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ABSTRACT In spatial-temporal data analysis, location data and its evolution through time are investigated
with the goal of uncovering important information to provide novel insights. These insights, for example,
may involve congestion identification in transportation, mobility patterns in urban computing, and storm
prediction in weather forecasting. Clustering, one data analysis technique, groups spatial-temporal data
based on location. Current spatial-temporal data analysis techniques fail to investigate relationships between
spatial-temporal clusters, such as splitting from a cluster and merging with another one because of a change
of properties over time. These relationships could hold valuable information about the existence of a cluster
and its interactions with other clusters and trajectories. In this paper, we introduce a framework to identify,
process, and analyze relationships between clusters of spatial-temporal data (e.g. enter, merge, or split).
We describe its architecture and components, as well as a proposed clustering technique, the different
approaches for distance calculation, and how we calculate cluster similarity of temporally separated clusters.
The result of these operations are used in the identification of cluster relationships over space and time. The
analysis of these relationships helps uncover hidden values that could support novel approaches to more
effective decision-making. We evaluate our framework with two case studies, based on truck and human
trajectories.

INDEX TERMS Cluster analysis, spatial-temporal cluster relationships, spatial-temporal data, spatial-
temporal data analysis.

I. INTRODUCTION
Spatial-temporal data analysis is the investigation, process-
ing, and visualization of data whose spatial and temporal
dimensions are relevant to a specific problem statement, with
the goal of uncovering value [1] within the problem context.
For example, predicting the demand for ride-sharing services
based on spatial-temporal factors, such as the history of
orders, tracking of rides through GPS, and the weather, is a
spatial-temporal data analysis task of great value to organiza-
tions supplying these services and to the general public [2].

Clustering is a data analysis technique that attempts to
group data such that any element in a group or cluster has
greater similarity to other elements in the same cluster than to
elements in other clusters [3]. These techniques are useful for
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classification, especially when new data becomes available
and does not yet belong to any cluster, and anomaly detection,
when an element does not appear to belong to any cluster.
Clustering techniques have been applied to several domains
and different types of data, including social networks [4] and
transportation [5], or both [6].

Although clustering of spatial-temporal data has been per-
formed in several domains, clustering remains limited to
static representations. For example, a cluster of residences
with similar socio-economic status can be regarded as a
spatial-temporal cluster, because its location is relevant as
well as the socio-economic information changes that occur
over time. However, these residences stay in the same location
throughout the entire observation, therefore forming a static
cluster. In addition, little is known about the relationships that
these clusters have with their own elements and with other
clusters. For instance, the information that more residences
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being classified as belonging to a particular cluster increases
the size of that cluster. In addition, two clusters can merge
into a larger cluster. These types of information are generally
not captured, but may contain critical insights for explaining
future phenomena, and thus, hold great value.

We propose a framework for spatial-temporal data analysis
that consider moving clusters and that identify and use cluster
relationships to generate value. Moving clusters are those
whose location changes across time. Some intuitive examples
are clusters of people and vehicles, but clusters of animals
or even stars are moving clusters too. Cluster relationships
are interpretations of the movement between clusters and ele-
ments or other clusters, such as enter, or merge. In this paper,
we describe the components of our framework, the challenges
we faced, and the solutions we found, as well as some future
work to be investigated.

This paper is divided as follows. Section II describes some
related work needed to understand each component of the
framework. Section III describes the framework and provides
details about each component and its use. Section IV presents
some case studies that use the framework. Section V con-
cludes the paper with a discussion of opportunities for future
work.

II. RELATED WORK
A. SPATIAL-TEMPORAL DATA ANALYSIS
Spatial-temporal data analysis is the application of data anal-
ysis techniques to spatial-temporal data [1]. The research area
of data analysis has existed for many decades but has become
particularly interesting more recently because of advances in
technology such as IoT that allow large volumes of data to be
generated for analyses. There is not a standard classification
of data analysis techniques. There is a large number of data
analysis technique proposals in the literature, each extending
a previously proposed method or adapting the practice to a
new domain. In addition, many recently proposed techniques
attempt to combine traditional data analysis techniques, mak-
ing consistent classification more difficult. Despite these
obstacles, the work in [3] attempts a classification. Data
analysis techniques are generally and broadly classified as
classification, association analysis, anomaly detection, and
cluster analysis.

1) CLASSIFICATION
There is a large number of techniqueswhose goal is to classify
data often by extending a traditional data analysis technique.
Among the many techniques, we include decision trees [7],
rule-based classifiers [8], [9], Bayesian classifiers [10], [11],
neural networks [12], support vector machines [13], [14], and
ensemble methods [15], [16]. Describing each technique is
beyond the scope of this paper, but it is worth highlighting
the importance of neural networks, especially in the field of
deep learning [17], [18], and the improved performance of
ensemble methods for classification tasks [19], [20].

2) ASSOCIATION ANALYSIS
Association analysis attempts to uncover interesting relation-
ships between items of a large dataset [21]–[23]. Association
analysis is especially useful in businesses such as supermar-
kets or online markets where association between items being
sold are identified and lead to novel marketing strategies or
business decisions. Perhaps, the most well-known example of
successful use of association analysis techniques is the case
of sales of beer and diapers that were discovered to be cor-
related. In online markets, the well-known recommendation
feature ‘‘customers who bought this also bought that’’ is an
example of association analysis. The main techniques involve
the Apriori algorithm [24], and alternative approaches differ
in whether an association tree or graph is used, and how it is
pruned.

3) ANOMALY DETECTION
Anomaly detection is the task of finding objects, called
outliers, that are different from most other objects [25].
There are very important applications of anomaly detection
approaches in several domains, including fraud detection
[26], [27] and public health [28], [29]. There are different
strategies to identify outliers, which can be divided [3] into
statistical, proximity-based, and density-based approaches.
Statistical approaches for anomaly detection usually build a
data model and rely on a probability distribution model to
assess how likely data fits this model. Approaches can be
based on the traditional Gaussian distribution [30] or onmany
other distributions, which is the underlying assumption of the
Mixture Models approach [31]. Proximity-based approaches
for anomaly detection evaluate the distance between data
points and consider outliers those distant from most points.
As expected, these approaches are heavily based on the
choice of distance function. One popular approach is Nearest
Neighbors [32]. Finally, density-based approaches attempt
to find regions of the data space where data points are
close together. Points that do not belong to such a region
are deemed outliers. Density-based approaches rely heavily
on the definition of distance as well as density. A popular
approach is density-based spatial clustering of applica-
tions with noise (DBSCAN) [33]. Both proximity- and
density-based approaches are forms of cluster analysis, which
is described next.

B. CLUSTER ANALYSIS
In this section, we describe cluster analysis, and some related
algorithms that are widely-used. We focus the discussion on
one specific algorithm, DBSCAN, because of its importance
in our approach. Finally, we link the research areas of data
analysis and spatial-temporal data with a description of some
spatial-temporal clustering approaches for this type of data.

