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ABSTRACT To improve the fault identification accuracy of rolling bearings due to the problems of parameter
optimization and low convergence accuracy, a novel fault diagnosis method for rolling bearings combining
wavelet threshold de-noising, genetic algorithm optimization variational mode decomposition (GA-VMD)
and the whale optimization algorithm based on the von Neumann topology optimization least squares support
vector machine (VNWOA-LSSVM) is proposed in this manuscript. First, wavelet threshold de-noising is
used to preprocess the vibration signal to reduce the noise and improve the signal-to-noise ratio (SNR).
Second, a genetic algorithm (GA) is utilized to optimize the parameters of variational mode decomposition
(VMD), and optimized VMD is adopted to extract the fault feature information. The VNWOA-LSSVM
fault diagnosis model is built to train and identify the fault feature vectors. The proposed method is validated
by experimental data. The results show that this method can not only effectively diagnose various damage
positions and extents of rolling bearings but also has good identification accuracy.

INDEX TERMS Wavelet threshold de-noising, genetic algorithm, variational modal decomposition, von

Neumann topology, rolling bearing.

I. INTRODUCTION

As an important widely used component, rolling bear-
ings impact the stable operation of mechanical equip-
ment [1]. Rolling bearings directly affect the service
performance of the whole mechanical equipment, and so it
is of great significance to carry out fault diagnosis research
on rolling bearings. For fault diagnosis of rolling bearings,
the most critical thing is to accurately extract the faulty
feature information of the rolling bearings, and adopt this
information to analyze the running status of the rolling
bearings.

Fault diagnosis of rolling bearings is mostly represented
using the time-domain or frequency-domain, and the com-
monly used fault diagnosis methods included the Wavelet
transform, Fourier transform, Hilbert transform, etc. [2]-[4].
However, when a fault occurs, the signal is mostly nonlin-
ear and non-stationary. It is difficult to extract the effective
component of fault feature information from a signal in the
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time-domain or frequency-domain. Therefore, a signal
processing method combining the time-domain and the
frequency-domain is produced. Huang e al. [S] proposed
Empirical mode decomposition (EMD) and applied it in time-
frequency domain analysis. EMD is widely used in the pro-
cessing of different signals, and it automatically decomposes
signals into a series of modal components from high fre-
quency to low frequency. Yu et al. [6] applied the EMD and
Hilbert spectrum to fault diagnosis of rolling bearings and
compared the method with the envelope spectrum to prove
that the proposed method can effectively diagnose rolling
bearings. To realize the diagnosis of different fault types of
rolling bearings, Ali ef al. [7] proposed a fault diagnosis
method combining EMD and energy entropy. The vibration
signal of the bearing was decomposed by EMD to obtain the
modal component, and then the energy entropy of each modal
component was calculated. Cai et al. [8] introduced a fault
diagnosis method for rail transit rolling bearings based on the
combination of EMD and the genetic neural network adaptive
enhancement. The EMD method has certain advantages, but
it has some problems such as mode aliasing and endpoint
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effects [9]-[11]. Gaci [12] proposed the total average ensem-
ble empirical mode decomposition (EEMD) to eliminate the
influence of noise on a vibration signal by adding Gaussian
white noise. To solve the problem of the unknown type and
characteristic frequency of rolling bearings in actual engi-
neering applications, Yang et al. [13] adopted the EEMD
and stochastic resonance technology, established the cut-off
frequency criterion and spectral amplification factor to select
the effective component and verified the effectiveness of the
proposed method through three rolling bearings experiments
with different fault types. To improve the efficiency and accu-
racy of fault diagnosis, Zou et al. [14] combined signal pre-
processing, EEMD and the long-short-term memory (LSTM)
algorithm to implement fault diagnosis of rolling bearings.
Although EEMD overcomes the modal aliasing problem of
EMD, it still has the endpoint effects [14]. Sun ez al. [15],
Tian et al. [16] proposed local characteristic-scale decompo-
sition (LCD), which could adaptively decompose complex
multi-component signals into a series of single-component
intrinsic scale components and effectively extract fault fea-
ture information. Luo er al. [17] adopted singular value
decomposition and the LCD algorithm to extract the feature
information, and then combined the artificial neural net and
mean impact value to select more accurate fault feature infor-
mation of rolling bearings. Ao et al. [18] utilized LCD to
decompose the vibration signal into multiple intrinsic scale
components, and applied the support vector machine (SVM)
fault diagnosis model based on the artificial chemical reac-
tion optimization algorithm to diagnose fault. However, LCD
has unreasonable definitions of the mean curve and modal
aliasing in the decomposition process. VMD was proposed
to search for the optimal solution of the variational model
and determine the frequency center and the bandwidth by
Dragomiretshiy and Zosso [19]. Wu er al. [20] adopted
the VMD algorithm to decompose the vibration signal to
obtain multiple sets of modal components, and then intro-
duced the kernel function joint approximate diagonalization
of eigenmatrices (KJADE) to calculate the features of each
modal component in the time-domain, frequency-domain and
time-frequency domain. Ren et al. [21] proposed VMD to
decompose vibration data, and combined the multi-scale per-
mutation entropy and feature transfer learning to extract the
feature information.

