 9,
the complete separation of buildings and other targets can be
achieved by the use of only f2. As shown in Table 3, the classi-
fication accuracy of buildings using one-dimensional feature
space has reached 100%, but the classification accuracy of
buildings using two-dimensional feature space is 99.33%. For
this type, by increasing the number of polarization features
at the node not only causes an increase in computational
complexity, but also reduces the classification accuracy.

Therefore, it is very important to select the feature space
dimension at the nodes of decision tree, by means of deter-
mining the high and low thresholds of the purity. In order
to ensure that the nodes with one-dimensional feature have
enough capability for separation, the high threshold is set

FIGURE 8. Two-dimensional scatter plots distributed on feature f1 and f8
of bare soil and other targets.

FIGURE 9. Distribution of buildings and other targets on feature f2.

to ‘‘1’’. When the purity of classification results of training
samples is maximum (= 1), it loses significance to con-
tinue to increase the dimension. The low threshold is set
to ‘‘0.97’’ based on experience. When the purity of clas-
sification results of training samples is greater than 0.97,
the purity can generally reach to 0.99 or even higher after
using the two-dimensional feature space. If the purity of
classification results of training samples is less than 0.97,
it can be considered that the scattering mechanism of the
categories is quite similar, which needs to be classified by
three-dimensional features. When the selected threshold is
too low, the two-dimensional feature space cannot satisfy the
classification of some categories. On the contrary, when the
selected threshold is too high, the three-dimensional feature
space will be used for those easily separated categories,
whichwill increase computational complexity and sometimes
decrease accuracy.

B. MIGRATION OF POLARIMETRIC FEATURES
The decision tree classification method based on polarimetric
feature is different from the data-driven classification meth-
ods. The scatteringmechanisms of the targets are described in
the classification results. Because the observation capability
of the certain POLSAR sensor keeps stable, the polarimetric
features for classification can probably be applied to different
data using the same sensor without training process. The
migration of the proposed method is examined by using
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FIGURE 10. Pauli image (left) and ground truth image (right) of Flevoland
II data.

TABLE 6. Classification accuracies (%) of Flevoland II.

another AIRSAR data in Flevoland area, as shown in Fig. 10.
By comparing the same categories of the two AIRSAR data,
the classification of eight categories can be transplanted,
this is, rapeseed, potatoes, wheat, alfalfa, peas, stem bean,
beets and grasses. The features in the constructed tree nodes
are applied directly to the classification of the Flevoland II
data without any training process, and the results are shown
in Table 6. The decision tree nodes trained by the first AIR-
SAR data can obtain satisfactory classification accuracy in
the second AIRSAR data. High classification accuracies are
achieved for all 8 types. It worth to be noted that for those
targets with large differences in scattering mechanisms, such
as rapeseed and peas, rapeseed and beets, achieve almost
complete separation. The type Wheat here corresponds to the
type Wheat2 in the first Flevoland data.

V. CONCLUSION
In this article, an adaptive dimension decision tree based
on polarimetric feature is proposed, in which the feature
space of adaptive dimension is used to replace the fixed
one or two or three dimension cases. It not only improves

the fine-grained interpretability of decision trees, but also
improves the classification accuracy, with reasonable com-
putation complexity. AIRSAR data in Flevoland area and
GaoFen-3 data in Hulunbuir area are used to verify the
validity of the method. Compared with the one-dimensional
feature decision tree, the classification accuracy of proposed
method improves 8.18% in AIRSAR data and 7.32% in
GaoFen-3 data. In comparison with the two-dimensional
decision tree, the developed approach increases 0.95% and
0.17%. As to the three-dimensional decision tree, the average
classification accuracy of proposed method in AIRSAR data
is 1.61% higher, while in GaoFen-3 data, it is 3.82% higher.
Flexible selection of feature space dimensions can avoid
feature redundancy, improve classification accuracy, reduce
computational complexity effectively and explain the scatter-
ing mechanism of targets more scientifically and completely.
In addition, compared with data-driven classification method
SVM, with better or equivalent classification accuracy, adap-
tive dimension decision tree demonstrates its superiority in its
interpretability and transplantation capability. Another AIR-
SAR data in Flevoland area is used to realize the migration of
polarimetric feature in terrain classification, and promising
results are achieved for all the transportable terrain types.

