IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 16, 2020, accepted September 7, 2020, date of publication September 10, 2020,
date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023255

FPGA-Based Hardware Accelerator for Leveled
Ring-LWE Fully Homomorphic Encryption

YANG SU"“12, BAILONG YANG', CHEN YANG'“3, (Member, IEEE), AND LUOGENG TIAN'-
!'School of Operational Support, PLA Rocket Force University of Engineering, Xi’an 710025, China

2School of Cryptography Engineering, Engineering University of People’s Armed Police, Xi’an 710086, China

3School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China

4School of Xi’an Communication, National University of Defense Technology, Xi’an 710106, China

Corresponding authors: Yang Su (wj_suyang@126.com) and Chen Yang (chyang00@xjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation (NNSF) of China under Grant 61704136, in part by the China
Postdoctoral Science Foundation under Grant 2018M631163, in part by the Shaanxi Postdoctoral Research Project Foundation under
Grant 2017BSHEDZZ29, in part by the Fundamental Research Funds for the Central Universities under Grant Z201805200, in part by the
Guangdong Province Key Research and Development Project under Grant 2019B010154002, in part by the National Key Research and
Development Program of China under Grant 2017YFB1102903, in part by the Key Research and Development Plan of Shaanxi Province
under Grant 2019ZDLGY03-07-01, and in part by the Basic Research Foundation of Engineering University of People’s Armed Police
(PAP) of China under Grant WJY201916.

ABSTRACT Fully homomorphic encryption (FHE) allows arbitrary computation on encrypted data and has
great potential in privacy-preserving cloud computing and securely outsource computational tasks. However,
the excessive computation complexity is the key limitation that restricting the practical application of FHE.
In this paper we proposed a FPGA-based high parallelism architecture to accelerate the FHE schemes
based on the ring learning with errors (RLWE) problem, specifically, we presented a fast implementation
of leveled fully homomorphic encryption scheme BGV. In order to reduce the computation latency and
improve the performance, we applied both circuit-level and block-level pipeline strategies to improve clock
frequency, and as a result, enhance the processing speed of polynomial multipliers and homomorphic
evaluation functions. At the same time, multiple polynomial multipliers and modular reduction units were
deployed in parallel to further improve the hardware performance. Finally, we implemented and tested
our architecture on a Virtex UltraScale FPGA platform. Runing at 150MHz, our implementation achieved
4.60x~9.49 x speedup with respect to the optimized software implementation on Intel i7 processor running
at 3.1GHz for homomorphic encryption and decryption, and the throughput was increased by 1.03 x~4.64 x
compared to the hardware implementation of BGV. While compared to the hardware implementation of FV,
the throughput of our accelerator also achieved 5.05x and 167.3x speedup for homomorphic addition and
homomorphic multiplication operation respectively.

INDEX TERMS Privacy-preserving, ring-LWE, leveled fully homomorphic encryption, BGV scheme,

hardware accelerator, polynomial multiplication, modular reduction, KeySwitch, ModSwitch.

I. INTRODUCTION

The fully homomorphic encryption (FHE) [1] provides a
theoretical and practical solution for cloud computing secu-
rity and privacy-preserving, which can directly perform the
arbitrary computations over ciphertext without disclosing the
personal sensitive information. Concretely, users can encrypt
the data and upload it in the form of ciphertext to the
cloud server, and yet perform computations on encrypted
data (hidden from cloud owner). Unless the private key of
the FHE is obtained, no one can get the plaintext. Because

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Huo

168008

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FHE has the property that any computation on ciphertext
is equivalent to performing the same computation on plain-
text, the users can obtain the final result by decrypting the
ciphertext with private keys. Some interesting applications
of FHE include: secure outsourcing matching computation
on genomic data [2], private information retrieval (PIR)
and privacy-preserving data mining (PPDM) [3], multi-party
computation (MPC) and privacy-preserving prediction from
consumption data in smart electronic instrumentation [4],
training neural networks over encrypted data [5], [6] etc.
The concept of FHE was first introduced by Rivest, Adle-
man, and Dertouzos in 1978 [7]. But constructing FHE
schemes proved to be a difficult problem that cannot be

VOLUME 8, 2020

https://orcid.org/0000-0003-3619-7936
https://orcid.org/0000-0002-8221-7670
https://orcid.org/0000-0003-3924-227X

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

solved until Gentry proposed the first FHE based on ideal lat-
tice in 2009 [8]. Despite the groundbreaking work, Gentry’s
scheme was not the practical solution for the low perfor-
mance. Since then, many researchers and cryptographers
have introduced more efficient schemes to improve the
performance of FHE, such as DGHV10 [9], BV11 [10],
BGVI12 [11], FV12 [12], GSWI13 [13], FHEW [14],
TFHE [15] and so on. Despite great progress in the perfor-
mance of the algorithms, these FHE schemes are still too
slow to be used in practical scenarios. Even the somewhat
homomorphic encryption (SWHE) schemes that can realize
limited number of operations on encrypted data are slow
yet. Speed has become one of the main factors limiting the
practical application of FHE.

At present, there are mainly software and hardware two
kinds of implementations to accelerate the homomorphic
encryption operations. However, the efficiency of software
implementations [16]-[21] is still too slow for practi-
cal applications. For instance, a homomorphic evaluation
of AES-128 in [16] takes over 36 hours based on the
NTL C++ library, while the homomorphic evaluation of
lightweight block cipher SIMON-32/64 in [17] takes around
20 min and 50 min using C++ implementation of FV and
YASHE respectively. Even the GPU-based implementation
of matrix-vector multiplication of BGV leveled FHE in [20]
needs at least 2 seconds when evaluated on NVIDIA Tesla
K20, which has 2,496 cores, SGB DDRS5 memory. On the
other hand, the existing hardware implementations [22]—[33]
just realize limited several FHE functions and the perfor-
mance is still low. For instance, Cao et al. [23] only pro-
posed a FPGA-based large-integer FFT multiplier and a
Barrett modular reduction for accelerating the FHE oper-
ations over integers, Wang et al. [24] merely presented
a 768K-bit multiplier based on 64K-point FFT proces-
sor targeting for Gentry-Halevi FHE primitives. Although
Poppelmann et al. [28] and Roy et al. [30] proposed the
homomorphic evaluation architectures for YASHE with dif-
ferent parameter sets respectively, the implementation in [30]
evaluated SIMON-64/128 in approximately 157 seconds at
143MHz, the time delay is still very large. The hardware
implementations of LTV and FV schemes were also intro-
duced by Dor6z et al. [29] and Roy et al. [32], However, they
only focus on accelerating the homomorphic evaluations or
homomorphic encryptions and cannot take both into account,
and the performance is not high enough.

From the perspective of hardware implementation,
the existing FHE hardware accelerators include the
FPGA-based implementation and ASIC-based implemen-
tation. However, the ASIC-based implementation has the
defects of long development period and high cost. While the
FPGA-based implementation has the advantages of better
programming flexibility, lower development difficulty and
cost, and can achieve a good compromise between different
design factors. Therefore, this paper uses FPGA to realize
FHE accelerator. As a general hardware implementation
platform and tool, FPGA has been widely used in various

VOLUME 8, 2020

hardware design fields, such as neural network [34], image
processing [35], cryptographic algorithms [36], [37], etc.
We implement FHE accelerator on a FPGA platform, which
has novelty in algorithm selection and hardware acceleration
architecture, and it is also a new extension of FPGA platform
in fully homomorphic encryption application.

In this paper, we present a complete FPGA-based hardware
accelerator for homomorphic encryption and homomorphic
evaluation of BGV leveled FHE scheme, which is the first
efficient FHE scheme based on Learning with Error (LWE) or
Ring LWE (RLWE) problem, and it is an important basis for
other FHE variant algorithms. To the best of our knowledge,
there are no published complete hardware implementations
of Ring-LWE based BGV prior to this paper. A very recently
paper by Pedrosa [37] implements the hardware of encryption
and decryption of BGV algorithm based on FPGA, but they
have not provided the hardware architecture of homomorphic
evaluation function. The goal of our accelerator is to provide
a complete implementation of a solution that is mature for
practical application. We implement all required components
for homomorphic encryption and homomorphic evaluation in
hardware.

A. OUR CONTRIBUTIONS
The contributions of our paper can be summarized as follows:

We propose an efficient hardware implementation of
BGYV leveled FHE scheme, to the best of our knowledge,
is the first complete FPGA-based Ring-LWE accelerator for
BGYV algorithm. In contrast to the prior art for other FHE
scheme, our architecture supports both homomorphic encryp-
tion and homomorphic evaluation computation, and can be
tailored according to concrete application needs. We lever-
age multi-layer parallelism to accelerate the operations from
circuit-level to arithmetic block-level. However, we see our
work as the first step towards a practical accelerator.

We improve the performance of polynomial multiplication
over ring by designing the NTT-based negative wrapped con-
volution (NWC) algorithm, which adopts four-level pipelines
and a single round iterative structure. The optimized structure
can achieve a good trade-off between performance and area.
In addition, a resource-saving and high performance modular
reduction algorithm is presented, which occupies only half of
resources of Barrett reduction.

We introduce the hardware architecture of KeySwith
module and ModSwitch module which are necessary to
implement the leveled BGV FHE scheme. For KeySwitch,
we select the switchkey parameters that are more suitable
for hardware implementation, and improve the efficiency of
KeySwith by using multi-level pipelines. We propose the first
hardware structure of ModSwitch which can decrease the
noise of ciphertext of homomorphic evaluation by using a
smaller modulus.

B. PAPER OUTLINE

The organization of this paper is as follows. Section II
describes the related works and BGV leveled FHE scheme,

168009

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

as well as the parameter set that we use. Section III pro-
vides the algorithms and optimization methods for computa-
tion intensive operation of homomorphic evaluation function.
The hardware architecture overview and details are provided
in Section IV. The resource utilization and performance of
our implementations are shown in Section V. Section VI
summarizes the paper.

Il. BACKGROUND AND RELATED WORK

A. RELATED WORK

As mentioned above, software implementations are not
yet efficient enough for real-time applications, which may
require minutes or hours to evaluate some simple functions
or algorithms. For instance, a homomorphic evaluation of
AES-128 [16] is reported to take over 36 hours based on
the NTL C+4+ library, and running on a Intel Xeon pro-
cessor with 2.0GHz and 256GB RAM. Even using SIMD
techniques, the amortized rate is about 40 minutes per block.
Another software homomorphic evaluation of the decryp-
tion function of a lightweight block cipher SIMON-32/64
(resp. SIMON-64/128) [17] is reported to take around 3062s
(resp. 12418s) and 1029s (resp. 4196s) using C++ imple-
mentation of FV and YASHE respectively on 4-core Intel
Core i7 processor at 3.4GHz. To address the shortcomings
of software implementations, many optimized architectures
and accelerators based on Graphics Processing Units (GPUs)
and FPGAs/ASICs have been proposed.

GPU is an alternative computing platform to acceler-
ate the homomorphic evaluation in FHE. Wang et al. [18]
proposed the first GPU-based accelerator of FHE targeted
at Gentry-Halevi scheme [19], the FHE primitives were
implemented on NVIDIA C2050 GPU with a dimension
of 2048, and achieved speedup factors of around 7 com-
pared to original CPU implementation, which was on Intel
Xeon X5650 processor running at 2.67GHz, 14GB RAM.
Then a GPU-based implementation of BGV leveled FHE
accelerator was introduced by Wang er al. [20] further,
the CRT-based matrix-vector multiplication was evaluated on
NVIDIA Tesla K20, which had 35.2 times and 273.6 times
speedup compared to the CRT-based method and NTL library
implementations on CPU. Badawi et al. [21] proposed the
multi-threaded CPU execution as well as GPU implementa-
tion of RNS variants of the BFV scheme on NVIDIA Tesla
K80 and V100-PCle, the performance was faster by two
orders of magnitude than prior results. However, GPU-based
implementations normally offer less performance per watt of
power and the speed is still too low compared to hardware
implementations.