1) OVERVIEW
Cluster analysis refers to the task of grouping data based on
its characteristics or relationships [34]–[36]. These groups are
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called clusters. As a consequence, data objects that are similar
to each other belong to the same cluster, whereas objects that
have significant differences reside in different clusters. Once
clusters are defined, which is called a clustering, classifica-
tion or anomaly detection tasks can be performed. To classify
data, it is assumed that the data has not been used to define
a cluster. Classification, then, is the step of querying each
cluster and looking for the most appropriate one for the
new data. To detect anomalous data in a dataset, one simply
observes the result of a cluster approach and looks for data
objects that were not associated with any cluster.

Clusterings, the results of a cluster approach, can be of
many different types based on their characteristics [3]. In a
partitional clustering, the data space is divided into regions
that do not overlap, thus each data object is associated with
exactly one region. In contrast, hierarchical clustering allows
the existence of nested clusters. In hierarchical clustering,
clusters are organized in a tree with each non-leaf cluster
being the union of all of its subclusters. Clusterings can also
be classified based on the degree of membership that data
objects have with clusters. In exclusive clusterings, as the
name implies, data objects belong to a single cluster, while
in overlapping clusterings data objects can belong to more
than one cluster. Real-life examples are a university student
who is also an instructor, or an employee who is shared
between two departments. A third perspective is fuzzy clus-
tering and it assumes that every data object belongs to every
cluster! However, each membership has an associated weight
or probability. The last clustering classification relates to the
completeness of the assignment of data objects to clusters.
Complete clusterings have every data object in a cluster,
whereas partial clusterings do not.Which one of them is more
suitable for anomaly detection?

Clusters themselves can also be classified based on their
characteristics [3]. Well-separated clusters have all of their
objects closer (or more similar) to each other than to objects
of another cluster. Clusters can be prototype-based, graph-
based, or density-based. Prototype-based clusters are created
based on a prototype, often the centroid. Data objects closer
(or similar) to the prototype are assigned to that cluster.
Graph-based clusters are modeled as a graph, where the ver-
tices are the data objects and the edges represent connections
between objects. Modeling clusters this way allows the use of
several graph processing approaches to be applied to cluster
analysis. Lastly, density-based clusters are dense regions of
data objects surrounded by a region of low-density. The most
important characteristic of these clusters is that they can
assume any shape. One of the most popular cluster algorithms
that produce density-based clusters is DBSCAN, which is
described in the next section.

2) SOME APPROACHES
There are many clustering approaches depending on the data
available and the type of cluster and clustering. We do not
intend to have a description for the entire set of clustering
approaches, but we focus on two: K-Means, because of its

popularity, and DBSCAN, because of its importance in our
research.

K-Means [37], [38] is a prototype-based, partitional clus-
tering technique that tries to findK clusters in the data, where
K is a user-defined parameter. The K-Means algorithm is
simple to explain and understand, which probably contributes
to its wide use. The algorithm starts with a random selection
of K centroids. These do not have to be data objects in
the dataset, but they often are chosen that way for reason
of performance. The algorithm then proceeds to associate
each object with the closest centroid. The centroids are then
updated based on the points assigned to each cluster. These
steps are then repeated until no point changes clusters, or the
centroids remain the same. Pseudocode for K-Means algo-
rithm is shown in Algorithm 1.

Algorithm 1: Basic K-Means Algorithm [3]

1 Select K points as initial centroids.
2 repeat
3 Form K clusters by assigning each point to its

closest centroid.
4 Recompute the centroid of each cluster.
5 until Centroids do not change;

The basic K-Means algorithm has a complexity ofO(nkdi),
where n is the number of d-dimensional data objects in the
dataset, k is the number of clusters that the user defined, and
i is the number of iterations needed until convergence occurs.
The algorithm performs well for small datasets, but it can
be quite slow when the number of data objects, dimensions,
or clusters is high. In addition, K-Means is highly dependent
on the distance function being used. Table 1 lists some popu-
lar ones.

Table 1 assumes that two data objects a and b are
d-dimensional vectors and, thus can written as a =

[a1, a2, . . . , ad ] and b = [b1, b2, . . . , bd ]. It is also important
to notice that the concepts of distance and similarity are
inverses.

TABLE 1. Some distance functions.

DBSCAN [33] stands for density-based spatial clustering
of applications with noise. It is a density-based clustering
algorithm that attempts to find regions of high density that
are separated from each other by regions of low density. The
notion of density is key for the execution of the algorithm.
In DBSCAN, density is based on the distance of data points.
The algorithm uses two parameters in its density calculations:
ε andminPts. The parameter ε describes the neighborhood of
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a data point. It can also be thought as denoting the maximum
distance allowed for any two objects in a cluster, therefore
defining density. The parameter minPts gives a floor to the
number of points in the neighborhood of a point and helps
classifying points as in a dense region or not. DBSCAN
describes three types of data points: core, border, and noise.
Core points are in the interior of the cluster. They are in a
dense region, which means that there are more than minPts
points at a distance ε from them. Border points are still in the
cluster, fall in the neighborhood of a core point but fail to have
more than minPts points within a distance of ε. A noise point
is a point that is not a core or a border point.

Intuitively, DBSCAN execution selects a point and keeps
visiting nearby points until the entire region is marked as a
cluster. Then it moves to an unmarked point and restarts the
process. More precisely, DBSCAN selects an arbitrary point
that has not been visited and retrieves a list of points in its
neighborhood, that is points within a distance ε from it, using
a distance function. If this set of points, including the original
point, has enough points (minPts), then this represents a
dense region. A cluster is started and all points in this set
are labeled as belonging to the new cluster. If instead the
set of points does not meet the minimum requirement for a
dense region (based on minPts), the original point is marked
as a noise point. Depending on the result of the previous step,
the algorithm will either visit other points of the newly dis-
covered region or jump to another arbitrary unvisited point.
This process is repeated until all points have been visited. The
pseudocode in Algorithm 2 explains DBSCAN.

Algorithm 2: DBSCAN Algorithm [3]

1 Label all points as core, border, or noise points.
2 Eliminate noise points.
3 Put an edge between all core points that are within ε of

each other.
4 Make each group of connected core points into a

separated cluster.
5 Assign each border point to one of the clusters of its

associated core points.

In the worst case, DBSCAN has time complexity O(n2),
where n is the number of data points to be clustered. For
small datasets, and with the help of data structures, such as
kd-trees [39], that allow efficient retrieval of all points within
a given distance of a specified point, the time complexity
can be reduced to O(n log n). One important characteristic
of DBSCAN is its ability to identify free-form clusters.
Many clustering approaches tend to generate globular clus-
ters because they are based on the notion of a radius from
centroids. DBSCAN instead uses the distance function from
one data point to find others that are in the same cluster and is
able to identify clusters in extreme cases, such as two clusters
in the form of discs, having the same center, but different
radii.

3) SPATIAL-TEMPORAL CLUSTER ANALYSIS
Our discussion so far has been for a generic case. No assump-
tions about the nature of the data was made. In this section,
we focus on the spatial-temporal context. We assume that
data has a location that may change with time, there-
fore spatial-temporal data, and we discuss some data anal-
ysis techniques developed specifically for this type of
data. We focus on clustering techniques because of their
importance to our research.