Although the VMD method can adaptively achieve the fre-
quency division of the vibration signal, however, its decom-
position results are heavily restricted to the selection of the
modal number k and the penalty parameter «. Therefore,
the parameter setting of VMD becomes an urgent problem to
be solved. With the emergence of intelligent algorithms, more
researchers combined intelligent algorithms with parameter
optimization. Gu et al. [22] introduced the gray wolf algo-
rithm to optimize the optimal parameters of VMD, and used
the minimum average envelope entropy as the fitness value.
Li et al. [23] introduced the principle of the maximum kurto-
sis to optimize the parameters of VMD and obtain the best «
and k parameters.
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The essence of fault diagnosis is pattern identification [24].
With the continuous development of machine learning and
deep learning in recent years, fault features have been
analyzed by using neural networks [25], support vector
machines [26], [27], shallow model, artificial neural net-
works, deep learning [28] and the hidden Markov chain [29],
and then classification model is established to realize intelli-
gent classification of fault patterns in rolling bearing. Many
scholars applied machine learning in fault classification and
diagnosis [28]. Artificial neural networks are the abstrac-
tion of human brain neural network. Islam and Kim [30]
used a discrete wavelet packet transform method to train
convolutional neural network (CNN) in bearing fault diag-
nosis. Li et al. [31] proposed a precise diagnosis method
for rotating machinery based on the combination of Deep
Belief Network (DBN) and 1D-CNN. As a classical machine
learning algorithm, the SVM is widely used owing to its
simplicity. The SVM is a small-sample learning method
that converts low-dimensional linear non-separable data into
high-dimensional linear separable data [32]. The classifica-
tion accuracy of the SVM is greatly affected by the selection
of the penalty parameter C and kernel parameter g, and the
manual selection is inefficient and has difficulties finding
the optimal parameter. Currently, there are many intelli-
gent optimization algorithms, including the WOA, particle
swarm optimization (PSO), ant colony optimization (ACO),
the gray wolf optimizer (GWO), the firefly algorithm (FA),
the GA, etc. The combination of intelligent optimization
algorithms and the SVM could be used to determine its
optimal parameters. Wang et al. [33] presented the GWO
algorithm to optimize the SVM and applied it to fault diag-
nosis of rolling bearings. Qiao et al. [34] used a quantum
genetic algorithm to optimize the parameters of the SVM.
The intelligent optimization algorithm has some advantages,
but it still has some disadvantages. For example, the WOA
has a slow convergence speed and it easily falls into the
local optimum when dealing with complex optimization
problems. The GA is prone to the premature convergence
phenomenon. Therefore, the structure of an intelligent algo-
rithm needs to be reasonably optimized. To solve the defects
of the WOA, Wu et al. [20] introduced the von Neumann
topology to improve the WOA, and the results showed that
the improved algorithm had a stronger optimization ability
and faster convergence speed. Vijayanand and Devaraj [35]
combined genetic algorithm operators with the WOA and
improved the search space of the WOA by using crossover
operators to avoid it falling into the local optimal solution.
Zhang and Liu [36] proposed the WOA with the Lamarckian
learning method, which adopted point set theory to initialize
the population parameters and used the evolutionary theory
of Lamarck to select the individuals with more development
potential to perform the local search. As an improvement to
the SVM, the LSSVM transforms the inequality constraints
of the SVM into equality constraints, which increases the
solving speed. Gao et al. [37] optimized the parameters
in the LSSVM with PSO and a 10-fold cross-validation
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FIGURE 1. Overall flowchart of this research.

method, and then used it to update the fault diagnosis model.
Liu et al. [38] adopted LSSVM model optimized by quantum
particle swarm optimization (QPSO) algorithm to perform
training and identification fault feature of rolling bearing.
To solve the difficult parameter optimization problem in
VMD and the low convergence accuracy of the WOA, in this
manuscript, a novel fault diagnosis method of rolling bearings
based on wavelet threshold de-noising, the GA-VMD energy
entropy and the VNWOA-LSSVM algorithm is proposed.