Many FPGA-based or ASIC-based accelerators have been
proposed to improve the performance of FHE schemes.
A lines of research focuses on the large integer multiplica-
tion hardware accelerations [22]-[27], which are the main
bottlenecks of FHE schemes. Cao et al. [23] proposed the
first hardware implementations of encryption primitives for
FHE over integers based on Xilinx Virtex-7 FPGA plat-
form, the performance of which was improved a factor of up

168010

to 44 compared to corresponding software implementation.
A large-integer FFT multiplier and a Barrett modular reduc-
tion were proposed that could accelerate the FHE operations
by 11 times. A 768K-bit multiplier based on 64K-point FFT
processor was introduced by Wang et al. [24], the multiplier
was prototyped on Altera Stratix-V FPGA at 100MHz, and
was about twice as fast as the same algorithm executed on
the NVIDA C2050 GPU at 1.15GHz. Doroz et al. [27] pre-
sented a custom architecture for Gentry-Halevi FHE scheme,
the architecture featured an optimized multi-million bit multi-
plier based on Schonhage-Strassen multiplication algorithm,
which occupied a footprint of less than 30 million gates
with the frequency of 666MHz when synthesized using 90nm
TSM library, the performance was equivalent to that of Xeon
software but slower than GPU implementation.

Several works [28]-[33] focus on improving the per-
formance of concrete FHE schemes based on FPGAs.
Poppelmann et al. [28] proposed an architecture for
YASHE [38] scheme and implemented their design on the
Catapult board equipped with an Altera Stratix V FPGA
and two 4GB DRAM:s, an efficient double-buffered memory
access scheme and a Number Theoretic Transform (NTT)
based polynomial multiplier were proposed, for parameter set
(n = 16384, (logz q—| = 512), they can perform a homomor-
phic addition in 0.94ms and a homomomorphic multiplica-
tion in 48.67ms. a hardware accelerator for LTV [39] based
SWHE scheme was introduced by Dor6z et al. [29], when
synthesized for Xilinx Virtex-7 the presented architecture can
compute the product of large polynomials in 6.25msec which
is more than 102 times faster than software implementation.
Roy et al. [30] also proposed the hardware architecture for
YASHE scheme, which was compiled on a Xilinx Virtex-7
FPGA, the implementation evaluated SIMON-64/128 in
approximately 157.s at 143MHz, and was 26.6 times faster
than software implementation. However, the assumption
of unlimited memory bandwidth which renders off-chip
memory accesses free of cost is not a realistic. Perhaps,
the closest work to ours was by Roy er al. [32], in which
the authors presented an architecture for FV scheme and
implement the design on Xilinx Zynq UltraScale4+ MPSoC
ZCU102, the implementation achieved over 13 times speedup
at 200MHz with respect to the FV-NFLIib executing on an
Intel i5 processor running at 1.8GHz.

B. BGV FHE SCHEME
In this section we briefly introduce the BGV fully homomor-
phic encryption scheme. The BGV scheme was proposed by
Brakerski, Gentry, and Vaikuntannathan [11] in 2012. It is the
first leveled FHE scheme that without Gentry’s bootstrapping
procedure and provides a choice of basing on the learning
with error (LWE) or Ring-LWE (RLWE) problems that have
2* security against know attacks, this paper mainly focuses
on the Ring-LWE based BGV.

For mathematical preliminaries, suppose the polynomial
degree n is a power-of-two integer, we define an integer
polynomial ring R = Z[x]/f (x) with reduction polynomial

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

f(x) = x" + 1, whose elements have degrees at most n — 1.
For the ciphertext modulus g, we define the ciphertext space
R, = R/qR for the residue ring of R by modulus g for each
coefficient of polynomials. In actual computation, we rep-
resent the coefficients of R, in [0,g — 1] N Z. For the
plaintext modulus p, the plaintext space defined as R, =
R/pR, where each coefficient of polynomial is represented
as a integer modulus p. In the operations of key generation,
encryption and KeySwitch of BGV, the polynomials sampled
from discrete Gaussian distribution x, with a small standard
deviation o is defined on R. In practice, we take the private
key as a polynomial with coefficients form a narrow set like
{—1, 0, 1}. The security of scheme is determined by the
degree n, the size of the ciphertext modulus ¢, and the
Gaussian distribution y.

With these preliminaries, now we enumerate the functions
used in BGV scheme as follows.

1) BGV.Setup(2): For a given security parameter A, choose
the polynomial degree n, ciphertext modulus ¢, plaintext
modulus p, and Gaussian distribution .. Normally, n is a
power-of-two integer, g is a positive integer satisfying g =
1 mod (2n), p = 2 or a positive integer much less than q.
Return the system parameters params = (n, p, q, Xs)-

2) BGV.KeyGen(params): Sample polynomial s’ <« x,-.
Return the secret key sk = s = (1,5) € R(ZI. Sample poly-
nomial @ < R, uniformly at random and error polynomial
¢ < xo.Compute b « d's' + pe’ € R,, where p < gq.
Return the public key pk = (b, —d’) € RZ, which satisfies
the equation pk -s = (b, —d) - (1,5') = b —d's = pe.
The scheme needs another key called switching key in the
function of SwitchKey, to compute the switching key, we first
choose the parameter t+ < ¢, sample polynomial vector
ex_ae Rg and ex_e <« X(’f uniformly, then compute ex_b =
ex_a-s +p-ex_e+ Powerof (5)?) € Rg. The function
Powerof; ¢(a) scales an element a € R, by the different
powers of ¢, namely, Powerof; ¢(a) = (a - ti)fzo, where
L= Llog, qJ in this scheme. At last, return the switching key
epk = (rlko, rlk;) = (—ex_a, ex_b) € (R,, R)).

3) BGV.Enc(params, pk, m): First encode the input plain-
text m € R, into a polynomial vector m = (m,0) € R(ZI.
Next sample error polynomial vector e = (eq, €2) < X, and
polynomial r <— R, uniform at random. Then compute the
pair of ciphertexts ¢t = (cg,c1) < m+ pe +pk - r € R2,
namely, co = m+pei+b-r € Rgjandcy = pes —d'-r € Ry.

4) BGV.Dec(params, sk, ct): output the plaintext m <—
[[<et, sk>],]p. Note that for a € R, we use the notation [a],
to refer to @ mod ¢, with coefficients reduced into the range
(—q/2, q/2]. The concrete decryption derivation process will
not be described in detail.

5) BGV.HomAdd(cty, ctp): For ciphertext polynomials
cty = (co, 1) and ety = (¢, ¢}), the homomorphic addition
can be expressed by ctyomaga = ety +cty = (co+cpy, c1+c)),
corresponding to decryption key s = (1, 5').

6) BGV.HomMult(ct, cty): For ciphertext polynomi-
als ety = (co.c1) and et = (c[,c)), the homomor-
phic multiplication result can be compute by the equation

VOLUME 8, 2020

ctrommur = ¢ty - ety = (do,dy,d2) = (cocy, coc) +
c1¢(, c1¢}). The corresponding decryption key is sy =
1, s, s%).

7) BGV.KeySwitch(epk, (do, d1,d>)): Compute the
KeySwitch ciphertext ctieyswiren = (Co, €1), Where ¢o = do +
<WordDecomp(d>), rlkg>, ¢; = di + <WordDecomp(dy),
rlk; >. The function WordDecomp; ¢(a) is used to decom-
poses an element a € R, in base ¢ by slicing each coefficient,
namely, for £ = [log, g], this function returns @; € R
with each coefficient in [0, t), where a = f;ol a; - 1,
Note that the function WordDecomp; ¢(a) and Powerof; ¢(a)
satisfy the equation <WordDecomp; ¢(a), Powerof; ¢(b)> =
a-bmod g.

8) BGV.ModSwitch(ctieyswirch, i, qr): This takes a
ciphertext €tieyswirch at with modulus g; (say one with modu-
lus g; at level /, initially g; = ¢ in this scheme) and returns a
ciphertext with modulus gy where g < ¢; (say a ciphertext
with modulus ¢, at level I/, and I’ > 1). Given Ctieyswirch =
(co, ¢1) initially, we first compute 56 = (qr/q) - ¢o and
¢, = (qr/q) - ¢ over Q[x], then round ¢; to the nearest
integer polynomial, such that c§ = cjmodp). Return the
ModSwtich ciphertext et mod swirh = (€, ¢) With less noise.

C. PARAMETER SET

From the perspective of proof-of-concept, we use a small
parameter set with the polynomial degree n = 128 (namely,
the degree of the reduction polynomial f'(x) is 128). In order
to take advantage of the structure of polynomial ring
and make our hardware implementation more practical,
we choose the plaintext modulus p = 32 (i.e. log,(p) = 5
bits) and the ciphertext modulus ¢ = 257°(i.e. log,(q¢) =
25 bits), so we can not only evaluate bit-level operations,
but also the integer-level operations. By using the packing
method [40], we can embed multiple plaintexts into different
coefficients in a single ciphertext and evaluate a function on
all of them in parallel with a single execution. Normally,
the ciphertext g is chosen as a big prime integer and satisfying
g = 1 mod (2n). However, we choose g as the product of
three primes mainly for the convenience of implementing
and verifying the ModSwitch primitive of BGV, which can
change the original modulus to a smaller number while pre-
serving the correctness of decryption under the same secret
key. Moreover, since the coefficients of polynomials in BGV
scheme are signed integers, to keep some redundancy, we set
the bit-width of polynomial coefficient and modulus g to
27-bit signed integers in our actual implementation. Follow-
ing [11], [31], we take the discrete Gaussian distribution x
as a polynomial with coefficients from {—1, 0, 1} uniformly
at random for simplicity. Despite this may affect the security
to some extent, it is feasible from the perspective of hardware
implementation of primitives. The parameters of our design
are detailed in Table 1.

llIl. ALGORITHMS AND OPTIMIZATIONS
Through the analysis of BGV scheme, we find that the poly-
nomial multiplication and modular reduction are the most

168011

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

TABLE 1. Parameter set for accelerator.

Parameter Value Description
n 128 Degree of polynomial
p 32 Plaintext modulus (5 bits)
q 16974593 Ciphertext modulus (27 bits)
w 908870 Primitive n-th root of unity in R,
e 3259673 Square root of @ in R

frequently used and time-consuming operations. Without
considering the encryption and decryption algorithm
(normally belonging to the client), only homomorphic mul-
tiplication and KeySwitch operations (normally belonging
to the server) need at least 8 polynomial multiplications
and much more modular reductions each time. Therefore,
we optimize these two operations respectively which will lay
the foundation for the later BGV hardware implementation.