ACKNOWLEDGMENT
The authors acknowledge Prof. Erxue Chen in Chinese
Academy of Forestry for providing the field type information
of Gaofen-3 data.

REFERENCES
[1] H. Anys and D.-C. He, ‘‘Evaluation of textural and multipolarization

radar features for crop classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 33, no. 5, pp. 1170–1181, Sep. 1995.

[2] Y. Zou, L. Shi, S. Zhang, C. Liang, and T. Zeng, ‘‘Oil spill detec-
tion by a support vector machine based on polarization decomposition
characteristics,’’ Acta Oceanologica Sinica, vol. 35, no. 9, pp. 86–90,
Sep. 2016.

[3] T.-S. Kim, K.-A. Park, X. Li, A. A. Mouche, B. Chapron, and M. Lee,
‘‘Observation of wind direction change on the sea surface temperature
front using high-resolution full polarimetric SAR data,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2599–2607,
Jun. 2017.

[4] Y. Ji, J. T. S. Sumantyo, M. Y. Chua, and M. M. Waqar, ‘‘Earth-
quake/Tsunami damage level mapping of urban areas using full polari-
metric SAR data,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 7, pp. 2296–2309, Jul. 2018.

[5] H. Sui, K. An, C. Xu, J. Liu, and W. Feng, ‘‘Flood detection in PolSAR
images based on level set method considering prior geoinformation,’’ IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 699–703, May 2018.

[6] F. Zhang, X. Yao, H. Tang, Q. Yin, Y. Hu, and B. Lei, ‘‘Multiple mode
SAR raw data simulation and parallel acceleration for Gaofen-3 mission,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 6,
pp. 2115–2126, Jun. 2018.

[7] D. Haldar, R. Dave, and V. A. Dave, ‘‘Evaluation of full-polarimetric
parameters for vegetation monitoring in rabi (winter) season,’’ Egyptian
J. Remote Sens. Space Sci., vol. 21, pp. S67–S73, Jul. 2018.

[8] L. J. Du and J. S. Lee, ‘‘Polarimetric SAR image classification based on
target decomposition theorem and complex wishart distribution,’’ in Proc.
IGARSS 96. Int. Geosci. Remote Sens. Symp., vol. 1, 1996, pp. 439–441.

[9] J.-S. Lee, M. R. Grunes, T. L. Ainsworth, L.-J. Du, D. L. Schuler, and
S. R. Cloude, ‘‘Unsupervised classification using polarimetric decompo-
sition and the complex wishart classifier,’’ IEEE Trans. Geosci. Remote
Sens., vol. 37, no. 5, pp. 2249–2258, Sep. 1999.

VOLUME 8, 2020 173835



Q. Yin et al.: Interpretable POLSAR Image Classification Based on Adaptive-Dimension Feature Space Decision Tree

[10] C. Liu, W. Liao, H.-C. Li, K. Fu, and W. Philips, ‘‘Unsupervised classifi-
cation of multilook polarimetric SAR data using spatially variant wishart
mixture model with double constraints,’’ IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 10, pp. 5600–5613, Oct. 2018.

[11] X. Xue, L. Di, L. Guo, and L. Lin, ‘‘An efficient classification method
of fully polarimetric SAR image based on polarimetric features and
spatial features,’’ in Proc. 4th Int. Conf. Agro-Geoinformatics (Agro-
Geoinformatics), Jul. 2015, pp. 327–331.

[12] A. Rezaeian, S. Homayouni, and A. Safari, ‘‘Segmentation of polarimetric
SAR images usig wavelet transformation and texture features,’’ Int. Arch.
Photogramm., Remote Sens. Spatial Inf. Sci., vol. 40, no. 1, p. 613, 2015.