Il. MATERIALS AND METHODS

In this manuscript, fault diagnosis of rolling bearings is car-
ried out from three aspects: data preprocessing, fault fea-
ture extraction and fault feature identification. The overall
flowchart is shown in Fig. 1.

A. DATA PREPROCESSING

The collected vibration signal of a rolling bearing contains
different extents of background noise. To accurately extract
the feature information, it is necessary that reduce the inter-
ference of the background noise on the vibration signal. Sig-
nal de-noising methods include wavelet de-noising, singular
value decomposition de-noising, filter de-noising and empir-
ical mode decomposition de-noising. Among them, wavelet
de-noising is widely used due to its good adaptability and
fast decomposition speed. Therefore, the wavelet threshold
de-noising method is adopted in this manuscript, and the
vibration signal is denoised by using the db5 wavelet, which
can satisfy the key properties better than others [39]. Several
trials have been conducted to identify the wavelet transforms
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that highly suitable to the present problem, and db 5 is
identified as the best choice [40]. The three main steps of
wavelet de-noising include wavelet decomposition, threshold
quantization and reconstruction of wavelet signal [41].

There are two common threshold functions for wavelet
threshold de-noising methods: the soft threshold and the hard
threshold. The hard threshold function can produce the Gibbs
effect to a certain extent while the soft threshold function can
better satisfy the signal adaptability. The soft threshold func-
tion is expressed as (1). The method of wavelet soft-threshold
de-noising proposed by Chen et al. [41]. The threshold is
obtained by wden, and then the threshold parameters of
the noise layer are automatically adjusted according to the
wavelet coefficients of the first layer. The thresholding is
applied to all wavelet coefficients.

- [sign (@)] (o] = 1), o] = A

0. €]

o] < A
where w represents wavelet coefficients, w;, denotes the coef-
ficient after applying the threshold, A is threshold.

Wden is a function in MATLAB Wavelet Toolbox, which
can be used to wavelet threshold de-noising. Wden function
uses an N-level wavelet decomposition of signal using the
specified orthogonal or biorthogonal wavelet name to obtain
the wavelet coefficients, and wden function is shown in (2).

©))

where, xd represents the signal after de-noising obtained by
wavelet threshold quantization; x denotes the input original
signal; tptr is the threshold selection rule specified; sorh

xd = wden (x, tptr, sorh, scal, n, wname)

166755



IEEE Access

J. Li et al.: Fault Diagnosis of Rolling Bearing Based on GA-VMD and Improved WOA-LSSVM

represents the selection mode of threshold; n is the number
of decomposed layers; wname indicates the wavelet basis
function.

B. FAULT FEATURE EXTRACTION

1) GENETIC ALGORITHM OPTIMIZATION OF VMD

The VMD algorithm transforms the decomposition process of
the signal into the optimal solution problem of the variational
mode to realize the frequency band separation of the signal.
The VMD algorithm converts the vibration signal into a
series of modal components ux with limited bandwidth, and
requires each modal component uy to revolve around a central
frequency wg. The VMD constraint condition is that the sum
of all modes is equal to the original signal, and the sum
of the estimated bandwidth of each mode is the minimum.
Then, the mathematical expression of the variational model

is shown in (3).
j ot |
min {Xk: ‘ at |:(8 ) + E) *Ug (t)i| eIkt 2}
(3)

s.t. Z u =f
k

To solve the optimal solution of the constraint variable
component problem in (3), the Lagrange punishment oper-
ator L. and secondary penalty factor « are introduced to
transform the constraint variable component problem into a
non-constraint problem. The expression is shown in (4), as
shown at the bottom of the next page.

The VMD algorithm avoids the modal aliasing in the
EMD algorithm, but its decomposition effect is limited by
the number of modal decompositions k and the secondary
penalty factor «. If k is too small, it will cause under decom-
position, which makes it difficult to fully extract the fault
information. However, if k is too large, it will cause over
decomposition, which causes repeated modalities. If « is too
small, the modal component may contain numerous noises;
whereas, if « is too large, the vibration signal may be decom-
posed into two or more modes. Improper selection of the
parameters [k, o] will reduce the fault identification accuracy.
Therefore, a reasonable set of parameters [k, «] is crucial to
the decomposition effect of VMD. With the emergence of
intelligent algorithms, more researchers combined intelligent
algorithms with VMD parameter optimization. The GA was
first proposed by Bagley [35], and the GA is realized by
first establishing a reasonable optimal fitness function. In this
manuscript, the sample entropy is introduced as the fitness
function of the GA. The sample entropy can be used to
characterize the irregularity and complexity of the signal and
evaluate the signal regularity. The lower the sample entropy
is, the higher the signal regularity, that is, the more obvious
the periodic signal characteristics of the rolling bearing. With
the help of the fitness function, the global search for the
objective function value in the solution space is conducted.
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The expression of the objective function is shown in (5).

k
1
(. k) = argmin {; gHm (i)} )

where k and o represent the optimization parameters of
VMD, and Hg;1 represents the sample entropy value of each
mode. The expression of sample entropy is shown in (6).