A. POLYNOMIAL MULTIPLICATION
In our parameter set, the polynomials consist of 128 coef-
ficients and each has the size of 27 bits signed integers.
For such large polynomials and coefficients, the computation
time is significantly determined by the complexity of poly-
nomial multiplication algorithm. At present, the main meth-
ods of polynomial multiplication include [41]: School-book
algorithm, Karatsuba based algorithm, Toom algorithm,
Fast Fouriter Transform (FFT) based algorithm and so on.
FFT-based polynomial multiplication applies a divide and
conquer technique to reduce the computation of the Dis-
crete Fourier Transform (DFT) into smaller problems and
has the lowest time complexity O(n log n), During a polyno-
mial multiplication, forward FFT transform is applied on the
input polynomials to bring them to Fourier domain. Then,
a coefficient-wise multiplication is performed in Fourier
domain. Finally, an inverse-FFT (IFFT) transform is required
to bring the results back to polynomial representations.
However, the FFT and IFFT transforms are computed on the
real number field, and thus suffer from the approximation
errors, which is not suitable for cryptographic applications.
Instead, we use the NTT transform which is a generalization
of FFT and performs the polynomial multiplication.
Suppose a(x) is the polynomial of degree less than # in the
ring Ry, let w be a primitive n-th root of unity in R, Then the
n-point NTT of a(x) are defined as follows:
n—1
A=Y aoimodg, i=01,...n-1 1)
Jj=0
And n-point inverse-NTT (INTT) can be calculated by the
following formula:
n—1
ai=n"'Y Awmodg, i=01...n—1 (2
Jj=0
1
1

Since g is the product of primes, n has an inverse n™
modulo ¢, where n - n~! = 1 mod ¢, @ has an inverse @~

168012

modulo ¢ satisfying @ - @~! = 1 mod ¢g. Note that NTT

transform holds if and only if p — 1 can be divided by n
for each prime factor p of ¢, and for the primitive n-th root
of unity w, it satisfies " = 1 mod g. Because the time
complexity of basic NTT algorithm is still O(n?) and does
not have any advantages, so we use the butterfly-based NTT
transformation with time complexity O(nlog n) to construct
the polynomial multiplications. An iterative version of the
butterfly-based NTT algorithm is shown in Algorithm 1.
There are three nested loops performing the NTT algorithm,
inside the inner-most loop, the butterfly operation which
consists of a modular multiplication by the twiddle factors
wy, followed by a modular addition and modular subtraction
is computed.

Algorithm 1 Iterative Butterfly-Based NTT

Input: Coefficient vector a = (ay, ..., a,—1) of degree n for
the polynomial a(x) = ag + ajx + ... + ay—1x"1, where
ai € Ry, i = 1,2,...,n— 1, primitive n-th root of unity
w € R,

Output: Transformed vector A = NTT\(a).

I: form < n/2to 1 by m/2do

2: forj < Otomdo

3 Wy — @2m

4: fori < jtonby2mdo

5: ali] < (ali] + ali + m]) mod g

6

7

ali + m] < wp(ali] — ali + m]) mod ¢

end for
8: end for
9: end for

10: A < BitReverse(a)
11: Return(A)

Using the NTT algorithm, one can perform the polynomial
multiplication through application of the convolution theo-
rem efficiently. Let R, be an arbitrary ring with polynomials
a(x) and b(x) of degree n — 1 with the coefficients a; € R,
and b; € Ry fori = 0,1,...,n — 1. Then the convolution
of coefficient vectors results in the product polynomial c(x)
of degree 2n — 2, the coefficients of which are ¢; € R, for
i =0,1,...,2n — 2. Note that the product vector ¢ has a
length of 2n, the input vectors a and b must be zero padded
to a length greater or equal to 2n with the form of 2* to
get the correct result. Though the time complexity is linear
using NTT algorithm, the length of vectors and the number
of point-wise multiplications are doubled.

In this paper, we use the negative wrapped convolution
method [42] to compute the product of polynomials a(x)
and b(x) in R,, which can avoid the zero padding. Let

a = (a()s ar, ..., an—l)’ b = (bO, bls cer bn—l)’ and ¢ =
(co, c1, - .., cn—1) be vectors of length n, then each elements
of ¢ can be calculated as
i n—1
ci = Zajbi—j - Z ajbpyij 3
j=0 j=i+1

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

This computation is equivalent to perform the polynomial
multiplication modulo (x" 4 1), which has the property x" =
—1 mod (x" + 1). Let w be the n-th primitive root of unity in
R, and e is the square root of @, which satisfies the equation
e = w mod q. In order to guarantee the existence of e, when
q is the product of primes or a prime and n is power of 2,
we should have ¢ = 1 mod 2n. To compute the negative

wrapped convolution based on NTT, we do the following first:

a=(ap,eai,...," ‘a1)
b = (bo, ebi,...,e" 'by_y) Q)

Then the negative wrapped convolution of a and b can be
computed by NTT and INTT as

¢ = INTT!(NTT! (&) - NTT(b)) ©)

At last, we perform the following operations to get the final
result of polynomial multiplication of a(x) and b(x):

c=e = (e e, ..., eV, (7

Details of polynomial multiplication of negative wrapped
convolution using NTT is shown in Algorithm 2. Compared
with the zero padding method, the negative wrapped con-
volution method can reduce the length of NTT transforma-
tion and point-wise multiplication from 2n to n. Moreover,
the modular operation x” 41 is omitted. Therefore, the perfor-
mance of polynomial multiplication can be improved greatly,
especially with the increasing of the length of polynomials,
the improvement becomes more obviously.

Algorithm 2 NTT-Based Polynomial Multiplication

Input: Coefficient vectors a = (ag, ay, . .., a,—1) and
b = (bo, b1, ..., by,—1) of polynomials a(x) and b(x)
respectively, where a;, b; e R;, i =0,1,...,n—1,

primitive n-th root of unity @ and @™ in R, square
root e and e~ ! of w, polynomial degree n and n™.
Output: Coefficient vector ¢ = (¢g, ¢y, ..., cp—1) Of
polynomial c(x), where c(x) = a(x) - b(x) mod (x" + 1),
andc; € R;,i=0,1,...,n— 1.
1: Pre-computation: o' mod ¢, ™' mod ¢,
¢ mod ¢, e mod g, where i =0, 1,...,n— 1.
2:fori=0ton—1do
3: @ = (e -a)modgq
4: b= (¢ -bj)mod g
5: end for

8:fori=0ton—1do

9: Ci<A; B mod ¢
10: end for

11: & = INTT"(C)
12:fori=0ton — 1do
13: ¢i=(e"-&)mod g
14: end for

15: Return (c)

B. MODULAR REDUCTION

Modular reduction is another time-consuming unit in BGV
scheme, especially for polynomial multiplications. Almost
all polynomial coefficients in ciphertext space are bounded
over R;, where ¢ = 16974593 in our scheme. Concretely,
a modular reduction must be performed after each multipli-
cation in order to work with elements in the polynomial ring
at all times, the same is true for multiple addition opera-
tions. Modular reduction operations take a significant amount
of time and resources, representing a critical part within
the polynomial multiplications. Therefore, it is important to
design an efficient and area saving modular reduction. Since
the modular reduction of addition is relatively simple, it only
needs a few steps of conditional subtraction operation. This
paper focuses on the modular reduction of multiplication.

Some previous works exist to perform efficient gen-
eral modular reduction based on the specific modulus,
such as Solinas primes [28] or pseudo-Fermat primes [42],
and most of them use the Barret modular reduction algo-
rithm [30], [36]. However, these implementations are restric-
tive and do not allow for arbitrary selection of the modulus
value, and through some experiments, it is confirmed that
these methods take up a relatively large resource for the value
of g that we choose.

Therefore, from the perspective of hardware design,
we propose a lookup table (LUT) based modular reduction
algorithm as shown in Algorithm 3. We adopt a divide and
conquer strategy. Let the bit length of modulus ¢ is k, and the
bit length of input number x is m. When m > k we firstly
divide the bits higher than k and the bits lower than k. For
the bits lower than k, we judge whether the value of x is
greater than ¢, and determine whether to subtract ¢ from x.
Moreover, for the bits higher than k, we divide every four

Algorithm 3 Modular Reduction Algorithm

Let k be the bit length of ¢, and x be the integer with a
maximum bit length m.

Input: x, g, k, m

Output: y = x mod ¢

1: while m > k do

2: if x[k — 1 : 0] > g then

3 to=xk—1:0]—gq
4 else

5 to =x[k—1:0]

6: end if
7

8

fori=1,sum=0to [(m—k)/4] + 1do
: Pre-computation:
ti = x[k+43G—1)+3, k+4@i—1)]- 254D mod ¢
9: sum = sum + t;
10: end for
11: x = sum
12: m = sum.length
13: end while
4:y=x
15: Return(y)

VOLUME 8, 2020

168013

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

bits into a group, and perform pre-computations, which can
be mapped into a 4-input LUT in hardware. Then add the
results, and take the sum result as a new value x and the
length as a new value m, repeat above operations until m < k,
and output the modular reduction result y. Compared with
traditional methods, our modular reduction algorithm can
support arbitrary length of modular operation. At the same
time, by introducing the pre-computation method, we can
quickly reduce the number of input bits, the overall algorithm
complexity and resource occupation.

IV. ARCHITECTURE OVERVIEW

In this section, we first describe the overall architecture
design of BGV accelerator. Then the kernel acceleration units
including polynomial multiplication and modular reduction
are introduced in detail. Finally, the hardware implementation
of each component of BGV accelerator will be presented.

A. OVERALL ARCHITECTURE

The architecture overview of our BGV accelerator is pre-
sented in Fig.1. Despite the goal of our implementation
is to accelerate the server-based homomorphic evaluation
operations BGV.HomMult and BGV.KeySwitch (and polyno-
mial multiplication and modular reduction in general), from
the perspective of proof-of-concept, we also implement the
encryption and decryption operations which are assumed to
be performed on a client. We would like to note that except
for the Gaussian sampler, almost all components required for
BGV scheme are already present in our design. By default,
we think that the secret key sk = (1, s’), public key pk =
(b, —d’) and switch key epk = (rlko, rlk;) are directly gen-
erated by CPU, the plaintext polynomials m and m; are read
from the memory of the CPU according to the requirements
of the specific application program.

Main Controller

m 1< 1

sk . Hommomorphic Evaluation

> L L

3 HomMult KeySwitch
epk . V

HomAdd ModSwitch

>
>

J et i

m _mult ’7
x

ypti ‘
4—{ RAMs/Registers

FIGURE 1. Architecture overview of BGV accelerator.

m_add|

When the accelerator receives the plaintext polynomials,
it first performs the encryption operation under the control
of main controller. Then, the ciphertext ct; and ct, are sent
to homomorphic addition and homomorphic multiplication
module respectively to perform homomorphic evaluation
computations. Due to the problems of dimension expansion
of ciphertext and the excessive noise growth in homomorphic

168014

multiplication, the KeySwitch and ModSwitch operations are
required. If more than one homomorphic addition or mul-
tiplication operation is needed, the result of homomorphic
evaluation function can be fed back to the corresponding
unit to perform the next round computations. Otherwise,
the final result of homomorphic addition or multiplication can
be obtained by decryption.

It should be noted that the modulus g in our polynomial
multiplication unit is fixed, so the output of ModSwitch can-
not be directly decrypted by the accelerator. The ModSwitch
module in our accelerator is just a primitive verification, and
it is not connected to the decryption circuit. In order to reduce
the length of critical path and keep the data updated in time,
the intermediate results or parameters can be temporarily
stored in block RAMs or registers. Further analysis shows
that, compared with homomorphic addition, the calculation
path of homomorphic multiplication is extremely long, it is
necessary to optimize the kernel computing units (e.g. poly-
nomial multiplication and modular reduction) and KeySwitch
module.