[13] L. Du and J. S. Lee, ‘‘Fuzzy classification of Earth terrain covers using
complex polarimetric SAR data,’’ Int. J. Remote Sens., vol. 17, no. 4,
pp. 809–826, Mar. 1996.

[14] D. H. Hoekman, M. A. M. Vissers, and T. N. Tran, ‘‘Unsupervised full-
polarimetric SAR data segmentation as a tool for classification of agricul-
tural areas,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 2, pp. 402–411, Jun. 2011.

[15] S. Daniel, S. Allain-Bailhache, S. Angelliaume, P. Dubois-Fernandez, and
E. Pottier, ‘‘Agricultural vegetation classification with SVM and polari-
metric SAR data,’’ Proc. SPIE, vol. 7824, Oct. 2010, Art. no. 78240L.

[16] T. Zou, W. Yang, D. Dai, and H. Sun, ‘‘Polarimetric SAR image classi-
fication using multifeatures combination and extremely randomized clus-
tering forests,’’ EURASIP J. Adv. Signal Process., vol. 2010, no. 1, p. 4,
Dec. 2009.

[17] P. Du, A. Samat, B. Waske, S. Liu, and Z. Li, ‘‘Random forest and rotation
forest for fully polarized SAR image classification using polarimetric
and spatial features,’’ ISPRS J. Photogramm. Remote Sens., vol. 105,
pp. 38–53, Jul. 2015.

[18] L. Jiao and F. Liu, ‘‘Wishart deep stacking network for fast POLSAR image
classification,’’ IEEE Trans. Image Process., vol. 25, no. 7, pp. 3273–3286,
Jul. 2016.

[19] X. Liu, L. Jiao, X. Tang, Q. Sun, and D. Zhang, ‘‘Polarimetric convo-
lutional network for PolSAR image classification,’’ IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 5, pp. 3040–3054, May 2019.

[20] F. Zhang, J. Ni, Q. Yin, W. Li, Z. Li, Y. Liu, and W. Hong, ‘‘Nearest-
regularized subspace classification for PolSAR imagery using polarimetric
feature vector and spatial information,’’ Remote Sens., vol. 9, no. 11,
p. 1114, Nov. 2017.

[21] B. H. Trisasongko, D. R. Panuju, D. J. Paull, X. Jia, and A. L. Griffin,
‘‘Comparing six pixel-wise classifiers for tropical rural land covermapping
using four forms of fully polarimetric SAR data,’’ Int. J. Remote Sens.,
vol. 38, no. 11, pp. 3274–3293, Jun. 2017.

[22] Y. Zhang, J. Zhang, X. Zhang, H. Wu, and M. Guo, ‘‘Land cover clas-
sification from polarimetric SAR data based on image segmentation and
decision trees,’’ Can. J. Remote Sens., vol. 41, no. 1, pp. 40–50, Jan. 2015.

[23] J. Zhang and D. Yan, ‘‘A supervised classification method of polarimetric
sythetic aperture radar data usingwatershed segmentation and decision tree
c5. 0,’’Geomatics Inf. Sci. Wuhan Univ., vol. 39, no. 8, pp. 891–896, 2014.

[24] A. Jain and D. Singh, ‘‘Decision tree approach to classify the fully
polarimetric RADARSAT-2 data,’’ in Proc. Nat. Conf. Recent Adv. Elec-
tron. Comput. Eng. (RAECE). Roorkee, India: IIT Roorkee, Feb. 2015,
pp. 318–323.

[25] V. Thakur, P. G. N. Ghildiyal, and R. Prakash, ‘‘An adaptive technique
based on separability index to classify PALSAR data,’’ in Proc. 2nd
Int. Conf. Adv. Comput., Commun., Autom. (ICACCA) (Fall), Sep. 2016,
pp. 1–8.