Henp = — ln[Am (r) /Bm ]l
m 1 Nim m
A" () = ZAi ()
i=1
o 1
A=y T ©)
1 N—m
i=1
1
Bl =g b

where m is the dimension, and r is the similar tolerance.
B™(r) represents the probability that two sequences match m
points under the similar tolerance, and A™(r) represents the
probability that two sequences match m +1 points. A7"(r) and
BY'(r) are defined matching probability, N is the length of the
data.

Fig. 2 shows the process of the GA-VMD method. The
first thing is to set the initialization range of the parame-
ter [k, a]. After numerous trials, we finally choose a more
reasonable range of k in (3, 10) and « in (500, 2000) in
this manuscript. The second thing is the initialization of the
GA parameters. The GA parameters used in this manuscript
similar to reference [43]: The maximum number of iterations
is 50, the population size is 10, the crossover probability
is 0.8, and the mutation probability is 0.1. Then, a random
population is generated. The VMD algorithm parameters
[k, a] are optimized, and the sample entropy of each indi-
vidual is calculated. In addition, GA selection, crossover
and mutation are carried out to find the individual with the
smallest fitness function value in the population. When it
reaches maxgen, the VMD parameter optimization process
is completed, and then the best [k, o] value is output.

2) VMD ENERGY ENTROPY

Once a bearing failure occurs, the energy value of the vibra-
tion signal will change when the bearing rotates through the
damaged area. In addition, the energy entropy of the rolling
bearing will also change when different types of damage
occur. Therefore, the concept of the VMD energy entropy is
introduced in this manuscript.

Through the VMD of the vibration signals x(t) of different
fault types, a series of modal components and a residual
component are obtained. The energy value E, Ep, Es, ...,
E, of each modal component is calculated separately, and
the ratio of each modal component to the total component
is also calculated. The VMD energy entropy is shown in (7),
where E represents the total energy value of the intrinsic mode
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FIGURE 2. Flowchart of the proposed GA-VMD method.

function (IMF). Hep is indicated as the energy entropy value
of each mode. p; is the ratio of the i-th IMF component to the
total energy.

K
Heny (i) = — ) _ pilogo(pi)
i=1

pi=EQ)/E )

o0
E=/|IMF,»|2dt i=1,2,---n
—0o0

C. FAULT FEATURE EXTRACTION

1) LSSVM ALGORITHM

The SVM is a basic machine learning method based on
statistical theory [44]. Its main idea is to establish an optimal
hyperplane to maximize the separation margin between the
two types. The LSSVM algorithm is formed by introducing
the least-squares linear theory into the SVM, which converts
the original SVM inequality constraints into linear equality
constraints. Therefore, the problem-solving process is simpli-
fied. The optimization objective function is defined as shown
in (8).

The final optimization problem is shown in (9)

N
) 1
minJ (w, £) = 3 ol + y ;&2’
i
s.t.y; [a)TqS (xi) —i—b] =1-¢
i=1,2,...,N.

C))

J is optimized objective function, £ is error variables, y rep-
resents penalty factor.

To obtain a better classification model, the Lagrange mul-
tiplier ¢ is introduced. The formula is shown in (10).

L(@.b.&o) =J @)
N
= Yailyilo’o co+e]-14+8} 10
i=1

The relevant parameters in (10) are subjected to a partial
derivative operation by using the constraints on the Karush-
Kuhn-Tucker (KKT) conditions, and the result is set to 0. The
expression is shown in (11).

T

0 y b 0
rol =)= (11)

y vy +—FE ||« y

14

wherey =1[1,1,...,1] T Eisan identity matrix, y = [y,
y27 RG] )’n]T, o = [051, C(2, .. '1an]T9 and 1/[ = [¢ (Xl),
¢ (X2),...,0 (x)]T. ¢ (x;) represents nonlinear mapping

function. Finally, the classification model of the LSSVM is
as follows:

n

f(x) = sgn [Z ok (x, x;) + b:| (12)
i=1

k (x, x;) represents kernel function that satisfying the Mercer

condition.

2) IMPROVED WHALE OPTIMIZATION ALGORITHM

The whale optimization algorithm was proposed by Mirjalili
and Lewis [45] through studying the hunting behavior of
humpback whales. This algorithm is characterized by fewer
parameters than other algorithms and has a simple structure
and a strong global optimization ability.