B. KERNEL ACCELERATION UNITS

1) NTT-BASED POLYNOMIAL MULTIPLIER

Following the iterative version of the butterfly based NTT
algorithm, a pipelined architecture for the NTT transforma-
tion is designed and presented in Figure 2. As can be seen
from Figure 2, the overall data path is divided into four func-
tional processing units. First of all, in order to temporarily
store the input data and enable pipelining in our architecture,
a simple dual-port RAM, which can read and write concur-
rently, are used to store the n coefficients of polynomials.
The dual-port RAM has two input buses and two output
buses, corresponding to the upper data path and lower data
path of butterfly unit respectively. Since the dual-port RAM
has two ports for reading and two ports for writing, it can
support two reads and writes in a cycle. Then, the butterfly
unit with Decimation in Frequency (DIF) structure performs
the addition and multiplication with modular reduction and
shares the same data path for all the stages in NTT, the output
data is feedback to the dual-port RAM for the next butterfly
computation. Instead of generating the ' mod ¢, ™ mod ¢,
¢’ mod ¢ and e~ mod ¢ on the fly, the ROMs are designed
to store these pre-computed values respectively. In addition,

Dual-Port RAM

Butterfly Unit

oouTt

ADDRL
1|

[log,q] DiNL it [NTT_out

T

pouT2

ADDR2

’— —>{ w2

K2
i Update Unit

FIGURE 2. Architecture for NTT transformation.

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

an update unit is responsible for updating the address index i1,
address index i, offset ki, offset k, group index and stage
index of NTT transformation, and writing the coefficients
back to corresponding RAM address. With the fully pipelined
architecture, after a certain period of computation, the coef-
ficients of the NTT will appear successively at the output
at each cycle. Last but not least, since the input values of
polynomials occur in natural order, while the index of the
NTT values is in bit reversed order, a Bit-Reverse operation is
performed after the computation of NTT to reverse the order
of the output sequence.

Update unit is the most significant and complex compo-
nent of NTT, which directly determines the processing order
of butterfly operations. According to the parameter set we
proposed in Section II and the NTT algorithm presented in
Section III, the NTT transform consists of log, n = 7 stages,
from stage 1 to stage 7. Each stage is divided into multiple
groups, and each group further contains multiple butterflies.
When the stage index is increased by one level, the number of
groups is doubled, and the number of butterflies in each group
is halved. At the last stage, there are total n/2 = 64 groups,
and a group includes only a single butterfly. In addition,
note that the exponents of twiddle factors o’ mod g only
participate in the multiplication of the lower part of each
group, while the upper part remains unchanged, and for each
group the same type of twiddle factors occurs. The address
index i is used to write the upper path data of butterfly in
each group to the dual-port RAM, and the address index i
performs the similar operations, but is the lower path data
of the same butterfly. The parameter k| and k, are the inter
group offset and intra group offset of the address index i; and
i respectively, and they satisfy the relationship k| = 2k;.

With the NTT processing unit mentioned above, we find
that the structure of INTT is almost the same as the structure
of NTT, except that the exponents of twiddle factors w’ mod g
are replaced by @~ mod ¢, and an additional multiplication
by n~1 mod q is needed at the end of the INTT. Hence,
the INTT processing unit can reuse the NTT unit, which can
simplify the complexity of control logic. The data flow of
NTT based multiplier is depicted in Figure 3. Considering
that step 3, 4 and step 6, 7 have no data dependency in
Algorithm 2, we can enable the high speed design by par-
allel processing these two steps. Owing to the more compact
iterative butterfly based NTT structure, thus the NT7T/%(a) and
NTTa’j(f)) can be computed directly by copy the NTT struc-
ture, and the INTTa’j(C) can also be computed using the NTT

o-»(0f o
% Point-wise /*\ m pmod
~ Multiplication */ axbmodg
b->(Eofum ol >

FIGURE 3. Data flow of NTT based multiplier.

VOLUME 8, 2020

structure just substitute for the powers of twiddle factors. The
coefficients point-wise multiplication can be performed by
DSPs between the NTT and INTT.

Carefully researching the architecture of NTT based mul-
tiplier, one can find that in the last stage (stage 7 in our
design), the parameter j always equals to O in algorithm 2,
correspondingly, the twiddle factor w, = 1. This indicates
that the multiplication of w,,(a[i] — a[i + m]) always equals
to (a[i] — a[i + m]). In other words, only coefficient addition
and subtraction operations of a[i] and a[i + m] are performed
in the last stage. In order to fully utilize the last stage of
NTT, the point-wise multiplication can be absorbed in the
last stage. That is, instead of performing the multiplication by
the powers of w,, in the last stage, the point multiplication is
computed directly, which will lead to a reduction of # cycles
compared with the original method. In general, the values of
n~! mod ¢ and e~/ mod ¢ are pre-computed and their multi-
plications are performed separately, we improve this point by
pre-computing the values of e~ - n~! mod ¢ directly, which
can further save n cycles. Furthermore, similar to the point-
wise multiplication, the multiplication by the e - n~! mod ¢
can also be combined with the multiplication by the powers
of wy, in the last stage of INTT, and the number of cycles
is further reduced by n. The cycle requirement for the NTT
based multiplier is presented in Table 2. Without considering
the pipeline, the cycles required for one polynomial multipli-
cation can be reduced to n - (log, n 4 1).

TABLE 2. Cycle analysis of NTT-based multiplier.

Operation Original Design Our Design
Multiply by e’ n n
NTT(stage 0~log,n—2) n-(log, n—1) n-(log, n—1)

NTT(stage log,n—1) n
Point-wise multiplication n !
INTT(stage 0~log,n—2) n-(log, n—1) n-(log, n—1)
INTT(stage log,n—1) n
Multiply by e’ n n
Multiply by ™" n

2) LUT-BASED MODULAR REDUCTION

Since the coefficients of polynomials in BGV scheme are
signed integers, and modulo ¢ is a 25-bit number, in order
to keep some redundancy, we set the bit-width of polyno-
mial coefficient and modulus ¢ to 27-bit signed integers.
Correspondingly, the product of two polynomial coefficients
will produce a maximum 54-bit signed number. The modular
reduction unit is used to reduce the 54-bit output from the
polynomial multiplication by 27-bit modulus g. Considering
the input data is 27-bit larger than modulus g, the efficiency of
bit-by-bit modular reduction is too slow. Hence, we propose
a resource-saving and high performance LUT-based modular
reduction unit to perform the reduction of multiplication in
[0, g — 1], and then we can central-lift the result to a value
in (—¢/2, q/2). Since the input of additive modular reduction

168015

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

increases only a few bits compared to modulus ¢, generally
1~2 bits, so the architecture is relatively simple, it only needs
a few steps of conditional subtraction operations by judging
whether input data is larger than modulus g or not, i.e. if it is
larger than g, then we subtract g from input data as the output,
otherwise, we directly output original input data. This paper
mainly focuses on the architecture of modular reduction of
multiplication. The architecture for computing the reduction
modulo ¢ for multiplication is presented in Figure 4.

x(24:9] 0]
X zavo

X(28:250, 4\t

x[32:29]

Mod_in[53:0} 4t

X52:491, | 4\ 7

x(53]

2-LUT —

FIGURE 4. Architecture for reduction modulo q.

As can be seen from Figure 4, the architecture has three
stages. At the beginning of the computation, the low 25-bit
input data is compared with the modulus g by performing a
conditional subtraction. Based on the sign of the subtraction,
either x[24 : 0] or x[24 : 0] — g participates in the sub-
sequent computation as the input of the adder. For the high
27-bit input data, we can take every 4 bits as a group, and
pre-compute the modular reductions of each group and store
them in the corresponding 4-input LUTs. Note that the high
27-bit cannot be divided by 4, so the remaining 2 bits can be
set as the input address of a 2-input LUT separately. Then
we sum all the outputs of LUTs and MUX using the adder
circuit. Similarly, in the stage 2, we perform the conditional
subtraction on the addition result of the previous stage, and
pre-compute the LUT value of the remaining high 3-bit input
data. In the last stage, only a conditional subtraction is per-
formed on the previous addition result, and the final reduction
result is output by padding 2’b00 to the most significant
2 bits. Through analysis, we find that in our implementation,
the number of input bits can be reduced a lot after each
stage, for example in stage 1, the number of bits has been
reduced from 54-bit to 27-bit, almost a half. In addition,
since the LUTs are the inherent resource of FPGA, we can
make full use the hardware resource of FPGA to improve the
performance of modular reduction and decrease the area cost.
Note that our modular reduction architecture can be easily
extended to support arbitrary modulo with larger bit-width.

C. UNITS OF HOMOMORPHIC ENCRYPTION

Theoretically, the homomorphic encryption runs on the client
side, including encryption and decryption algorithms. How-
ever, for functional integrity and performance optimization,

168016

1 C,
A

T !
N 7J | | Gaussian
m = Sampler
VAN
T \ 4 C]
—»
Mod+
i Encryptlun Unit

—d—p > Multz

‘ Controller ‘

Decryption Unit

FIGURE 5. Architecture for encryption and decryption.

this paper also gives the architecture of homomorphic encryp-
tion as depicted in Figure 5. As can be seen, the whole
architecture is directed by the control signal generated by a
controller. The architecture includes three NTT-based multi-
pliers that performing the modular polynomial multiplication
over ring R,, a Gaussian sampler to generate the error poly-
nomials which in fact a binary uniform random distribution
is used in hardware implementation, adders and modular
reductions to compute the addition result, and some registers
that enable the temporary storage of input and output data.

1) ENCRYPTION UNIT

The encryption unit is used to encrypt the input plaintext
polynomial m with the public key pk = (—a, b). Initially,
all input polynomials are stored in the input registers for a
level, and then the error polynomial » is multiplied by the
public key —a and b simultaneously using previous designed
NTT-based multipliers Mult 1 and Mult 2. After Mult 1 and
Mult 2 are multiplied, their multiplication results are added
in parallel with p - e; and p - ey respectively. Moreover,
the plaintext polynomial m can be further added to p-e1+bxr,
and 27-bit additive modular operations are performed on the
polynomials m+p-e1 + b x r and p - ex — a x r in parallel
which reduce the coefficients of the resulting polynomials to
within R,. Note that in our hardware implementation, instead
of directly using DSPs to realize the multiplications of p - e]
and p - e, they can be implemented by left-shifting each coef-
ficient of polynomials p bits (for p = 32, is the power of 2),
which can effectively reduce the occupation of DSPs and
speed up the coefficient multiplications. At last, the ciphertext
polynomials ¢y and ¢ are obtained after buffering a level.

2) DECRYPTION UNIT

Correspondingly, the decryption unit is used to recover the
original plaintext polynomial m from the ciphertext polyno-
mials ¢g and ¢, which may come from the output of encryp-
tion module directly or the output of KeySwitch module.

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

When the decryption unit is enabled by the controller,
the multiplication between ciphertext polynomial ¢ and pri-
vate key polynomial s is computed using the NTT-based
multiplier Mult 3. Then the output of Mult 3 is added with the
ciphertext ¢g, and next an 27-bit additive modular reduction is
performed on the addition result, which reduce the coefficient
of the polynomial to the rang of [0, g—1]. However, according
to the BGV scheme, in order to decrypted the ciphertext
correctly, the coefficients of the polynomial need to be fur-
ther reduced to (—¢/2, g/2). Hence, we add a conditional
judgment using a MUX logic to reduce the coefficients of
the polynomials to the correct range, that is, if the input
coefficient is larger than (¢ + 1)/2, then we subtract g from
the coefficient as the output, otherwise, we directly output
original coefficient. At last, a modulo p is performed on the
output of MUX, due to modulus p equals to 32, which is
the power of 2, we directly take the low p bits of the poly-
nomial coefficient as the output of the modular reduction p.
Similarly, the plaintext polynomial m can be obtained after a
level of buffering. It should be noted that since all operations
in our architecture are performed on signed numbers, more
attention should be paid to the sign bits and specific values of
the polynomial coefficients during the computation process.
When necessary, we need to carry out the sign extension
operations.