[26] G. S. Phartiyal, K. Kumar, D. Singh, and K. P. Singh, ‘‘Optimal use of
polarimetric signature on PALSAR-2 data for land cover classification,’’
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017,
pp. 4558–4561.

[27] L. Shao and W. Hong, ‘‘Decision tree classification of PolSAR image
based on two-dimensional polarimetric features,’’ J. Radars, vol. 5, no. 6,
pp. 681–691, 2016.

[28] L. Deng, Y.-N. Yan, and C. Wang, ‘‘Improved POLSAR image classifica-
tion by the use of multi-feature combination,’’ Remote Sens., vol. 7, no. 4,
pp. 4157–4177, Apr. 2015.

[29] W. Hong, L. Shao, and Q. Yin, ‘‘Decision hierarchical classification by
FLD for vegetation application using PolSAR features,’’ in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 5295–5298.

[30] B. Chen, S.Wang, L. Jiao, and S. Zhang, ‘‘Unsupervised polarimetric SAR
image classification using Fisher linear discriminant,’’ in Proc. 2nd Asian–
Pacific Conf. Synth. Aperture Radar, Oct. 2009, pp. 738–741.

[31] M. Mahdianpari, B. Salehi, F. Mohammadimanesh, B. Brisco,
S. Mahdavi, M. Amani, and J. E. Granger, ‘‘Fisher linear discriminant
analysis of coherency matrix for wetland classification using PolSAR
imagery,’’ Remote Sens. Environ., vol. 206, pp. 300–317, Mar. 2018.

[32] M. Dabboor, S. Howell, M. Shokr, and J. Yackel, ‘‘The Jeffries–Matusita
distance for the case of complex Wishart distribution as a separability
criterion for fully polarimetric SAR data,’’ Int. J. Remote Sens., vol. 35,
no. 19, pp. 6859–6873, 2014.

[33] Z. Dong, Q. Zhou, D. Wang, and Z. Chen, ‘‘Kharif dryland crop identifi-
cation based on synthetic aperture radar in the north China plain,’’ in Proc.
4th Int. Conf. Agro-Geoinformatics (Agro-Geoinformatics), Jul. 2015,
pp. 38–43.

[34] L. Yi and G. Zhang, ‘‘Object-oriented remote sensing imagery classifica-
tion accuracy assessment based on confusion matrix,’’ in Proc. 20th Int.
Conf. Geoinformatics, Jun. 2012, pp. 1–8.

[35] Q. Yin, W. Hong, F. Zhang, and E. Pottier, ‘‘Optimal combination of
polarimetric features for vegetation classification in PolSAR image,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 10,
pp. 3919–3931, Oct. 2019.

[36] S. Chen, S. Guo, Y. Li, Q. Yin, and W. Hong, ‘‘Unsupervised classifi-
cation based on the logarithmic circular polarization ratio parameter for
hybrid polarimetric SAR,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2016, pp. 979–982.

[37] D. H. Hoekman and M. A. M. Vissers, ‘‘A new polarimetric classification
approach evaluated for agricultural crops,’’ IEEE Trans. Geosci. Remote
Sens., vol. 41, no. 12, pp. 2881–2889, Dec. 2003.

[38] A. Kumar and R. K. Panigrahi, ‘‘Classification of hybrid-pol data using
novel cross-polarisation estimation approach,’’ Electron. Lett., vol. 54,
no. 3, pp. 161–163, Feb. 2018.

[39] S. R. Cloude and E. Pottier, ‘‘An entropy based classification scheme
for land applications of polarimetric SAR,’’ IEEE Trans. Geosci. Remote
Sens., vol. 35, no. 1, pp. 68–78, Jan. 1997.

QIANG YIN (Member, IEEE) received the B.E.
degree in electronic and information engineering
from the Beijing University of Chemical Tech-
nology, Beijing, China, in 2004, and the M.S.
and Ph.D. degrees in signal and information pro-
cessing from the Institute of Electronics, Chinese
Academy of Science, Beijing, in 2008 and 2016,
respectively.