Spatial-temporal data relates to pieces of information in
which both location and time are significant [1]. For example,
a person carrying his or her cell phone [40] or a vessel sailing
in the sea [41] is generating location data at specific times.
Spatial temporal data does not necessarily describe move-
ment, as long as the location and the time are important pieces
of information gathered about the phenomena it describes.
For example, weather stations are facilities either on land
or on the sea where information about the weather, such
as temperature, atmospheric pressure, humidity, wind speed,
and precipitation amounts, are measured. These stations
do not move, but they definitely generate spatial-temporal
data [42]. These measurements are reported with the location
and the time they were generated. In this paper, we focus on
spatial-temporal data that represents movement.

The spatial dimension of the data describes location. For
measurements taken on the surface of the Earth, latitude and
longitude degrees are often used. Using the conventions of
north and south of the planet, divide it in two ‘‘equal’’ (or at
least very similar) parts. These are called the hemispheres.
The line that runs on the surface of the Earth at the points
where the two hemispheres meet is the Equator line. This
line represents latitude zero. Now, consider any vector v from
the center of the Earth to a point in its surface. The smallest
angle between this vector v and any vector v0 pointing at
the Equator line is the latitude. Latitude is the angle φ in
Figure 1b. Longitude tells us how far to the west or east one
location is. It measures the angle between any point on the
surface of the Earth and the Prime Meridian. The meridian
represents the points separation if Earth was to be divided in
equal (or similar) east andwest sides. It is a convention, unlike
the Equator line, because of the rotation pattern on the Earth.
The modern-day meridian, used in GPS devices is the IERS
Reference Meridian, maintained by the International Earth
Rotation and Reference Systems Service (IERS).1 Longitude
is the angle λ in Figure 1a.

However, the description of spatial data is not limited to
the latitude and longitude. Other widely used formats are
the addition of altitude, the Cartesian product, thus x and y
(and z), polar coordinates, the Z-matrix [43], [44] for atoms,
or the celestial coordinate system [45] for celestial objects.

The temporal dimension of spatial-temporal data describes
the time. The current research on time describes it as contin-
uous, irreversible, and indefinite. However, some discretiza-
tion is necessary for computer applications and analyses.

1https://www.iers.org/
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FIGURE 1. Longitude and latitude on the surface of the Earth.

The W3C Consortium2 maintains an ontology of time.3 For
most analyses, time, an instant, is described in terms of year,
month, day, hour, minute, second, and millisecond, although
more or less granularity is needed depending on the analysis
(e.g. century or millennium for lower granularity or the
planck for a theoretical higher granularity). Time can also
be described in terms of intervals in two ways, either with a
start and end instant, or by calculating their difference. Most
spatial-temporal datasets use the term timestamp to denote
the discretization of the time at which data was measured.

Spatial-temporal data analysis, as the name implies, refers
to the task of analyzing spatial-temporal data looking for
hidden patterns that could produce value [1]. For example,
by observing people’s position at a store, a manager may
discover that customers buy products in a certain order.
This discovery is valuable because a decision can be taken
to optimize (or not) the amount of time customers stay
inside the store. There are many analysis techniques aimed
at spatial-temporal data [46]–[49], including Spatiotem-
poral Autoregressive Regression (STAR) for prediction
and Spatial-Temporal Density-Based Spatial Clustering of
Applications with Noise (ST-DBSCAN) for clustering.

The work in [46] divides the spatial-temporal data analysis
domain in several areas based on their goal. These areas
are: spatial-temporal outlier, spatial-temporal couplings and
tele-couplings, spatial-temporal prediction, spatial-temporal
partitioning and summarization, spatial-temporal hotspots,
and spatial-temporal change. Note that the visualization of
spatial-temporal data [50] is an important step in the data
analysis process and can be performed to accomplish the
goals described next.

a: SPATIAL-TEMPORAL OUTLIERS
Spatial-temporal outliers are data points whose non-spatial-
temporal attributes differs significantly from those in its
spatial-temporal neighborhood. It is a local instability or
discontinuity, such as an unusually expensive purchase at a

2https://www.w3.org/
3https://www.w3.org/TR/owl-time/

particular location or a person who appears to be walking
significantly faster than others.

b: SPATIAL-TEMPORAL COUPLINGS AND TELE-COUPLINGS
Spatial-temporal couplings are patterns of behavior that
occur in close geographic and temporal proximity, whereas
spatial-temporal tele-couplings relate to behaviors that corre-
late positively or negatively but at a distance. For example,
identifying a sequence of spatial-temporal decisions (visiting
places in a certain order) can help understand the underly-
ing reasons for these decisions. There are four approaches:
co-occurrence, sequential (‘‘chain reaction’’), cascading pat-
terns (sequential and at the same location), or time series
(‘‘tele-connection’’).

c: SPATIAL-TEMPORAL PREDICTION
Spatial-temporal prediction relates to the task of learning
a model and making inferences about attributes (depen-
dent variables) from other attributes (explanatory variables).
In case the dependent variables are discrete, the spatial-
temporal prediction is called classification; otherwise, in the
case that they are continuous, it is called regression. Some
application domains are regional climate prediction and
real-estate price modeling.

d: SPATIAL-TEMPORAL PARTITIONING AND
SUMMARIZATION
Spatial-temporal partitioning and summarization include two
related tasks. The first, spatial-temporal partitioning, also
known as spatial-temporal clustering refers to arranging
data points into groups, thus partitioning the underlying
space and time. It has many applications, including demo-
graphic analyses and population modeling. Spatial-temporal
summarization, done after or together with partitioning,
relates to the task of providing a compact representation of
spatial-temporal data. For example, the spread of a disease
can be summarized with a center and a radius, and the occur-
rence of traffic jams can be summarized with a list of road
segments.

e: SPATIAL-TEMPORAL HOTSPOTS
Spatial-temporal hotspots are regions of the space where the
amount of data points is anomalous or excessively high for
a certain time interval. Either statistical or clustering tech-
niques are useful to identify those regions. Applications can
be found in the domain of public health or public events,
by identifying epidemics or sports events.

f: SPATIAL-TEMPORAL CHANGE
Spatial-temporal change refers to change in values of
spatial-temporal data points. The task of identifying change
is of great importance for uncovering value. There are three
types of changes: changes to the statistical parameter, when
data has a new mean value; changes to the actual value, when
there is a significant difference between values in one data
point when compared to its neighbors; and change in models

VOLUME 8, 2020 169779



I. Portugal et al.: Framework for Spatial-Temporal Trajectory Cluster Analysis Based on Dynamic Relationships

fitted to data, when one of the many models used to explain
the data changes. Applications such as quality control or
detecting faults in sensor readings require analysis of change.

Our approach focuses on clustering, or partitioning,
trajectories, so that relationships between these clusters can
be found. There exists two main ways to perform this task.
The first way divides time into discrete units (timestamps)
and apply density-based clustering approaches on each times-
tamp. A very common density-based clustering approach
used is DBSCAN. The second way reduces all trajectories
to sets of spatial-temporal points and uses both dimensions in
similarity calculation to find clusters. A popular approach is
ST-DBSCAN, which we discuss in the next paragraph.