D. UNITS OF HOMOMORPHIC EVALUATION

In this section we describe the hardware architectures
of homomorphic encryption to accelerate BGV.HomAdd,
BGV.HomMult, BGV.KeySwtich and BGV.ModSwitch.
Note that these functions are normally executed on the
cloud server side and are the focus of our acceleration. Let
ciphertext polynomials ety = (co, c1) and ety = (cf, c}),
BGV.HomAdd is used to add the two input ciphertext poly-
nomials and output the sum of them ctyomaqs = (co +
cy» ¢1+¢}). BGV.HomMult is the most complicated function
and it directly leads to dimension expansion and rapid noise
growth of ciphertexts, which ultimately leads to the failure of
decryption. To solve these two problems, the BGV.KeySwitch
and BGV.ModSwitch are introduced. BGV.KeySwitch can
reduce the dimension of ciphertexts from 3 dimensions back
to 2 dimensions, while the BGV.ModSwitch can reduce
the noise by diminishing the modulus, and still ensure the
correctness of decryption.

1) HOMOMORPHIC ADDITION AND MULTIPLICATION

The architecture for homomorphic addition and multiplica-
tion of BGV is depicted in Figure 6. Initially, the ciphertext
polynomials ¢ty and ctp are input to the MUXs, and are
cached by the input registers. The homomorphic addition
logic is relatively simple, the output of the registers directly
perform the modular addition operations ctyymads = (co +
cy» €1 + ¢) in parallel. If we need to perform homomorphic
addition or homomorphic multiplication further, the results
of modular addition will be written back to the correspond-
ing MUX after storing in the output registers for a level.

VOLUME 8, 2020

¢ +e'y

cty ={c,¢))| T
¢ +c',

HomAdd

HomMult

cr2=(¢",,,c',)§}—>

FIGURE 6. Architecture for BGV.HomAdd and BGV.HomMult.

Key ~
Switch &)

Otherwise, the results of the modular addition will be directly
output to the decryption unit to recover the addition of the two
plaintext polynomials. Similarly, the output of input registers
can simultaneously perform the homomorphic multiplication
using the NTT-based Mult 1, Mult2, Mult3 and Mult4. For
the output of the intermediate two multipliers, an addition
modular operation is needed further. Finally, we can get the
multiplication result etyomyur = (do, di, d2) = (cocy, coc’)+
c1¢(, c1¢}). However, since dimension of input polynomials
and output polynomials of homomorphic multiplication are
not matched, a KeySwitch module should be added further,
which can transform the multiplicative ciphertext polynomi-
als from (dy, di, d») to (¢, ¢1). The details of KeySwitch will
be described in next subsection. The output ciphertext poly-
nomials of KeySwitch can also be fed back to homomorphic
addition and multiplication units to participate in the next
round computation.

2) KEYSWITCH UNIT

KeySwitch technique is used to make a ciphertext decryptable
with a different secret key homomorphically, it can reduce
the dimension of homomorphic multiplication results at the
cost of small noise growth. Concretely, when multiplying
two ciphertexts, KeySwitch can transform the multiplicative
ciphertext ctyompur With three components, which can be

decrypted with sy = (1,5, %), back to a new cipher-
text Ctieyswirch With two components that decryptable with
secret key s = (1,). KeySwitch includes the generation

of switching key and switching key two functional parts.
Generally, the former one is generated by the software in
the key generation step, it takes an extended key (initially
we have pk) and produces another extended key by adding
in a so-called “key-switching matrix” from the s to s,
to return a new extended key epk (i.e. switching key). The
latter one is used to transform the ciphertext decryptable
with 5’2 to a new ciphertext decryptable with s' using the
previous switching key, and generate the ciphertext ctieyswirch-
Excluding the generation of switching key, the KeySwitch
algorithm is presented in Algorithm 4.

Given a homomorphic multiplication ciphertext polyno-
mials ctyommur = (do,d1,dp) € R(31 and a switching key
epk = (rlkg, rlk;) = (—ex_a,ex_b) € (R, Rf;), where
L = |_10gl qJ and ¢ is decomposition base of ciphertext

168017

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

Algorithm 4 KeySwitch Algorithm

Input: Multiplicative ciphertext

ctyommuy = (do,dy,dy) € RZ’ switching key epk =
(rlkg, rlk;) = (—ex_a,ex_b) € (R, Rg), where £ =
Llogt qJ and ¢ is decomposition base of d».

Output: KeySwitch ciphertext ctieyswiren = (Co, C1).
//Decompose each element of d; in the base 7.
l:ifor(i=0=0;i<¢i=i+1)do

2: d,;i = round(dy/t)

3: dz,jZdz,j—l~d2,,'

4. j=j+1

5: end for

//Sum the product of the components of switching key and
d>.

6:for (i =0;sum =0;i<l;i=i+1)do

7. sumy = sumy + Mult(rlk; ;, d2 ;)

8: sumy = sumy + Mult(rlko ;, d2 ;)

9: end for

10: ¢o = (do + sumi) mod g

11: ¢; = (dy + sumy) mod g

12: Return(‘:tkeyswitch = (Co, C1))

d>, we can write d> in base ¢ (according to step 1~ step 5
in Algorithms 4) as

14
d2 = Zdz’i . l‘i (8)
i=0

where d5 ; is a polynomial with coefficients in [0, # — 1].Then,
we can further output the KeySwitch ciphertext (according to
step 6~ step 11) as

¢
Co = (do +) (dai rlkl,i)) mod ¢ ©))

i=0

¢
¢ = <d1 + Z (dz,,- . rlko,,-)) mod g (10)

i=0

where epk = (rlko;, rlk; ;) = {(—ex_a;, ex_b;)} is the
switching key for the key s’2. Note that the function Mult in
step 7~ step 8 represents the modular polynomial multiplica-
tion in Ry.

KeySwitch is another most computationally intensive oper-
ation in BGV scheme. In order to reduce the number of
for-loops in step 1 and step 6 of Algorithm 4, we set the key
switching parameter ¢ to 2!3 in out implementation, so £ =
Llog, qJ = 1 and the number of components of switching
key epk is equal to 2, ie. rlkg = {—ex_ag, —ex_aj} and
rlk; = {ex_bg, ex_b1}. A parallel processing architecture
for KeySwitch is shown in Figure 7. Since the parameter ¢
equals to the exponents of 2, the decomposition of ciphertext
component dp can be simply realized by dividing d, into
low 13 bits and high 14 bits respectively. When performing
the KeySwitch computation, the low 13 bits of d> should be
padded with 14 bits 0 in the most significant position to obtain
a 27-bit component d» o. Similarly, the high 14 bits of d> are

168018

i

FIGURE 7. Architecture for KeySwitch module.

also padded with 13 bits O in the most significant position
to get another component dj ;. Next, the switching keys
rlkg = {—ex_ap, —ex_a;} are simultaneously multiplied by
decomposition components da o and d>,1 using the polyno-
mial multiplier Mult 1 and Mult 2 respectively, and the sum
of them further participates in the following modular addition
operation, and finally the KeySwitch ciphertext component
Co is obtained. Meanwhile, the products of switching keys
rlk; = {ex_bo, ex_b1} and components dz o and d> | are also
performed in parallel using the polynomial multiplier Mult 3
and Mult 4 respectively, then the other ciphertext component
¢1 is calculated by modular addition of the products.

Due to adopting the full pipeline and parallel processing
architecture, and the polynomial multipliers have been opti-
mized, the overall performance of KeySwitch module can
be improved greatly. However, when KeySwitch reduces the
dimension of multiplicative ciphertext, it also brings some
additional noise, which may lead to the failure of decryption.
Hence, we need to consider how to reduce the KeySwitch
noise further to ensure the correctness of decryption.

3) MODSWITCH UNIT
ModSwitch (also known as modulus switching) gives us a
very powerful and lightweight way to manage the noise in
BGYV scheme. This technique permits the evaluator to reduce
the magnitude of the noise in a ciphertext by scaling down
the ciphertext, and without knowing the secret key. More
specifically, suppose ¢ is a valid encryption of m under secret
key s modulo Q, and ¢’ is a simply scaling of ¢, which is
closest to (¢/Q)e such that ¢ = ¢ mod 2. If s is a short vector
and ¢ is sufficiently smaller than Q, it can be proved that
¢’ is a valid encryption of m under secret key s modulo q.
In other words, we can reduce the noise of ciphertext ¢ by
transforming ¢ modulo Q into a smaller ciphertext ¢ modulo
q while preserving the correctness under the same secret key.
As mentioned before, if the noise of ciphertext generated
by key switching grows too fast, we can choose to reduce the
ciphertext noise using the ModSwitch for further increasing
the depth of multiplication circuit. Compared with the previ-
ous works, one of the main contributions of our work is to
design a ModSwitch algorithm and hardware architecture for

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

plaintext modulus p # 2(p equals to 32 in our scheme). The
ModSwitch algorithm we proposed is shown in Algorithm 5.
Suppose Ctieyswirch = (Co, €1) is the KeySwith ciphertext with
modulus g; atlevel [(initially, g; = g and / = 1), and ¢; is the
product of primes satisfying g; =]_[;zo pjforl=0to L —1,
where p; = 1(modp), L is the system parameter. Suppose
the gy is the modulus of ModSwitch ciphertext at level 7/,
where I’ > [, and the scaling factor A = ¢;/qy satisfying
qr < qi. Then, we first perform modulo A reduction and
modulo p reduction respectively for (¢, ¢1), and in order
to ensure the coefficients in 8z, and &z, is divisible by p,
we further subtract & and 3é1 from each coefficient of &z,
and &z, respectively (as shown in step 3~ Step 17). After
fixing the coefficients of 8z, (s.t. 8z, = co(modA) and 8z, =
O(modp)) and &z, (s.t. 6z, = ¢1(modA) and &z, = O(modp)),
the ModSwitch ciphertext (¢, ¢}) is obtained by performing
¢y = floor((co — 8z))/A) and &) = floor((¢1 — 8z,)/A)
respectively.

Algorithm 5 ModSwitch Algorithm
Input: KeySwitch ciphertext etyeyswircn = (Co, ¢1) with mod-

!
ulus g at level, ¢; is the product of primes s.t. g; = [] pj
=0

for/ = 0to L — 1, where p; = 1(modp), the modulfls qr
of ModSwitch ciphertext at level I’ (s.t. I > [), and scaling
factor A = q;/qr(s.t. qr < q).

Output: ModSwitch ciphertext et mod swith = (¢, ¢})-

1: 8z, = co(modA), 820 = 8z,(modp)

2: 8, = ¢i(modA), 8%1 = 8;,(modp)

IIFix 8z, s.t. 8z, = co(mod A) and &z, = O(modp)

3: fori=0ton—1do
4: if 8. =0then
Co,i
S c0. = Oz,
6: else
7 80 = 5,}011. — (Séot_ -A
8: end if
9: end for

IIFix &z, s.t. 8z, = ¢1(mod A) and 6z, = O(modp)
10:fori=0ton — 1do

11: if(Sg” = 0 then

12: 55111. = 551,1.