When whales surround their prey, it is assumed that the
current target prey position is the best in the population. After
determining the search agent, each whale in the population
also defines this target position as the best search agent. Its
position update formulas are as follows:

f @) =sgn{o-¢ ) +b) ®) D = |CX* (1) — X (1)] (13)

w is defined as weight vector, b is deviation vector, ¢ (x) X(@+1)=X"(t)—AD (14)

represents nonlinear mapping function. C=2-n (15)
2

L}, fon}, 2) =a )y
k

) [(5 ) + l) 1y (t)] et
Tt
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FIGURE 3. Von Neumann topology.

A=2ar —a (16)

t
a=2 (1 - Tmax) (17)

In (13)-(17), t represents the current iteration number, and
X(t) represents the current whale position. D is indicated
as coefficient vector. X*(t) represents the current best whale
position, A and C represent coefficients, and Tpx is the max-
imum number of iterations. r| and rp belong to any number in
[0, 1], a is represented as a constant and the value decreases
linearly from 2 to 0.

When humpback whales hunt prey, they not only need
to track their prey with a spiral bubble net, but they also
constantly shrink the range to close to the prey. In the range
contraction and spiral tracking process, the positions of the
whales are continuously updated with a 50% probability. The
position formula is shown in (18).

X*(t)—A - D,
D - cos Qnl)+X* (1),

if p<0.5

X(@+1)= ifp>05

(18)

D’ = | X*(t) — X(t) | represents the distance between the
current whale and the target prey, b defines the shape of the
spiral, and 1 is a random number in [—1, 1].

The whale optimization algorithm has its advantages, but
it easily falls into the local optimum and experiences low
convergence accuracy in complex optimization problems.
Therefore, in this manuscript, the von Neumann topology is
introduced to improve the whale algorithm. The von Neu-
mann topology is shown in Fig. 3. There are up, down, left,
and right whales around each humpback whale, which forms
a grid structure, and then they can exchange information with
each other. Each whale finds the optimal solution, which
may affect the search mechanism of the surrounding whale
individuals and effectively links the interaction of each whale
to realize the full use of information between populations,
thereby improving its global optimal solution and conver-
gence accuracy.

According to its position update formula, the position
update of the whale is affected by the global optimal solu-
tion, and the position of the population is updated with it.
To enhance the local search ability of the whale algorithm,
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the midpoint of the global optimal and local optimal posi-
tions is taken as the optimal position in the current popula-
tion. The algorithm considers both the global optimal and
the local optimal solutions to better realize the information
exchange mechanism among whales. As the number of itera-
tions increases, the global optimal solution and the local opti-
mal solution are constantly approaching and finally return to
the original position. The current optimal position calculated
using (19).

Xi* _ Dlbest; + G
2
Pibesii 18 the optimal position in the local update, G represents
the optimal position in the global update.

19)

3) VNWOA-LSSVM
The steps of the LSSVM by using the optimized whale algo-
rithm (VNWOA) are as follows.

Step 1: Use wavelet threshold de-noising to complete the
de-noising processing of vibration data, use the improved
VMD algorithm to complete the feature extraction of the
vibration signal, and calculate the energy entropy to form
the feature vector matrix. Divide the sample into the training
set and the test set. 190 sets of vibration data under different
rolling bearing fault statues are randomly taken as the training
sets, and 100 sets are used as the test sets.

Step 2: Initialize the parameters of the whale optimization
algorithm. Set the population N as 10 and the maximum
number of iterations Gpax as 50.

Step 3: Determine the network topology of the LSSVM
model, and determine the ranges of parameter o and penalty
factor g in [0, 1000].

Step 4: Calculate the fitness function value of each hump-
back whale and sort the fitness values.

Step 5: Use the von Neumann topology to search for the
optimal solution in the neighborhood, complete the infor-
mation exchange among the populations, search the optimal
solution in the neighborhood, and then update its location
based on formulas (13), (14), (18) and (19).

Step 6: According to formula (18), whales need to con-
stantly shrink the surrounding area to achieve the best classi-
fication accuracy.
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TABLE 1. Description of rolling bearing data set.