ST-DBSCAN [51] is a density-based clustering algorithm
based on DBSCAN that is able to identify spatial-temporal
clusters according to spatial, temporal, and non-spatial-
temporal values of objects. LikeDBSCAN, the algorithm also
identifies core, border, and noise points based on whether
they are reachable from core points. Unlike DBSCAN, ST-
DBSCAN uses two parameters, ε1 and ε2, for spatial and
temporal similarity calculation. Therefore, if two data points
are within a distance of ε1 from each other according to
some distance function, and the difference between their
timestamp values (temporal distance) are within a range
of ε2, these two data points are in the same neighbor-
hood and likely to stay in the same cluster. The parameter
minPts regulates the required density to form a cluster.
ST-DBSCAN also includes a new parameter, density
factor, to solve DBSCAN’s difficulties with clusters with
different densities. Its calculation is straightforward. Every
data point p has the maximum and minimum distance to
another point in its neighborhood. Call these distances den-
sity_distance_max(p) and density_distance_min(p). Thus,
the density_distance of an object p is defined as
density_distance_max(p)/density_distance_min(p). Notice
that if a cluster is dense, a small density_distance_min(p)
increases the final density_distance value, whereas points in
a low-density cluster have greater density_distance_min(p)
values and therefore a small density_distance value. The new
parameter density factor of a cluster C is defined as:

density_factor(C) = 1/

[∑
p∈C density_distance(p)

|C|

]
,

where |C| is the number of elements in cluster C . Dense
clusters will have density_factor values that tend to zero,
whereas low-density clusters will have density_factor values
close to one.

Although ST-DBSCAN is widely used in spatial-temporal
clustering tasks, it requires significant additional processing
to identify relationships between clusters, as we intend in our
approach. ST-DBSCAN marks each spatial-temporal point
with the cluster to which it belongs. Since no distinction of
timestamp or no concept of trajectory is required, the result
set has to be reprocessed if we are to identify, for instance,
a cluster that enters another. The difficulty in identifying

cluster relationships from results led us to choose the original
DBSCAN algorithm and the trajectory clustering approach
based on timestamps for our work.

C. SPATIAL-TEMPORAL RELATIONSHIPS
Our approach identifies spatial-temporal cluster relationships
to uncover properties that were hidden. Here we review the
literature of spatial and temporal relationships, as well as
some previous work on spatial-temporal cluster relationships.
We also give some insights on how they can be extended.

Spatial relationships describe behavior that two elements
have towards each other based on their location. A simple
example is ‘‘a person enters a room’’. The literature describes
three basic types of spatial relationships: topological, direc-
tional, and distance.

1) TOPOLOGICAL
Topological relationships are based on the way elements
are arranged in the space. The Dimensionally Extended
Nine-Intersection Model (DE-9IM) [52]–[55] is a standard
that describes relationships between two elements in two
dimensions. Elements are divided into three regions, inte-
rior, boundary, or exterior, and the intersection between the
regions of both elements are mapped in a matrix. Different
patterns of these matrices define different spatial relation-
ships. There is a total of eight relationships: equals, disjoint,
touches, contains, covers, intersects, within, coveredBy.

2) DIRECTIONAL
Directional relationships describe behavior properties by
using one of the elements as a reference. These relationships
are divided into two types: internal and external. Internal
directional relationships assume that one of the elements is
located inside the other. Some examples are right, on the
back, and athwart. External directional relationships, on the
other hand, assumes that the element is outside of the refer-
ence element. Some examples are on the right of, behind, and
in front of.

3) DISTANCE
Distance relationships specify how far one element is from
another reference element. Identifying these relationships
usually involve a distance function. Some intuitive examples
are at, nearby, in the vicinity, and far away.
Temporal relationships characterize behavior properties

between two time periods. A simple example is ‘‘we had
lunch before the meeting’’. The W3C’s Time Ontology4 doc-
ument describes 13 elementary relationships for time periods,
be it an instant or a time interval. The relationships are
before, after, meets, metBy, overlaps, overlappedBy, starts,
startedBy, during, contains, finishes, finishedBy, and equals.
Spatial-temporal relationships describe interactions

between spatial-temporal elements in which both the spatial
and the temporal dimensions are considered. There is not a

4https://www.w3.org/TR/owl-time/
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standard systematic way to derive all relationships, but an
intuitive one is to put together a spatial relationship and a
temporal relationship [56], [57]. One example is move to
the right, when the element is on the left of the reference
element before some time t , and is on the right of the
reference element after time t . Another approach to derive
spatial-temporal relationships is to observe how they are
used in natural language. The work in [58] describes seven
relationships: stopping, approaching,moving-away, arriving,
leaving, passing, and jointly-moving. The papers in [59], [60]
observe motion verbs used to describe situations on videos
and derive an interesting set of relationships that includes go
to, arrive, go into, depart, and leave, and relationships derived
from combinations of those, as in enter, go out, come and go,
go through, and go and come.

Although these relationships are rich and capture several
spatial-temporal behavior patterns between spatial-temporal
elements, only a subset of them can be used in our
approach. The first reason is that some of the relation-
ships assume that two different clusters are well separated
even if at a short distance. For example, the relationships
arriving or arrive assumes that two objects are very close.
A density-based clustering algorithm will consider the two
close clusters to be the same cluster, since they are about
to share data points. The second reason is that some rela-
tionships require a comparison between the entire space of
clusters to be identified, and if feasible, may still not be
meaningful. For example, the relationshipsmoving-away and
leave (as described by this author) requires a comparison
between two clusters. Clusters that are significantly distant,
such as clusters of taxis on opposite sides of a big city would
be classified as either approaching, arrive, moving-away,
or leave multiple times and they may not be related in the
first place. Other relationships such as enter and go out (as
described by the author) are relevant to our approach and are
considered in our framework.

The paper in [61] lists spatial-temporal relationships that
describe interactions among clusters of trajectories. The
authors divide relationships into two types: primary, those
that can be identified from raw data, and secondary, those
derived from primary relationships. The relationships are
shown in Table 2 alongside a brief description. In fact,
this study has similarities with our approach, and thus a
comparison is presented. This comparison is summarized
in Table 3. The work in [61] investigates ways to identify
groups of objects that travel together. The study defines a
group as a cluster of at least m density-connected objects
for at least a specified duration of time. The concept of
density-connectedness is derived from density-based cluster
algorithms, in which objects in a cluster can be reached from
any object in the same cluster through a path of objects of
the cluster such that the distance from any two consecutive
objects in this path does not exceed ε. This definition is
made to differentiate these clusters from other clusters, such
as flocks [62], [63], convoys [64], and swarms [65]. The
eight cluster relationships described in the study are used to

TABLE 2. Spatial-Temporal relationships defined in [61].

TABLE 3. Comparison between the approach in [61] and our approach.

build a tree of object movement, and this tree is analyzed
for group discovery. The authors propose a framework for
group identification called GroupFramework that is able to
identify clusters in streaming data. They also introduce a
cluster similarity metric, shown in Eq. (1), that assists in
differentiating the clusters, when the returned clusters are
very similar to each other. Note that this metric does not take
into consideration the timestamps of the objects in the cluster.