13: else

14: 551_[. = 551”. - 8é‘1 ’_- A
15: endif ’

17: end for

18: ¢ = floor((Co — 8z,)/ A)
19: ¢) = floor((¢1 — 8z,)/A)
20: Return(ct mod swirh = (Cj, ¢))

According to the Algorithm 5, we further propose the
architecture of ModSwitch as shown in Figure 8. In our
implementation, the initial ciphertext modulus ¢; = ¢ =
2573 = 16974593, the ModSwitch ciphertext modulus gy =
2572 = 66049, and the scaling factor A = 257. Since
there is no data dependency between ciphertext ¢;, and ¢/

VOLUME 8, 2020

Co Mod

[Mod

FIGURE 8. Architecture for ModSwitch module.

during the modulus switching process, we can perform the
ModSwitch operations of them completely in parallel. When
ciphertexts ¢o and ¢o comes, we first perform the modulo A
reduction operation and modulo p reduction operation respec-
tively (step 1~step 2 in Algorithm 5). Since modulus p is
the power of 2, its modular reduction can be simplified by
directly taking the lower 5 bits. Next, the results of mod-
ulo A (namely &z, and J,) subtract the product of A and
the results of modulo p (namely 8&0 and & - The MUXs are
used to select output the results of modulo A or the results
of subtraction (step 3~Step 17 in Algorithm 5). Then, the
subtractions ¢o — 8z, and ¢| — &z, are performed on the output
of MUXs respectively. At last, we can get the ModSwitch
cipertexts (G, ¢}) by performing the division A operations
on the previous subtraction results. The division operation
can be directly realized by IP Core. Noted that although
we present the hardware architecture of ModSwitch unit,
it is not connected in the overall accelerator at last, mainly
because the ciphertext modulus of the NTT-based multiplier
we designed is fixed and it can no longer be applied to the
ModSwitch result.

E. GENERALIZATION AND DISCUSSSION

Although our FPGA-based high parallelism architecture
mainly focuses on the BGV FHE scheme, it is worth
noting that the architectures of kernel acceleration unit
(including polynomial multiplication unit and modular reduc-
tion unit), KeySwitch unit and ModSwitch unit are also
perfectly suitable for other leveled Ring-LWE homomor-
phic encryption algorithms such as FV [12], [31], [32]
and YASHE [17], [28] etc. Furthermore, the homomorphic
encryption unit and homomophic evaluation unit can be
applied to other Ring-LWE FHE schemes well with minor
modification of multiplication factors, the sign of polynomi-
als or some key parameters. For example, when performing
encryption algorithm, we only need to multiply the plaintext
polynomial by A = |g/t], and multiply the ciphertext by
8 = t/q additionally when performing decryption algo-
rithm and homomorphic multiplication, then our homomor-
phic encryption accelerator can be fully applicable to FV and
YASHE algorithms. On the other hand, although we use a
small parameter set with the polynomial degree n = 128 and
27-bit ciphertext modulus, but our hardware accelerator still
supports larger parameter set just by increasing computation

168019

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

cycles of polynomial multipliers and minor modifying
the architecture of modular reduction unit. Therefore, the
Ring-LWE accelerator we proposed has high-level general-
ization ability for different application scenarios.

V. IMPLEMENTATION RESULTS

A. RESOURCE CONSUMPTION

The proposed hardware accelerator for Ring-LWE based
BGYV scheme is descripted with Verilog HDL language, syn-
thesized and implemented in Xilinx VIVADO on a Virtex
UltraScale FPGA platform, which has a chip XCVU125-
FLVA2014-1HV-E. We evaluate our design on a small range
of parameters: the size (n) of the ciphertext polynomial is 128,
the coefficients of ciphertext polynomial are 27-bit signed
integers with the ciphertext modulus (¢). However, from the
perspective of hardware implementation and the application
scenarios of packing technology, we set the plaintext modulus
(p) as a 5-bit number, which means that the sum or prod-
uct of the coefficients of two plaintext polynomials cannot
exceed p, otherwise, folding will occur. We elaborate in detail
on the resource consumption of each component of our design
from the basic modules to the whole accelerator as shown
in Table 3.

TABLE 3. Resource consumption of basic modules.

Module LUTs Registers BRAMs DSPs
NTT 14204 3756 2 2
Multiplier 43731 11256 2 15
MR+ (27-bit) 108 0 0 0
MRx (54-bit) 338 0 0 0
Encryption 95854 22604 5.5 30
Decryption 47793 11213 2 15
HomMult (HomAdd) 190529 44974 8 60
KeySwitch 190539 44975 8 60
ModSwitch 1191 630 0 2
Complete Design 527493 133813 23.5 165

As can be seen, since NTT based multiplier occupies
three identical NTT transformations, two of which are
used for input polynomials and one for output polynomial,
the resource consumption of the multiplier is about 3 times
that of NTT transformation. Further analysis shows that the
multiplier is the primary part of the accelerator resource over-
head, which consumes a total of 11 multipliers. Specifically,
the encryption module and decryption module occupy two
multipliers and one multiplier, while homomorphic multi-
plication and KeySwitch module consume four multipliers
respectively. Therefore, the area overhead of these modules
is approximately a multiple of the number of multipliers con-
sumed, e.g. the LUTs/ Registers/ BRAM/ DSPs of KeySwitch
module are almost 4 times that of NTT based multiplier. Note
that the 27-bit modular reduction (MR) and 54-bit modular
reduction represents the modular operation for addition and
multiplication, the architecture of which are implemented by

168020

combinational logic circuits. The LUTs and registers con-
sumed by ModSwitch are slightly large, this is mainly due
to the use of two divider IP Cores, each of which occupies
495 LUTs and 315 registers. The Block RAM (BRAM) in
our implementation represents the on-chip memories for fast
reading and writing operation, and can be used to realize
the dual-port RAMs or read-only ROMs. The BRAM con-
sists of RAMB36 units in our design can hold 128-many
27-bit values. The Digital Signal Processor (DSP) is capa-
ble to perform the 27-bit coefficient multiplications using
DSP48E2. Finally, the resource consumption of complete
design (excluding that of ModSwitch module) is given in the
last row of the Table 3.

B. PERFORMANCE EVALUATION

In our implementation, all coefficients of polynomials are
input to each component of the accelerator in serial, and the
intermediate results of computation are temporarily stored
by BRAMs or registers to maintain high-speed pipeline pro-
cessing. The operating clock frequency directly affects the
performance of accelerator, in order to reduce the time delay
of critical path of our design, we have eliminated some critical
paths during many design iterations by altering the data flow
of computation, minimizing the number of logic circuits per
pipeline stage, etc. Finally, our accelerator can run at 150MHz
on Virtex UltraScale FPGA. In Table 4 the performance of
basic operations are presented.

TABLE 4. Performance of basic operations.

Speed
Operation # (# w seconds) (# p seconds)
cycles) (Non-pipeline) (Full-pipeline)
NTT 1153 7.69
Multiplier 2180 14.54
6.84
Encryption 2182 14.55
Decryption 2181 14.54
HomAdd 128 0.85 0.85
HomMult 2181 14.54
. 6.84
KeySwitch 2181 14.54
ModSwitch 315 2.10 2.10
HomAdd _Enc Dec 4235 28.24 6.84
HomMult Enc Dec 8341 55.63 '

Similarly, the NTT based multiplier is still the most sig-
nificant unit affecting the performance of the accelerator.
A single NTT transformation takes 1153 cycles to process
128 coefficients in serial using four stages of finite state
machine. At 150MHz, this corresponds to 7.69 us. Since
the multiplier employs two NTT transformation (which are
used as NTT and INTT), it consumes approximately twice
as many cycles as that of NTT. However, if the pipeline is
full, the speed of multiplier will be reduced to 6.84 us. For
the same reason, the encryption, decryption, homomorphic

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

multiplication and KeySwitch module all adopt a single level
of multiplier respectively, thus, the clock overhead is the
same as that of a multiplier. Since the homomoprhic addition
is a combinational logic circuit, the addition operation can
be performed with the following register storing operation,
which only occupies very few clocks. Then, the performance
of homomorphic addition and multiplication from the encryp-
tion module to decryption module are evaluated. For a sin-
gle set of polynomial inputs, there are total 4235 cycles
and 8341 cycles are spent on the HomAdd_Enc_Dec and
HomMult_Enc_Dec, which correspond to 28.24 us and
55.63 us respectively. If the pipeline is fully, the cycles of
HomAdd_Enc_Dec and HomMult_Enc_Dec will be reduced
to 1025, corresponding to 6.84 us respectively.

C. COMPARISON WITH RELATED WORKS

Firstly, we compare our 54-bit LUT-based modular reduction
unit with the Barrett, pseudo-Fermat primes and straight
forward modular reduction in Reference [37] as shown
in Table 5. A 64-bit input value with 31-bit modulus g (which
is equal to 0x439.0001) is chosen as the input parameter
in Reference [37], as can be seen, though the bit width of
input value and modulus in our design is slightly smaller,
the LUTs consumed by our modular reduction is still about
10 times less than the Barrett algorithm, which has the lowest
resource overhead in Reference [37]. For a fair compari-
son, we also refer to the implementation method of Barrett
in Reference [43] and design an improved Barrett modular
reduction unit with the same parameters as our LUT-based
modular reduction. Still, the LUT cost of our design is
about 2 times less than the improved Barrett method in
Reference [43] under the same condition.

TABLE 5. Comparison of modular reduction.

Ref Input q LUTs Regs BRAMs DSPs Cycles

Barrett 64bit 31bit 3176 4729 0 8 108
[37]

Fermat 64bit 31bit 15956 41363 0 345 119
[37]

Modulus ~ 64bit 31bit 5701 6226 50 16 83

[37]

Barrett ~ 54bit 27bit 872 0 0 6 -
[43]
Our 54bit 27bit 338 0 0 0 -

Design

Secondly, the resource consumption and performance of
polynomial multipliers are compared. Because there are dif-
ferences in the choice of the parameters and implementation
platforms, a totally fair comparison between the different
implementations is not always possible. Hence, we compare
our polynomial multiplier with related works from the per-
spective of throughput and normalized efficiency as shown
in Table 6. In Reference [37], a Pease’s polynomial multi-
plier and a Cooley-Tukey’s polynomial multiplier for BGV

VOLUME 8, 2020

TABLE 6. Comparison of modular reduction.

Ref Pease’s Cooley’s Strassen’s NTT Karat Our
e
[37] [37] [44] [45] [46] Design
. Stratix Stratix Zynq Zynq Virtex Virtex
Device
\% \% UltraScale -7000 -7 UltraScale
N 32768 32768 1024 128 512 128
Bit (q) 192 64 31 14 32 27
LUTs 187664 145381 5277 66251 323698 43731
Regs 481056 343836 5454 16805 373841 11256
BRAMs 4398 1402 18 35 769 2
DSPs 3270 1494 112 26 3072 15
Freq 180 100 250 100 234 150
(MHz)
Speed 23518 2029 459 23.04 5.19 6.84
(us)
TP ¥
267.52 1033.5 69.15 7778 3156.8 505.26
(Mbps)
Speedup
x1.89 < x7.31 x6.49 < 1
-TP
NE {7
(Kbps/ 1.43 7.10 13.23 1.17 9.75 11.55
LUT)
Speedup
x8.07 x1.62 < x9.87 x1.18 1
-NE

T Throughput (TP) = N x (No. of bits (q))/Speed.
T+ Normalized Efficiency (NE) = Throughput/No. of LUTs.

homomorphic encryption are proposed with the polynomial
length N = 32768, the bits ¢ = 192 and g = 64 respectively.
A pipelined and loop unrolled Schoenhage-Strassen FFT
polynomial multiplier (N = 1024, g = 31 bits) is presented
in Reference [44]. Reference [45] describes an open-source
NTT-based polynomial multiplier (N = 128, g = 14 bits)
FPGA implementation for post-quantum cryptographic prim-
itives. At last, an optimized Karatsuba-based multiplier is
proposed in Reference [46].