Bearing Fault Fault Fault Category
type position Size(mm) depth(mm) label

normal 0 0 1

Inner ring 1 0.1778 0.2794 2

Inner ring 2 0.3556 0.2794 3

Inner ring 3 0.5334 0.2794 4

Outer ring 1 0.1778 0.2794 5

SKF6205 Outer ring 2 0.3556 0.2794 6

Outer ring 3 0.5334 0.2794 7

Rolling element 1 0.1778 0.2794 8

Rolling element 2 0.3556 0.2794 9

Rolling element 3 0.5334 0.2794 10

TABLE 2. Comparison of de-noising effects under different wavelet decomposition levels.
Decomposition level 2 3 4 5 6
SNR 41.4878 41.5869 41.2866 41.2836 41.2770
RMSE 0.0227 0.0080 0.0291 0.0299 0.0266
0.2
8 0.1 h ] . ]
% of £ J
<.01 E ) i
0.2 L L . L s L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 035 g 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time(s) Time(s)
(a) (b)

FIGURE 5. Comparison results in the time-domain before and after de-noising of the rolling bearing under normal conditions.
(a) original time-domain vibration curve, (b) time-domain vibration curve after de-noising.

Step 7: Repeat steps (5) and (6) until the number of iter-
ations meets Gpax. Then, the best fitness function value is
output to train the LSSVM model, and then the rolling bearing
is accurately diagnosed.

Ill. RESULTS AND DISCUSSION

A. EXPERIMENT SYSTEM

The experimental data in this manuscript are obtained from
the bearing database published by Case Western Reserve
University, USA. The experiment system consists of a 2 HP
motor (left), a torque sensor (middle), a dynamometer (right),
and control electronics [46]. The vibration data of the rolling
bearing are collected by a 16-channel vibration sensor. The
rolling bearing used in the experiment is a SKF6205 deep
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groove ball bearing. The structure of the experiment system
is shown in Fig. 4.

The working conditions used in this test are a speed
of 1750r/min, a load of 2HP, and a sampling frequency
of 12kHz. The electrical discharge machine (EDM) is used
to process the pitting with fault diameters of 0.1778 mm,
0.3556 mm, and 0.5334 mm on the inner ring, outer ring, and
the rolling element of the rolling bearing, respectively, which
is done to simulate different extents of damage to the rolling
bearing. A total of 10 samples are analyzed, and there are
29 groups of data under different damage types. The sample
length of each group of vibration data is 4096. 190 groups
are randomly selected for the training set and 100 groups are
selected for the test sets. The data storage format is a .mat file.
The specific sample data set is shown in table 1.

166759



IEEE Access

J. Li et al.: Fault Diagnosis of Rolling Bearing Based on GA-VMD and Improved WOA-LSSVM

Amplitude

Amplitude
o
|

. \ \ .
035 0 0.05 0.1 0.15 0.2 025 03 035

0.15 0.2

Time(s)

(a)

Time(s)

(b)

Amplitude

Amplitude

2k 1 1 1 1 1 I E|

0.15 0.2

Time(s)

(©)

0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time(s)

T (d) T

0.5

Amplitude

Amplitude
< (=]
o N
|

I
o

-0.5
0

0.15 0.2

Time(s)

(e)

0.3

b
S

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time(s)

)

o
©w
&

FIGURE 6. Comparison results in the time-domain before and after de-noising of different damaged parts of the rolling
bearing with a fault size of 0.1778 mm. (a) original time-domain curve of the inner ring, (b) original time-domain curve of
the inner ring after de-noising, (c) original time-domain curve of the outer ring, (d) original time-domain curve of the outer
ring after de-noising, (e) original time-domain curve of the rolling element, and (f) original time-domain curve of the rolling

element after de-noising.
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FIGURE 7. Comparison results of the time-domain before and after de-noising of different damaged parts of the rolling
bearing with a fault size of 0.3556 mm. (a) original time-domain curve of the inner ring, (b) original time-domain curve of
the inner ring after de-noising, (c) original time-domain curve of the outer ring, (d) original time-domain curve of the outer
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B. RESULTS AND ANALYSIS
Different decomposition levels based on wavelet basis
db5 under normal conditions are tested and listed in Table 2,

166760

it shows that the best number of composition level with
SNR and RMSE is level 3. De-noising processing of each
group of vibration data is performed, and the db5 wavelet is
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FIGURE 8. Comparison results of the time-domain before and after the de-noising of different damaged parts of the
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the rolling element after de-noising.

utilized to perform three-layer decomposition. Fig. 5 shows
the time-domain vibration curve of the rolling bearing under
normal operating conditions. Figs. 6, 7, and 8 are the orig-
inal vibration curves and the vibration curves after the
wavelet threshold de-noising of the rolling bearing under
different extents and types of damage. By comparing the
time-domain curves before and after de-noising, it is found
that the vibration data before de-noising is large and con-
tains many burrs. After de-noising, the vibration amplitude
is greatly improved, and the burrs are also well sup-
pressed, which achieves the purpose of de-noising to some
extent.

Taking the fault size of 0.1778 mm as an example,
wavelet threshold de-noising and orthogonal matching pur-
suit (OMP) de-noising are performed, respectively. The com-
parison results are shown in table 3. The two indicators of
the SNR and root mean square error (RMSE) are adopted to
evaluate the de-noising effects of the two methods.