Sim(C1,C2) =
||C1 ∩ C2||

||C1 ∪ C2||
. (1)

We instead attempt to describe a cluster lifetime as a
sequence of cluster relationships so that interesting patterns
can be identified and novel analyses can occur. Regard-
ing the nature of the data, we focus on batch analysis.
As discussed in the next section, we detail each relationship
and introduce novel ones, totaling a description of fourteen
spatial-temporal cluster relationships [66]. These relation-
ships are identified based on application of a density-based
algorithm (DBSCAN) at each timestamp and comparing the
resulting set of clusters. To perform this comparison, we pro-
pose an improved cluster similarity metric, which will be
discussed in the next section.

III. FRAMEWORK
A. OVERVIEW
In this section, we introduce our framework for spatial-
temporal cluster analysis.We discuss each one of its modules,
the challenges we faced, and opportunities for improvement.

An architectural view of the framework, depicting each
one of its six different modules is shown in Figure 2. First,
the raw spatial-temporal data is preprocessed, such that it
is in a standard format. After preprocessing, the controller
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FIGURE 2. An architecture view of our framework for cluster analysis.

module coordinates execution of the modules. The contoller
module executes a clustering technique (DBSCAN) at each
timestamp to identify spatial-temporal clusters among the
available data. As results become available, the controller
applies a cross-temporal similarity function to identify clus-
ters that exist across consecutive timestamps. For example,
if the clustering technique identified clusters c1 and c2 during
timestamp ti and clusters c3 and c4 during timestamp tj, where
i < j, this function attempts to measure whether c3 is the
previous c1, c2, or a totally new cluster. Once cross-temporal
clusters are mapped, the controller requests the cluster rela-
tionships identification module to list relationships between
these clusters, such as merge or split. Once this information
is also available, the controller then stores each relationship
for its corresponding cluster for further analysis. We call
the set of relationships of a cluster its cluster lifetime. The
visualization module translates the raw result data into an
intuitive format for analysis.

B. PREPROCESS
Spatial-temporal trajectory datasets follow different for-
mats. Table 4 describes several inconsistencies that can be
found. For that reason, we preprocess each new dataset,
so that data points of each trajectory follow the for-
mat <id, timestamp, latitude, longitude>.
In our approach, id is a number that uniquely identifies
a trajectory, timestamp is the discretized time when the
data was measured following the format yyyy-mm-dd

TABLE 4. Some inconsistencies found in spatial-temporal datasets.

hh-mm-ss, and latitude and longitude are spatial
coordinates to describe a place on Earth. One example
of a data point of a trajectory is <246,2019-11-12
06:48:42,-78.366667,165.016667>. Once all data
is standardized, it is then stored for cluster analysis.

C. CONTROLLER
The controllermodule coordinates the execution of the frame-
work. In short, it interacts with other modules so that a
clustering technique is executed on the data, cross-temporal
cluster similarity is calculated, and cluster relationships are
identified. Two other secondary, but important features of
this module, are the universal timeline function and the
coordination of parameters.
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Trajectory data is divided into data points describing
the location of an object at several different timestamps.
Although sensors are reasonably reliable and accurate, two
coordination problems still exist: (i) within-trajectory interval
irregularity and (ii) between-trajectory interval irregularity.
The first problem describes data points that were not captured
at regular spaced time intervals. For example, a trajectory i
can have its first three data points captured at timestamps 10,
15, and 20 seconds, but have its fourth timestamp captured at
26 seconds from the start. The second coordination problem
refers to differences of timestamps between two trajectories.
A simple example is when trajectory i has its data points
captured every 5 seconds, while another trajectory j has its
data points captured every 10 seconds. These two regularity
problems led us to adopt two solutions: the universal timeline
and the movement assumption. The universal timeline is a
function that queries trajectory data files at a user-defined
regularly rate regardless of the rate of each individual tra-
jectory. The function keeps track of the current universal
time and the time of the most current data point of each
trajectory. It then returns new data points only if they exist
at the current universal time as shown in Figure 3. Notice
that traj1 has regularly spaced intervals, and the most recent
data point is used for analysis. Trajectories traj2 and traj3
have, respectively, smaller and larger intervals between data
points. In the case of traj2, some data points are never used
for analysis, while some data points from traj3 are used
more than once. Trajectory traj4 shows the case in which
data capture ends, and therefore, no more data points are
available for analysis. Themovement assumption is usedwith
the universal timeline and states that an object has moved
only when new information about its location is available.
Therefore, the universal timeline function does not attempt to
estimate where an object is when data is not available. Instead
it returns the most recent available data.

FIGURE 3. The universal timeline. Trajectories have different rates and
the most recent one is used in analysis.

The second feature of the controller module is the coor-
dination of parameters. The framework has parameters for
the timeline function, the density-based algorithm, and the
cross-temporal similarity function. These parameters may be
shared between the modules. For example, the clustering
technique module needs the minPts parameter to calculate
whether a group of data points forms a cluster, and the
cross-temporal similarity function needs the same parameter
to investigate whether the number of trajectories that left a
cluster is enough to form a new cluster. For that reason, all
user-defined parameters are managed by the controller.

D. CLUSTERING TECHNIQUE
As discussed in previous sections, clustering techniques can
be categorized into different types. We chose a density-based
approach for our framework because of its ability to iden-
tify clusters of different shapes. Some spatial-temporal data,
such as the spread of a disease, the weather conditions in a
region, or the homes serviced by a hospital tend towards a
globular shape because they can be summarized by a radius
of influence. Trajectory data, on the other hand, does not
always follow this shape, because it depends on many factors,
such as the road network or driving decisions. We chose
DBSCAN for its performance on large volumes of data and
its popularity.

One important step of a density-based clustering
approach is the distance calculation. In most applications,
the Euclidean distance function is efficient and sufficient.
However, spatial-temporal data is usually described in terms
of latitude and longitude, that is degrees, minutes, and
seconds, instead of miles or meters. The difference between
two locations may not be a straight line, but part of a circum-
ference. Distance metrics that consider the curvature of the
Earth are called geodesic distance metrics, and there are four
popular ones: geodesic, Vincenty, great circle, and haversine.
They differ based on the Earth model used in calculations,
that can be ellipsoidal or spherical.

1) GEODESIC
The Geodesic distance [67] is an accurate distance metric that
assumes that Earth is an ellipse, is accurate to round-off and
always converges. However, it requires substantially more
time to calculate when compared to simpler metrics and may
not be suitable for situations where several calculations are
required.

2) VINCENTY
The Vincenty distance [68] is a fairly accurate distance metric
that also assumes an ellipsoidal model for Earth. It is accurate
to 0.2 millimeter which makes it suitable for several appli-
cations. However, it may not converge if points are on the
opposite sides of the ellipsoid.