In order to improve the processing speed and throughput
of multiplier, we adopt the multi-level pipeline structure in
the horizontal direction and the parallel processing structure
of NTT in the vertical direction. When the pipeline is full,
the speed of the proposed multiplier is about 6.84 us, and
the corresponding through is 505.26 Mbps. The throughput
of our design can achieve a 1.89~7.31 times speedup when
compared with other works, except for the Cooley-Tukey’s
multiplier in [37] and Karatsuba-based multiplier in [46].
This is mainly due to the fact that Cooley-Tukey’s multiplier
[37] adopts a ‘““‘ping-pong” BRAM structure with higher
performance and two parallel butterflies at the cost of area,
while Karatsuba-based multiplier [46] has a lower algorithm
complexity. However, in terms of normalized efficiency,
our multiplier still has the advantages of 1.62 times and

168021

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

1.18 times compared with Cooley-Tukey’s multiplier [37]
and Karatsuba-based multiplier [46]. In addition, though our
efficiency is slightly lower than Schoenhage-Strassen mul-
tilier in [44], we can achieve more than 7x throughput.
Therefore, if the pipeline is full, the proposed NTT based
multiplier will have great advantages in performance and
normalized efficiency compared with state of arts. However,
if the pipeline is not full, the speed of the proposed multiplier
will be between 6.84 us and 14.54 us, the performance and
efficiency of our multiplier will be reduced by half at maxi-
mum, and the advantages of our parallel and pipeline struc-
ture cannot be fully utilized. At last, it is worth noting that the
resource occupation and performance of the reference [37]
in Table 6, which uses Stratix V as the FPGA device, are
directly indexed from the original literature, so they can be
used as the performance comparison without resource occu-
pation conversion. If it is necessary to consider the impact
on the time cost due to different technologies of different
devices, we can normalize the throughput by dividing the
throughput indexes by the clock frequency. The results show
that the speedup ratio is further increased by 1.2 times com-
pared to Pease’s implementation [37], while compared to
Cooley-Tukey’s implementation [37] the speedup ratio still
maintains a certain advantage.

Lastly, we compare the performance of our accelerator
with the similar works as shown in Table 7. Since the imple-
mentations of the BGV scheme are limited in the literature,
in addition to comparing with the performance of the existing
BGYV software and hardware implementations in [37], we also
compare our accelerator with the FV implementation in [31],
which is the most similar Ring-LWE FHE scheme to BGV.
As discussed in Subsection E of Section IV, the BGV scheme
can be easily extended to FV scheme with minor modifica-
tions, so it is reasonable to compare our BGV accelerator with
the FV implementation.

In Reference [37], they proposed a typical software imple-
mentation on general purpose computer, and further pre-
sented two hardware implementations of BGV homomorphic
encryption accelearator based on Pease’s multiplier and
Cooley-Tukey’s multiplier respectively. In order to improve
the performance of accelerator, they not only use the negative
wrapped convolution to speed up the NTT-based polynomial
multiplier, but also use the Chinese Remainder Theorem
(CRT) to optimize the polynomial multiplication on a larger
ciphertext space. For the parameter set with polynomial size
of 32768 and the ciphertext space 1088 bits, the speed of
software implementation is about 670 ms and 324ms for
the encryption and decryption algorithms, while the Pease’s
implementation and Cooley-Tukey’s implementation require
327 ms and 166ms for encryption algorithm, 53ms and 73 ms
for decryption algorithm respectively. As mentioned previ-
ously, if there are multiple sets of input polynomials and the
pipeline is full, the processing speed of our design is up to
6.84 s for encryption and decryption algorithm, and the
throughput is 505.26 Mbps, which is about 9.49 times and
4.60 times larger than that of software implementation [37],

168022

and improves about 4.64 times and 2.17 times compared
to the Pease’s implementation [37]. When compared to the
Cooley-Tukey’s implementation [37], though our design can
achieve 2.36 times improvement for the encryption algorithm,
while the throughput of the decryption algorithm is increased
by 1.03 times.

Roy et al. [31] introduced an FPGA-based multicore pro-
cessor HEPCloud for FV somewhat homomorphic function
evaluation, to efficiently implement the homomorphic addi-
tion and homomorphic multiplication of FV scheme, they
simplify the modular reduction by lifting a polynomial in R,
to the ring R with larger modulus Q, and scaling back to the
ring R, when the computations are completed. They report
the computation time of homomorphic addition and homo-
morphic multiplication is about 0.05s and 26.67s respectively
due to the slow memory access. The throughput of our design
is improved about 5.05 times and 167.30 times for homomor-
phic addition and homomorphic multiplication evaluations.
In terms of normalized efficiency, although the throughput
per LUT of our homomorphic addition is slightly less than
that of [31], but the normalized efficiency of homomorphic
multiplication of our design is still increased by 31.6 times.

Furthermore, if the pipeline is not full, the latency of
homomorphic encryption and homomorphic evaluation will
be increased to a maximum of 14.55 us and the throughput
of our implementation will be reduced accordingly. However,
our performance is still better than the previous works.

Finally, it is noted that although Table 7 lists two differ-
ent FPGA devices (i.e., Stratix and Virtex) which belong
to different companies, when comparing resource overhead
and performance, reference [37] only provides the time cost
of encryption and decryption, and does not provide the
resource consumption. Therefore, different FPGA platforms
and devices have no impact on the resource overhead com-
parison. If it is necessary to consider the impact on the
time cost due to different technologies for different devices,
the throughput in Table 7 can be divided by clock frequency
to eliminate the impact of clock frequency. In this case, the
speedup ratios are reduced by 2/3 times. It can be found
that the performance of our accelerator still has several to
dozens of times advantage, except for the decryption unit and
homomorphic addition unit.

V1. SECURITY DISCUSSION
The security of our accelerator includes the security of
the homomorphic encryption algorithm and the security of
FPGA-based hardware accelerator architecture two parts.
From the perspective of proof-of-concept, we use a small
parameter set with the polynomial degree n = 128 and 27-bit
ciphertext modulus, so the security level of our design is
slightly less than 128 bits. However, as we discussed in
subsection E of Section IV, our hardware accelerator can
be easily extended to larger polynomial degrees to support
higher security levels with only minor modifications of the
computation cycles and the structure of modular reduction.
For example, when the polynomial degree n = 1024 and

VOLUME 8, 2020

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

TABLE 7. Comparison of accelerator.

CPUckr FPG Apease's FPGAcooleys FV .
Reference Our Design
371 371 [37] 311
. BGV BGV BGV FV BGV
Algorithm
(RLWE) (RLWE) (RLWE) (RLWE) (RLWE)
Device Core i7 Stratix V Stratix V Virtext-6 Virtex UltraScale
N 32768 32768 32768 32768 128
Bit(q) 1088 1088 1088 1228 27
527493
LUTs - - - 72613
(HomEval-381068) it
Regist 63086 133813
egisters - - -
€ (HomEval-89949) 111
23.5
BRAMs - - - 84
(HomEval-16) $11
DSP 250 165
s - R -
(HomEval-120) $11
Freq (MHz) 3.10GHz 100 100 100 150
HomAdd (us) - - - 5x10* 0.85
HomMult (us) - - - 26.67x10° 6.84
Enc (us) 669687 327145 166291 - 6.84
Dec (ps) 324449 153178 72751 - 6.84
4065.88
53.24 108.98 214.39 804.78 (HomAdd)
TP-1 § (Mbps)
(Enc) (Enc) (Enc) (HomAdd) 505.26
(Enc)
505.26
109.88 232.75 490.04 3.02 (HomMult)
TP-2 I (Mbps)
(Dec) (Dec) (Dec) (HomMult) 505.26
(Dec)
x4.64 x2.36 x5.05
Speedup-TP-1 %9.49 (Enc) 1
(Enc) (Enc) (HomAdd)
x2.17 x1.03 x167.30
Speedup-TP-2 x4.60 (Dec) 1
(Dec) (Dec) (HomMut)
NE-1 11.35
:H: - - - 10.93
(Kbps/LUT) (HomAdd)
NE-2 0.043
:H: - - - 1.358
(Kbps/LUT) (HomMult)
Speedup-NE-1 - - - < 1
Speedup-NE-2 - - - 31.6 1

1 Throughput (TP-1, TP-2) = N x (No. of bits (q))/Speed of HomAdd, HomMult, Enc, or Dec.
1% Normalized Efficiency (NE) = Throughput/No. of LUTs.

T

I Only the resource consumption of homomorphic evaluation units are listed in brackets.

ciphertext modulus log, g = 27, the security level of homo-
morphic encryption algorithm will equal to 128 bits [47].
Meanwhile the security of our BGV scheme is based on
the Ring-LWE assumption, which is reducible to worst-case
problems on ideal lattices, can ensure our accelerator and
the FHE algorithm resistant the attacks of future quantum
computer.

On the other hand, the security of our FPGA-based
hardware accelerator is mainly guaranteed by the FPGA

VOLUME 8, 2020

platform and homomorphic encryption algorithm. The clas-
sical method to reverse engineer a chip is the black box
attack [48], the attacker inputs all possible combinations,
while saving the corresponding outputs. Due to the complex-
ity of our design and the size of our state-of-the-art FPGA
platform, it is infeasible to extract the inner logic of our
accelerator without a lot of powerful computers. Furthermore,
the nature of our FHE algorithm also prevents the attack as
well. Readback attack [49] is another conventional attack

168023

IEEE Access

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

of FPGA implementation, the idea of the attack is read the
configuration of the FPGA through the programming inter-
face or JTAG to obtain private keys or FHE algorithms. The
readback attack can be prevented by setting a security bit in
FPGA which is used to disable different features, and it is
better to embed our FPGA-based accelerator into a secure
environment, where the configuration information can be
deleted once detecting interference. In order to get the private
keys or the FHE algorithms, one has to reverse-engineer the
bitstream [50]. FPGA manufactures claim that the security
of the bitstream relies on the disclosure of the layout of
the configuration information. Hence, the encryption of the
configuration file is the most effective and practical counter-
measure, it not only prevents the reverse-engineering attack,
but also the cloning of SRAM FPGAs. Although we have
listed some possible conventional attacks and countermea-
sures for our FPGA-based hardware implementation, but with
the development of the FHE algorithm and its acceleration
technology, other attack methods and protection strategies for
FHE will emerge in endlessly, and the security discussion
of the FPGA-based hardware architecture is a separate and
complex problem, so this paper will not further discuss in
detail due to the length limitation.

VIl. CONCLUSION

This paper focuses on the FPGA hardware implementation
for Ring-LWE based leveled fully homomorphic encryption.
We present a hardware implementation of BGV scheme
that implements all components required for homomorphic
encryption and homomorphic evaluation. Our architecture
provides a trade-off between the hardware cost and per-
formance. To accelerate the computational intensive opera-
tions of homomorphic encryption functions, we put forward
an iterative NTT-based modular polynomial multiplier with
high performance and a self-designed LUT-based modular
reduction unit with less resource consumption. On this basis,
we accelerate the each functional component of hommorphic
encryption and homomorphic evaluation from the functions
of client and server. In particular, we implement the homo-
morphic evaluation module including modulus switching of
BGV scheme for the first time. Finally, we evaluate the
resource consumption and performance of our implemen-
tation on Virtex UltraScale FPGA platform. We find that
our modular reduction can save at least 2 times area, and
our polynomial multiplier has at least 20% higher normal-
ized efficiency when compared to existing implementations.
Besides, we demonstrate that the performance of our overall
architecture is also optimal, at the cost of slightly larger
resource occupation. As for future work, we will extend our
design implementation to the multicore application scenarios
and support wider range of parameters.