It can be seen from table 3 that after comparing the two
de-noising methods, it is found that the SNRs and RMSEs of
the wavelet threshold after de-noising are better than those of
OMP, and the results show that wavelet threshold de-noising
has a better effect. Therefore, the influence of the background
noise on the vibration signal of the rolling bearing is weak-
ened, which can be useful for the subsequent extraction of
fault features.
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FIGURE 9. Optimized VMD curve with the genetic algorithm.

After wavelet threshold de-noising, the improved VMD
algorithm is adopted to extract the fault feature of the vibra-
tion signal. Taking the fault size of 0.1778 mm of the outer
ring as an example, the GA is utilized to optimize the param-
eters of the VMD algorithm.

Fig. 9 is the fitness curve of the individual minimum
sample entropy value as the number of iterations increases
in the GA optimization process. It can be seen from the
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FIGURE 11. Signal spectrum after VMD processing.

figure that the fitness function value has a minimum value
of 0.1192 at the 39th iteration. When the number of iterations
reaches 50, the optimization process is completed, and the
optimal parameters [k, «] are [10, 957]. The VMD is reset
according to the optimal parameters [k, ], and then 10 modal
components are obtained by using the optimized VMD.

Fig. 11 is the signal spectrum obtained by the optimized
VMD. From the spectrum diagram, the fault characteristic
frequency of the outer ring is not found, and so envelope
spectrum analysis is performed. Fig. 12 shows the envelope

166762

5000

spectrum of the outer ring. In this envelope spectrum,
the characteristic frequency value of the outer ring is
105.5 Hz, and the spectral amplitude at the f;-3f; doubling
frequency is very prominent, indicating that the feature infor-
mation is effectively extracted.

In table 4, GA algorithm is used to optimize VMD algo-
rithm under different fault status of rolling bearings to obtain
the best parameters k and «, and then VMD algorithm param-
eters are set according to the best parameters in the table
4. The vibration signals of different damage positions and

VOLUME 8, 2020
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TABLE 3. Comparison of the de-noising effect.
wavelet threshold de-noising OMP
Bearing status SNR RMSE SNR RMSE
Inner ring 15.8709 0.1129 9.3055 0.3884
Outer ring 27.2286 0.1271 9.6889 0.7061
Rolling element 5.8988 0.1152 8.5717 0.8886
Normal conditions 41.5869 0.0080 5.4545 0.0839
TABLE 4. Optimization parameters obtained by using the GA.
Bearing normal Inner Inner Inner Outer Outer Outer Rolling Rolling Rolling
status ring ring ring ring ring ring element element element
1 2 3 1 2 3 1 2 3
k 9 10 10 10 10 9 8 9 9 10
o 1963 1715 815 833 957 1363 551 1933 1942 1831

extents of rolling bearings are decomposed by the VMD
algorithm after optimized parameter, and the energy entropy
of each modal component is calculated.

Table 5 shows the partial energy entropy of the first
6 modal components under different fault statuses. A total
of 290*6 energy entropy values can be obtained by using the
GA-VMD method.

Based on the fault feature extraction with the wavelet
threshold de-noising and improved VMD  algorithm,
the VNWOA algorithm is used to optimize the LSSVM
model to diagnosis the fault feature. The energy entropy

VOLUME 8, 2020

extracted by VMD in four different statuses is input into the
trained fault diagnosis model. Fig. 13 shows that the optimal
parameters g and C are 67.12 and 72.64, respectively. It can
be seen from Fig. 13 that the VNWOA-LSSVM diagnosis
method has few iterations, and the fitness value can reach
0.97 after approximately 5 iterations.

The trained fault diagnosis model is applied to fault diag-
nosis of rolling bearings. Fig. 14 is the result of the confusion
matrix using the GA-VMD-VNWOA-LSSVM method under
the four different fault status. There are three misclassified
samples, and the final identification accuracy rate of the
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TABLE 5. VMD energy entropy under different fault statuses.