3) GREAT CIRCLE
The Great Circle distance assumes that Earth is a sphere
and uses a radius of 6371.009 kilometers, as defined by the
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International Union of Geodesy and Geophysics (IUGG),5

in distance calculations. As expected, the results are not as
accurate as the previousmethods, but it is more efficient when
absolute precision is not a requirement.

4) HAVERSINE
The Haversine distance [69], [70] is a formula used by some
geodesic distance calculations, such as the Great Circle.
It assumes a sphericalmodel of the Earth. The formula, shown
in Eq. (2), is more suitable for modern computers, reducing
rounding errors for distances of less than a few meters, and
performs better on smaller distances.

d=2r

(√
sin2

(
ϕ1−ϕ2

2

)
+cos(ϕ1)cos(ϕ2)sin2

(
λ1−λ2

2

))
(2)

• d : the distance between points 1 and 2;
• r : the radius of the sphere (Earth);
• ϕ1, ϕ2: latitude of points 1 and 2 (in radians);
• λ1, λ2: longitude of points 1 and 2 (in radians);
In our approach, the distance between two data points

will be calculated several times, for each of the multiple
timestamps available. Therefore, the chosen distance func-
tion should be as efficient as possible. In addition, our
spatial-temporal clusters are groups of taxis, animals, or peo-
ple, in which very large distances are not meaningful. As a
consequence, rounding errors present in the Great Circle and
Haversine distances do not significantly impact the overall
result. We chose the Haversine distance for its popularity in
analysis coding libraries and for its optimized implementa-
tion in Cython, a C extension for Python.

E. CROSS-TEMPORAL SIMILARITY FUNCTION
The Cross-Temporal Similarity function assesses if two
clusters in different timestamps are the same. In general,
cross-temporal cluster similarity can be performed in two
ways [71], based on shared objects or cluster character-
istics. In the first approach, objects that belong to each
cluster are compared, and if a sufficiently large number of
objects are present in both clusters, the clusters are deemed
to be the same. Two popular metrics or this calculation
are Fowlkes-Mallows [72] and Jaccard [73]. In the second
method, information, possibly statistical, about two clusters
are compared, and a similarity value is calculated. Clusters
that exceed a certain similarity threshold are deemed the
same. Some statistical tests that can be used include
T-test [74] and Chi-square [75].

We chose to follow the first approach to calculat-
ing cross-temporal cluster similarity because the frame-
work already handles data objects for cluster identification.
Producing statistical information about the cluster would
require additional processing time that may not be necessary.
The Jaccard index is an intuitive similarity metric to compare

5http://www.iugg.org

two clusters. It is the similarity function used in [61] and is
calculated as shown in Eq. (3),

J (c1, c2) =
|c1 ∩ c2|
|c1 ∪ c2|

, (3)

where c1 and c2 are clusters in consecutive timestamps.
One can choose a threshold for a valid similarity, say 75%.
However, the Jaccard index does not perform well when
cluster objects change in significant ways, which may be the
case for some spatial-temporal situations. Figure 4 illustrates
one of these cases. The figure describes two timestamps,
the previous one on the left, and the current one on the right of
the dashed vertical line in the middle. The figure also shows
a cluster c1 containing 13 objects in the previous timestamp,
and a cluster c3 also containing 13 objects in the current
timestamp. The cluster in the middle of the figure is an
indication that clusters c1 and c3 share 10 objects. Note that
during the transition between timestamps, two things happen:
three elements leave c1 and do not form a new cluster, and
cluster c2 with three objects joins c3. The goal is to evaluate
whether clusters c1 and c3 are the same, and whether c2 and
c3 are the same. The Jaccard index is calculated as follows:

J (c1, c3) =
10
16
= 0.6250 < 0.75

J (c2, c3) =
3
16
= 0.1875 < 0.75

FIGURE 4. A situation where Jaccard fails to identify a cross-temporal
cluster, but our approach succeeds.

Thus, the Jaccard index does not consider these clusters the
same. However, our intuition indicates that c1 and c3 are the
same, as they share 10 elements.

Our similarity function also calculates the percent of
shared elements but does this for each cluster. Eq. (4) shows
our similarity function. Two clusters are deemed similar if the
percent of shared elements exceeds a predefined threshold,
say 75%, for each of the two clusters.

Sim(c1, c2) = 1 if


|c1 ∩ c2|
|c1|

≥ 0.75, and

|c1 ∩ c2|
|c2|

≥ 0.75
(4)

When using our similarity metric on the situation presented
in Figure 4, we obtain the results show in Eqs. (5) and (6).
The results follow our intuition and indicate that c1 and c3
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TABLE 5. The 14 spatial-temporal cluster relationships and a brief description.

are indeed the same cluster in different timestamps, but not
c2 and c3.

when comparing c1 and c3:


10
13
= 0.76 ≥ 0.75

10
13
= 0.76 ≥ 0.75

(5)

when comparing c2 and c3:


3
3
= 1 ≥ 0.75

3
13
' 0.23 < 0.75

(6)

In certain extreme situations, a cluster will lose most of its
elements and then regain several elements during the transi-
tion between timestamps. For example, in Figure 4, cluster c1
could lose 10 elements and then gain 10 new elements in
the next timestamp as c3. Since the core of the cluster is the
same, the three elements that remained, we can still argue that
c1 and c3 are the same. To account for extreme situations such
as this one, we optimize our similarity metric by removing
from the calculations trajectories that just entered or left the
cluster during the transition from one timestamp to the next.
This is limited to the set of trajectories that do not form a new
cluster or which came from an existing cluster.

F. CLUSTER RELATIONSHIPS IDENTIFICATION
The Cluster Relationships Identification module receives
two set of clusters and trajectories, one for each of the
previous and current timestamps, and attempts to identify
spatial-temporal relationships between them. For example,
if the module detects that a cluster c1 in the previous times-
tamp has 10 trajectories, and that five of these trajectories
are now in a cluster c2 and the other five trajectories are in
another cluster c3, and clusters c2 and c3 are not cluster c1,
then it concludes that a split relationship took place.

We have introduced, formalized, and described 14 spatial-
temporal relationships [66], [76], which are presented
in Table 5. The two first relationships in the table, start and
end, do not involve a relationship between other clusters, but
are necessary to describe the lifetime of a cluster. Cluster rela-
tionships are identified based on four pieces of information:

1) Existence in the other timestamp;
2) Number of trajectories the cluster contains in one

timestamp, but no cluster contains in the other
timestamp;

3) Number of clusters, in the other timestamp, with shared
trajectories;

4) Existence of these clusters in this timestamp.

To simplify, we give an example. Let c1 be a cluster in
the current timestamp. The list below describes the tests that
are necessary to identify relationships. The first test helps
the module assess whether a start relationship took place.
Note that a cluster may start through different ways (e.g.
trajectories that grouped together or detached from a larger
cluster). The second test can be used to identify t_enter
relationships. The third test has many possibilities. It may
indicate a merge, detach, or group if the cluster c1 starts
existing at this moment, or c_enter or c_in if the cluster c1
already existed in the previous timestamp. The difference
between the cases relates to the number of clusters with
which c1 has shared objects. The fourth test helps the module
distinguish the relationships of c_enter and c_in. Note that
in this example, the cluster c1 is in the current timestamp and
comparisons are being made with the clusters and trajectories
that existed in the previous timestamp.