From 2008 to 2013, she was a Research Assis-
tant with the Institute of Electronics, Chinese

Academy of Sciences, Beijing. From 2014 to 2015, she was a Research
Fellow with European Space Agency, Roma, Italy. She is currently an Asso-
ciate Professor with the College of Information Science and Technology,
Beijing University of Chemical Technology. Her research interests include
polarimetric/polarimetric interferometric SAR and deep learning.

JIANDA CHENG received the B.E. degree in
automation from the Beijing University of Chem-
ical Technology, Beijing, China, in 2018, where
he is currently pursuing the Ph.D. degree with the
College of Information Science and Technology.

His research interests include polarimetric SAR
processing and artificial intelligence.

173836 VOLUME 8, 2020



Q. Yin et al.: Interpretable POLSAR Image Classification Based on Adaptive-Dimension Feature Space Decision Tree

FAN ZHANG (SeniorMember, IEEE) received the
B.E. degree in communication engineering from
the Civil Aviation University of China, Tianjin,
China, in 2002, the M.S. degree in signal and
information processing from Beihang University,
Beijing, China, in 2005, and the Ph.D. degree in
signal and information processing from the Insti-
tute of Electronics, Chinese Academy of Science,
Beijing, in 2008.

He is currently a Full Professor of electronic and
information engineering with the College of Information Science and Tech-
nology, Beijing University of Chemical Technology, Beijing. His research
interests include synthetic aperture radar signal processing, image process-
ing, and high-performance computing.

Dr. Zhang has been an Associate Editor of IEEE ACCESS and a Reviewer
of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, the IEEE
JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE

SENSING, the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, and the Inter-
national Journal of Antennas and Propagation.

YONGSHENG ZHOU (Member, IEEE) received
the B.E. degree in telecommunications engineer-
ing from the Beijing Information Science and
Technology University, Beijing, China, in 2005,
and the Ph.D. degree in signal and information pro-
cessing from the Institute of Electronics, Chinese
Academy of Sciences, Beijing, in 2010.

From 2010 to 2019, he was respectively a
Research Assistant and an Associate Research
Fellow with the Academy of Opto-Electronics,

Chinese Academy of Sciences, Beijing. He is currently a Professor with
the College of Information Science and Technology, Beijing University
of Chemical Technology, Beijing. His research interests include Pol-
InSAR/PolSAR data processing, SAR radiometric calibration and sensor
performance analysis, target detection, and recognition.

LUYI SHAO received the B.S. degree in electronic
information science and technology from the Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, in 2010, and the M.S.
and Ph.D. degrees in signal and information pro-
cessing from the Institute of Electronics, Chinese
Academy of Science, Beijing, China, in 2013 and
2018, respectively.

She is currently a Postdoctoral Researcher with
the Ocean University of China, Qingdao, China.

Her research interests include polarimetric SAR and image classification.

WEN HONG (SeniorMember, IEEE) received the
M.S. degree in electronic engineering from North-
western Polytechnical University, Xi’an, China,
in 1993, and the Ph.D. degree from Beihang Uni-
versity, Beijing, China, in 1997.

From 1997 to 2002, she was a Faculty Mem-
ber in signal and information processing with the
Department of Electrical Engineering, Beihang
University. In between, she was a Guest Scien-
tist with the DLR-HF, Wessling, Germany, from

1998 to 1999 for one year. Since 2002, she has been a Scientist with the
Science and Technology onMicrowave Imaging Laboratory and a Supervisor
of the graduate Student Program and the Administrative Vice Director with
the Institute of Electronics, Chinese Academy of Sciences, Beijing. Her main
research interests include polarimetric/polarimetric interferometric synthetic
aperture radar (SAR) data processing and application, 3-D SAR signal
processing, circular SAR signal processing, SAR polarimetry application,
and sparse microwave imaging with compressed sensing.

VOLUME 8, 2020 173837