Category
Feature vector (Energy entropy)
Bearing status label
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Normal 0.3676 0.20986 0.3653 0.3196 0.1015 0.0062 1
Inner ring 1 0.2516 0.2336 0.3077 0.1021 0.3198 0.3060 2
Inner ring 2 0.1575 0.1189 0.1416 0.3507 0.3529 0.2185 3
Inner ring 3 0.1742 0.0578 0.2450 0.2695 0.3637 0.2635 4
Inner ring 1 0.0579 0.0627 0.3393 0.3459 0.2142 0.2695 5
Inner ring 2 0.2383 0.3378 0.1734 0.1552 0.3207 0.1704 6
Inner ring 3 0.2141 0.1109 0.2099 0.3003 0.3648 0.3596 7
Rolling element 1 0.1151 0.1703 0.1337 0.3273 0.3469 0.2595 8
Rolling element 2 0.3362 0.1536 0.2464 0.2904 0.2847 0.2081 9
Rolling element 3 0.2766 0.2447 0.2988 0.1906 0.3242 0.2007 10
The overall accuracy of the test set is 97.1% X
0.97 . . . : : : : . .
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FIGURE 13. The optimal curve based on the VNWOA-LSSVM method. 10 0

test set is 97.10%. The results show that this proposed fault
diagnosis method can accurately identify the rolling bearing
faults with different statuses.

To verify the effectiveness of this improved VMD algo-
rithm, fault diagnosis with the improved VMD and the unopti-
mized VMD are conducted and compared in this manuscript.
Here, the VMD parameter k is set to 6, and « is set to
2000. Fig. 15 is the result of the confusion matrix using the
VMD-LSSVM fault diagnosis method, the accuracy of the
label 2 is the lowest as 41.67% and the accuracy of the test
set is 82.00%. Fig. 16 is the result of the confusion matrix
using the VMD-VNWOA-LSSVM fault diagnosis method,
and the accuracy of the test set is 83.00%. By comparing
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FIGURE 14. Confusion matrix of the GA-VMD-VNWOA-LSSVM method.

Figs.14 and 15, it can be seen that the diagnosis effect
of using the improved VMD is better than that of the
unoptimized VMD method, which indicates the optimized
VMD can more accurately extract the fault feature infor-
mation of the rolling bearing. In addition, by comparing
Figs.15 and 16, it can be seen that the diagnosis effect
of using the VMD-VNWOA-LSSVM is better than that of
using the VMD-LSSVM method, which indicates that the
VNWOA has a better optimization effect than the WOA
method.
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TABLE 6. Comparison data of the comprehensive performance using different methods.

Fault diagnosis Fitness Training Test
method value accuracy (%) accuracy (%)
VMD-LSSVM - 91.58 83.00
GA-VMD-LSSVM - 95.79 90.00
VMD-VNWOA-LSSVM 0.84 92.11 84.00
GA-VMD-GA-LSSVM 0.93 96.11 93.46
GA-VMD-PSO-LSSVM 0.95 98.95 95.04
GA-VMD-VNWOA-LSSVM 0.97 99.47 97.00

The overall accuracy of the test set is 82.00%
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FIGURE 15. Confusion matrix of the VMD-LSSVM method.

The overall accuracy of the test set is 83.00%
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FIGURE 16. Confusion matrix of the VYMD-VNWOA-LSSVM method.

Table 6 lists the fault diagnosis results using various
methods such as VMD-LSSVM, GA-VMD-LSSVM, VMD-
VNWOA-LSSVM, GA-VMD-GA-LSSVM, GA-VMD-
PSO-LSSVM and GA-VMD-VNWOA-LSSVM. To obtain

VOLUME 8, 2020

more accurate results, the data are the average values
of 10 times random tests results. It can be seen from table
6 that the training and test accuracies of this proposed method
are superior to those of other methods, which verifies the
correctness and effectiveness of the method proposed in this
manuscript.

IV. CONCLUSION

In this manuscript, a rolling bearing fault diagnosis method
combining wavelet threshold de-noising, the GA-VMD
energy entropy and the VNWOA-LSSVM algorithm is pro-
posed. Fault diagnosis of a rolling bearing is conducted
and analyzed from the aspects of data processing, fault
feature extraction and fault feature identification. Finally,
the correctness and effectiveness of the proposed method are
verified.

(1) For the VMD parameter selection, the GA is utilized
to obtain the best parameters, and then the optimized VMD
method is adopted to extract the fault feature information after
de-noising. The results show that GA-VMD can effectively
extract the fault information of rolling bearings.

(2) For the parameter optimization of the penalty factor C
and kernel function g in the LSSVM fault diagnosis model,
the parameters are optimized by using the VNWOA method.
The results indicate that the VNWOA-LSSVM method has
a good searching ability, and its average diagnostic accuracy
can reach 97.00%.

(3) After combining wavelet threshold de-noising, the
GA-VMD energy entropy, and the VNWOA-LSSVM algo-
rithm, fault diagnosis of rolling bearings is carried out, and the
effectiveness and accuracy of the proposed method are veri-
fied through experiments. By comparing its results with those
of other methods, it can be seen that the proposed method
can effectively diagnose various positions and extents of the
damage to rolling bearings, and it has better identification
accuracy.
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