1) Has the cross-temporal similarity function identified a
cluster c0 in the previous timestamp such that c0 and c1
are the same?

2) How many trajectories does the clustering technique
module assigns to c1 in the current timestamp, but does
not assign to any cluster in the previous timestamp?

3) How many clusters are in the previous timestamp with
which c1 shares trajectories?

4) Assume that cluster c1 has shared trajectories with
cluster c0 of the previous timestamp. Does the cluster
c0 exist in the current timestamp?

An analogous case of a cluster c∗1 in the previous timestamp
compared with the clusters and trajectories of the current
timestamp is also performed, and it helps identify the other
set of relationships not mentioned in the example.
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Once the cluster relationships identification module iden-
tifies relationships at each timestamp, it returns these rela-
tionships and the corresponding identifier of the clusters
that went through these relationships to the controller. The
controller then will store each relationship so that a cluster
lifetime is constructed. This cluster lifetime is the basis of
further analysis, which starts with the visualization module,
explained in the next section.

G. VISUALIZATION
The visualization module assists in the translation from the
raw, computer-generated information about cluster lifetimes
to easy-to-read, intuitive data formats for analysis. After clus-
ters are calculated, their similarities are mapped, and their
relationships are identified and stored, a list of several events
that happened to the cluster is available for analysis. The
visualization module transforms this list into a more intuitive
one such as the one in Listing 1, which shows events that an
example cluster 1 went through. Themodule can also produce
graphs based on the occurrence of each event in one or many
lifetimes.

LISTING 1. An example lifetime of a cluster.

Geographical Information Systems (GIS) are a frame-
work for managing and analyzing geographical information.
They provide a set of analysis algorithms and integrations
with map providers so that researchers can visualize their
spatial-temporal data and run scripts for analyses. One inter-
esting feature of our visualization module is the ability to
translate a cluster lifetime into a GIS-readable format. As a
consequence, these relationships can easily be understood on
a map.

IV. CASE STUDY
This section presents two case studies developed to evalu-
ate our framework. We show that our framework is able to
identify spatial-temporal cluster relationships and that these
relationships are important to obtain novel insights about the
data. For these case studies, we used datasets of truck and
people trajectories, freely available online.

A. CASE STUDY 1
In case study 1, we investigate the relationships that a cluster
of trucks can produce, and we show the value brought to
spatial-temporal data analysis in general. We used a dataset
of truck trajectories.6 The dataset describes 276 trajectories

6http://chorochronos.datastories.org/?q=node/5

of 50 trucks delivering concrete to several construction sites
aroundAthens, Greece during 33 distinct days. The size of the
dataset is relatively small, just 7.7 MB, which might make it
challenging to identify valuable cluster relationships.

We set the DBSCAN parameters ε and minPts to
50 meters and 3 trajectories, respectively. The parameter for
cross-temporal cluster similarity was set to 0.8. These param-
eter values were chosen based on previous tests performed
using the dataset. A value of ε = 10 means that trucks
that are at most 10 meters from each other can be deemed
a cluster. This value is small and restrictive considering that
GPS readings have a margin of error and that our distance
calculation is an approximation because of Earth’s curvature.
We also noticed that a value of ε = 100 may be large and not
ideal, since trucks that are 100 meters apart are fairly distant
to form a cluster. A value ofminPts = 2 would mean that any
two trucks that passed by each other is a cluster. This creates
a high number of clusters that are not meaningful. On the
other hand, we observed that minPts = 4 cut the number of
clusters in almost half (173 clusters were identified in this
case). As a guideline, we aim at avoiding situations in which
important cluster relationships are not captured because of
restrictive values. Regarding the cross-temporal cluster simi-
larity parameter, we noticed that the largest clusters remained
the same even after changing this parameter to any values
between 0.6 and 0.9. Therefore, we decided to set it to 0.8.
After preprocessing the dataset, execution took less than one
minute, and the framework identified 398 clusters.

For analysis of the results, we decided to plot each of
the 398 clusters based on the number of relationships it
contains. The results can be seen in Figure 5. Notice that one
cluster has more than 40 events. That is cluster 41. We then
decided to investigate the reasons for this discrepancy further.
Listing 2 is an excerpt of the list of events in the lifetime
of cluster 41. This cluster has two distinct characteristics:
(i) it has many events when compared to other clusters;
and (ii) most of the events are t_enter and t_leave events.
There is one distinct place where many trucks would gather
together multiple times in a day. To confirm our suspicions,
we manually inspected the location of these trucks on a map.
The result can be seen in Figure 6. The figure shows an

LISTING 2. The lifetime of cluster 41.
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FIGURE 5. The total number of cluster relationships in each cluster of case study 1.

FIGURE 6. Clusters of trucks in the parking lot of a concrete factory.

overview of the location in its upper part. Note the cluster in
the bottom middle of Figure 6a. Figure 6b shows a zoomed
view of the location, which makes the cluster more evident.
The trucks are entering and leaving a cluster that represents
the parking lot of a concrete factory. This is a good result,
but perhaps there are simpler ways to achieving it. Here is

the real value. In another one of our studies [77], with a
dataset7 of Roman taxis, we identified a cluster with the same
characteristics. In that study, the cluster turned out to be the
parking lot of a taxi company. Some interesting insights start
to appear. Do clusters that represent parking lots share similar
characteristics? Can a parking lot search be automated? Can
we predict or optimize parking lot occupancy levels?

B. CASE STUDY 2
In case study 2, we show how the analysis of spatial-temporal
clusters, from many perspectives, can help us to identify hid-
den insights and opportunities for improvement. We inspect
the Geolife dataset8 collected by Microsoft Research Asia,9

which describes the trajectories of 182 individuals in a period
of over three years. It contains 17,621 trajectories and a total
distance of over 1.2 million kilometers. After decompression,
the dataset has a size of over 1.5 GB, which demands perfor-
mance considerations.

For this case study, we also set the DBSCAN’s param-
eter ε to 50 meters, but changed minPts to 4, in order to
obtain more meaningful clusters. The cross-temporal cluster
similarity parameter stayed at 0.8. This choice of parameters
is explained as follows. Because this dataset describes the
movement of people either on foot or in a vehicle, we need
to adjust the parameter ε taking into account both situations.
If a person is walking, ε can be lower than in the case in
which the person is in a vehicle. However, upon inspection,
we noticed that a considerable part of the movements is made
using vehicles (e.g. car, taxi). Therefore, we decided to keep
ε = 50. The parameter minPts was increased to 4 because
the framework identified many trivial clusters when the value
of minPts was lower than 4. This is because we wanted
to investigate clusters that had a longer lifetime, with more
relationships. We also decided to keep the cross-temporal
cluster similarity parameter at 0.8 because our previous case
study showed us appropriate results for the cluster similarity.

7https://crawdad.org/roma/taxi/20140717/taxicabs/
8https://www.microsoft.com/download/details.aspx?id=52367
9https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/
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FIGURE 7. The total number of cluster relationships in each cluster of case study 2.