REFERENCES
[1] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme, no. 9.
Stanford, CA, USA: Stanford Univ. Stanford, 2009.
[2] M. Kim, Y. Song, and J. H. Cheon, ‘““Secure searching of biomarkers
through hybrid homomorphic encryption scheme,” BMC Med. Genomics,
vol. 10, no. S2, p. 42, Jul. 2017, doi: 10.1186/s12920-017-0280-3.

168024

[3]

[4]

[5]

[6]

[71

[8]

[9

—

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

(25]

X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino, *“Single-database private
information retrieval from fully homomorphic encryption,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 5, pp. 1125-1134, May 2013.

J. W.Bos, W. Castryck, I. Iliashenko, and F. Vercauteren, ‘‘Privacy-friendly
forecasting for the smart grid using homomorphic encryption and the group
method of data handling,” in Proc. Int. Conf. Cryptol. Afr. Dakar, Senegal:
Springer, 2017, pp. 184-201.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201-210.

R. Xu, J. B. D. Joshi, and C. Li, “CryptoNN: Training neural networks
over encrypted data,” in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2019, pp. 1199-1209.

R.L.Rivest, L. Adleman, and M. L. Dertouzos, ‘‘On data banks and privacy
homomorphisms,” Found. Secure Comput., vol. 4, no. 11, pp. 169-180,
1978.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Symp. Theory Comput. STOC, 2009, pp. 169-178.
M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homo-
morphic encryption over the integers,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptograph. Techn. Riviera, France: Springer, 2010, pp. 24-43.

Z. Brakerski and V. Vaikuntanathan, ““Efficient fully homomorphic encryp-
tion from (standard) LWE,” SIAM J. Comput., vol. 43, no. 2, pp. 831-871,
2014.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ““(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1-36, Jul. 2014.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” TACR Cryptol. ePrint Arch., vol. 2012, p. 144, Mar. 2012.

C. Gentry, A. Sahai, and B. Waters, ‘““‘Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,” in Proc. Annu. Cryptol. Conf. Santa Barbara, CA, USA: Springer,
2013, pp. 75-92.

L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic
encryption in less than a second,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Sofia, Bulgaria: Springer, 2015, pp. 617-640.

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachéne, “TFHE: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34-91, Jan. 2020.

C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
AES circuit,” in Proc. Annu. Cryptol. Conf. Santa Barbara, CA, USA:
Springer, 2012, pp. 850-867.

T. Lepoint and M. Naehrig, “A comparison of the homomorphic encryption
schemes FV and YASHE,” in Proc. Int. Conf. Cryptol. Afr. Marrakesh,
Morocco: Springer, 2014, pp. 318-335.

W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully
homomorphic encryption using GPU,” in Proc. IEEE Conf. High Perform.
Extreme Comput., Sep. 2012, pp. 1-5.

C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn. Tallinn, Estonia: Springer, 2011, pp. 129-148.

W. Wang, Z. Chen, and X. Huang, “Accelerating leveled fully homo-
morphic encryption using GPU,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Jun. 2014, pp. 2800-2803.

A. Qaisar Ahmad Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli,
and K. Rohloff, “Implementation and performance evaluation of RNS vari-
ants of the BFV homomorphic encryption scheme,” IEEE Trans. Emerg.
Topics Comput., early access, Mar. 4, 2019, doi: 10.1109/TETC.2019.
2902799.

X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Accelerating
fully homomorphic encryption over the integers with super-size hardware
multiplier and modular reduction,” IACR Cryptol. ePrint Arch., vol. 2013,
p. 616, Sep. 2013.

X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan, “High-
speed fully homomorphic encryption over the integers,” in Proc. Int. Conf.
Financial Cryptogr. Data Secur. Christ Church, Barbados: Springer, 2014,
pp. 169-180.

W. Wang and X. Huang, “FPGA implementation of a large-number multi-
plier for fully homomorphic encryption,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2013, pp. 2589-2592.

W. Wang, X. Huang, N. Emmart, and C. Weems, “VLSI design of a
large-number multiplier for fully homomorphic encryption,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 9, pp. 1879-1887,
Sep. 2014.

VOLUME 8, 2020

http://dx.doi.org/10.1186/s12920-017-0280-3
http://dx.doi.org/10.1109/TETC.2019.2902799
http://dx.doi.org/10.1109/TETC.2019.2902799

Y. Su et al.: FPGA-Based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption

IEEE Access

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Y. Doroz, E. Ozturk, and B. Sunar, “Evaluating the hardware performance
of a million-bit multiplier,” in Proc. Euromicro Conf. Digit. Syst. Design,
Sep. 2013, pp. 955-962.

Y. Doroz, E. Oztiirk, and B. Sunar, “Accelerating fully homomor-
phic encryption in hardware,” IEEE Trans. Comput., vol. 64, no. 6,
pp. 1509-1521, Jun. 2015.

T. Poppelmann, M. Naehrig, A. Putnam, and A. Macias, “Accelerating
homomorphic evaluation on reconfigurable hardware,” in Proc. Int. Work-
shop Cryptograph. Hardw. Embedded Syst. Saint-Malo, France: Springer,
2015, pp. 143-163.

Y. Doroz, E. Oztiirk, E. Savas, and B. Sunar, “Accelerating LTV based
homomorphic encryption in reconfigurable hardware,” in Proc. Int. Work-
shop Cryptograph. Hardw. Embedded Syst., Springer, 2015, pp. 185-204.
S. S. Roy, K. Jarvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede,
“Modular hardware architecture for somewhat homomorphic function
evaluation,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.
Saint-Malo, France: Springer, 2015, pp. 164-184.

S. Sinha Roy, K. Jdrvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“HEPCloud: An FPGA-based multicore processor for FV somewhat
homomorphic function evaluation,” IEEE Trans. Comput., vol. 67, no. 11,
pp. 1637-1650, Nov. 2018.

S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2019, pp. 387-398.

M. Sadegh Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An architecture
for computing on encrypted data,” 2019, arXiv:1909.09731. [Online].
Available: http://arxiv.org/abs/1909.09731

S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized neural
network on FPGA,” Neurocomputing, vol. 275, pp. 1072-1086, Jan. 2018.
R. Karthick, A. M. Prabaharan, P. Selvaprasanth, N. Sathiyanathan, and
A. Nagaraj, “High resolution image scaling using fuzzy based FPGA
implementation,” Asian J. Appl. Sci. Technol. (AJAST), vol. 3, no. 1,
pp. 215-221, 2019.

E. Oztiirk, Y. Dordz, B. Sunar, and E. Savas, “Accelerating somewhat
homomorphic evaluation using FPGAs,” IACR Cryptol. ePrint Arch.,
vol. 2015, p. 294, Mar. 2015.

A. R. Pedrosa, “Implementing fully homomorphic encryption schemes in
FPGA-based systems,” E.T.S. de Ingenieros Informaticos (UPM), Madrid,
Spain, Tech. Rep., Jan. 2016. [Online]. Available: http://oa.upm.es/39925/
J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for
a ring-based fully homomorphic encryption scheme,” in Proc. IMA Int.
Conf. Cryptogr. Coding Oxford, U.K.: Springer, 2013, pp. 45-64.

A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,” in
Proc. 44th Symp. Theory Comput. STOC, 2012, pp. 1219-1234.

M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“New packing method in somewhat homomorphic encryption and its
applications,” Secur. Commun. Netw., vol. 8, no. 13, pp.2194-2213,
Sep. 2015.

C. Du and G. Bai, “Towards efficient polynomial multiplication for lattice-
based cryptography,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2016, pp. 1178-1181.

D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. Pao, and I. Verbauwhede, ‘“High-speed polynomial multiplication archi-
tecture for ring-LWE and SHE cryptosystems,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 62, no. 1, pp. 157-166, Jan. 2015.

R. Zhang, FPGA Design and Implementation of the Prime Field Multipli-
ers. Xi’an, China: Xidian Universiy, 2013.

K. Millar, “Design of a flexible schoenhage-strassen FFT polynomial
multiplier with high-level synthesis,” M.S. thesis, New York, NY, USA:
Rochester Institute of Technology, 2019.

R. Agrawal, L. Bu, A. Ehret, and M. Kinsy, “Open-source FPGA imple-
mentation of post-quantum cryptographic hardware primitives,” in Proc.
29th Int. Conf. Field Program. Log. Appl. (FPL), Sep. 2019, pp. 211-217.
C. Jayet-Griffon, M.-A. Cornelie, P. Maistri, P. Elbaz-Vincent, and
R. Leveugle, “Polynomial multipliers for fully homomorphic encryption
on FPGA,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs (ReCon-
Fig), Dec. 2015, pp. 1-6.

M. R. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. E. Lauter, and S. Lokam, ‘““Homomor-
phic encryption standard,” JACR Cryptol. ePrint Arch., vol. 2019, p. 939,
May 2019.

T. Zhang, J. Wang, S. Guo, and Z. Chen, “A comprehensive FPGA reverse
engineering tool-chain: From bitstream to RTL code,” IEEE Access, vol. 7,
pp. 38379-38389, 2019.

VOLUME 8, 2020

[49] M. E. S. Elrabaa, M. Al-Asli, and M. Abu-Amara, “Secure computing
enclaves using FPGAs,” IEEE Trans. Depend. Sec. Comput., early access,
Aug. 6, 2019, doi: 10.1109/TDSC.2019.2933214.

[50] J. Zhang and G. Qu, “Recent attacks and defenses on FPGA-based sys-
tems,” ACM Trans. Reconfigurable Technol. Syst., vol. 12, no. 3, pp. 1-24,
Sep. 2019.

YANG SU received the B.S. degree of engineer-
ing in microelectronics and solid state electron-
ics from the Information Engineering University
of PLA, in 2012. He is currently pursuing the
Ph.D. degree with the PLA Rocket Force Univer-
sity of Engineering. He is also a Lecturer with the
Engineering University of People’s Armed Police.
His research interests include fully homomorphic
encryption hardware accelerator design, reconfig-
urable crypto chip, and integrated circuit design.

BAILONG YANG received the B.S. and M.S.
degrees in computer applications technology and
the Ph.D. degree in aeronautics and astronautics
manufacturing engineering from the PLA Rocket
Force University of Engineering, Xi’an, China,
in 1990, 1993, and 2001, respectively. He is cur-
rently a Professor with the PLA Rocket Force
University of Engineering. His research interests
include homomorphic encryption based on lattice,
network security and post-quantum cryptography,

complex networks, and computer simulation.

CHEN YANG (Member, IEEE) received the B.S.

degree in electronic engineering from Tsinghua
— University, Beijing, China, in 2004, and the M.S.
and Ph.D. degrees from the Institute of Microelec-
. tronics, Tsinghua University, in 2007and 2016,
respectively. He was with VIA Technologies, Inc.,
Beijing, from 2007 to 2009. He is currently a Lec-
turer with the School of Microelectronics, Xi’an
Jiaotong University. His current research interests
include hardware security, homomorphic encryp-

tion acceleration, on-chip memory management technology, reconfigurable
computing, and VLSI SoC design.

LUOGENG TIAN received the B.S. degree of mil-
itary science of information communication from
the Air Force Engineering University of PLA,
in 2013. He is currently pursuing the Ph.D. degree
with the PLA Rocket Force University of Engi-
neering. He is also a Lecturer with the National
University of Defense Technology. His research
interests include information security and security
of deep learning.

168025

http://dx.doi.org/10.1109/TDSC.2019.2933214