Execution took considerably more time, when compared to
the previous case study, but did not exceed 20 minutes. The
framework was able to identify 232 spatial-temporal clusters.

Similar to the previous case study, we have plotted in
Figure 7 each cluster based on the number of identified
relationships. Notice that most clusters have the same number
of relationships. These are clusters that do not exist of a long
time. However, similarly to case study 1, one cluster contains
more relationships than any other cluster. In case study 2, this
is cluster 20. Listing 3 shows the list of relationships of the
lifetime of cluster 20. Notice how straighforward it is to iden-
tify that trajectories 112 and 136 enter and leave the cluster
multiple times.We have then decided to alsomanually inspect
the location of the individuals related to these trajectories on a
map. Figure 8 contains two parts describing the movement of
all trajectories that formed cluster 20 as they move in space.
Figure 8a provides an overview of this movement. Notice
that, in contrast with Listing 3, visual inspection does not
make it clear that trajectories 112 and 136 enter and leave
the cluster many times. Figure 8b shows the destination of
the trajectories in detail, showing where the cluster 20 ends.

LISTING 3. The lifetime of cluster 20.

To further improve the analysis, we have decided
to visualize the lifetime of the clusters as a timeline.

FIGURE 8. Clusters of individuals moving in a city.

Figure 9 illustrates this view. Cluster existence, the time
between the start and end events of a cluster lifetime, is rep-
resented by a horizontal line. The horizontal axis is the time,
and the vertical one is the cluster id. The number above
each horizontal line is the cluster id whose lifetime the line
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FIGURE 9. A timeline with the lifetime of several clusters.

represents. For example, the line at the right side of the
figure represents the lifetime of cluster 87, which started
around 22:00 and ended an hour later. In addition, note that
these clusters happened on different days, but here they are
plotted without this information, as if they all happened
on the same day. The time these clusters existed is intact
though. This is done to visualize the lifetimes in a meaningful
way.

However, based on Figure 9, it is not clear if clusters
are related or not. For that reason, we have extracted a few
timelines and show them separately in Figures 10 and 11.
If we focus on Figure 10, the first thing we should note is
that time axis. Figure 10 shows clusters that existed from
12:30pm to 2:30pm, but on different days. One should also
notice that these clusters have sequential numbering. Note,
for example, clusters 45, 46, 47, 48, 49, 50, and 51. Each one
seems to happen right after the other. In fact, this sequential
pattern could occur on other days, such as the case of clusters
34, 35, and 36. We are not exactly sure about the event that
these clusters represent, but one thing can be said. They seem
to start and end at relatively similar timestamps. This is a
good indication that these clusters are representing the same
event, but in different days, such as people going to have
lunch together at a restaurant. In fact, assuming that these
fragments are fixed and compose one single cluster, one can
use use a modified Jaccard distance function and calculate a
degree of coexistence between these clusters. Eq. (7) shows
this distance function. Consider the existence of a cluster as
a set Ci of points, say one at every minute. The modified
Jaccard distance calculates the degree of coexistence between

n clusters by calculating the ratio between the number of
minutes all clusters existed and the number of minutes any
cluster existed. In Figure 10, all clusters coexist from 12:53
(start time of cluster 34) until 14:01 (end time of cluster 94).
In addition, at least one cluster exists from 12:39 (start time
of cluster 63) until 14:23 (end time of cluster 51). This
represents a degree of coexistence of 68

104 ≈ 0.65. Calibration
is needed to identify the correct threshold, but a degree of
coexistence of approximately 65% is a good indication of
similarity.

J (C1, · · · ,Cn) =
|C1 ∩ · · · ∩ Cn|
|C1 ∪ · · · ∪ Cn|

(7)

The hidden value in the plot of Figure 10 is in the bro-
ken pattern of, for instance, clusters 45, 46, 47, 48, 49, 50,
and 51. This is an indication that a group of trajectories are
close enough to form a cluster, contains just the minimum
number of trajectories, but frequently loses and regains one
trajectory, leading to a cluster end and the start of another
cluster. The loss of a trajectory happens perhaps because of
the road network or the distance between these trajectories.
These broken patterns, in the case of vehicles, such as the
one in this dataset, indicate a fragmented movement within
the same activity, and an opportunity for combining them
for a more cohesive movement. In the case of vehicles, this
translates to ride-sharing opportunities, either by havingmore
people in the same car, or by using a van. In addition, notice
that the same broken pattern occurs in Figure 11, in which
the set of all the timelines have a degree of coexistence of
54/99 ≈ 0.54 or around 54%. Figure 9 may have other
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FIGURE 10. A timeline with the lifetime of several clusters.

FIGURE 11. Another timeline with the lifetime of several clusters.

examples of the same phenomenon, but these two cases were
chosen for being clear to inspect. Insights such as the one
discussed here can lead to more cost-effective solutions or
better decision-making.

V. CONCLUSION AND FUTURE WORK
Spatial-temporal data analysis is the task of analyzing
data whose spatial and temporal information is considered.
Clustering approaches group spatial-temporal data for
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analysis based on these dimensions. However, relationships
between these spatial-temporal clusters are not analyzed and
valuable information that may lead to novel insights remain
hidden. To solve this problem, we developed a framework for
spatial-temporal cluster analysis, that identifies, processes,
and analyzes cluster relationships, such as merge or split.
We evaluated the framework with two case studies and
showed their applicability and the value they can uncover.

In the future, we expect to follow a number of research
directions that could improve the current state of the frame-
work. One of these directions is the adaptation of the current
computations for a distributed computational environment.
The current version of the framework runs efficiently with
substantial amounts of data, but as spatial-temporal data
becomes more frequently available, a distributed environ-
ment is required. The most important challenge is the coordi-
nation of a distributed clustering approach, and the relation-
ship identification. In a distributed environment, data remains
in different nodes of a computer cluster, and retrieving these
pieces of information efficiently is challenging.

Next, we plan to extend the amount of spatial-temporal
cluster relationships that can be identified. There are two
ways to perform this extension. The first one is to investigate
a systematic way to derive novel spatial-temporal cluster
relationships. The second way is to identify composite cluster
relationships, such as return, which can be composed of the
relationship c_leave followed by a relationship c_enter.
In addition, new spatial-temporal dimensions can be

included in the calculations. There are two ways that this
can be performed. Currently, data points are points that have
no extension in any dimension. They may represent vehicles,
homes, or people. However, some real-world objects, such as
trains and cities do have additional space dimensions that may
change the calculations. Therefore, analyzing these objects is
the first way to include new spatial-temporal dimensions into
the calculations. The second way is to investigate altitude as
another spatial dimension, or even generalize the calculations
for a theoretical n-dimensional object or world.
Finally, the framework was built with a real-world appli-

cability mindset. This means that we assume a geographical
world, and that spatial-temporal data represents real-world
objects. However, spatial-temporal data is not limited to the
geographical domain. Small and big structures can also be
analyzed, such as molecules or planets. Thus, it is interesting
to investigate cluster relationships in new domains such as
medicine and astronomy.
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