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ABSTRACT Pure pursuit algorithm is one of the most effective ways of path tracking in autonomous
vehicles. Nevertheless, the tracking accuracy of the existing pure pursuit algorithm is limited by the look-
ahead distance. In this paper, to improve the tracking accuracy of the pure pursuit algorithm, a novel
pure pursuit algorithm based on the optimized look-ahead distance named OLDPPA is proposed. Four
improvements are presented in OLDPPA. Firstly, to find a better look-ahead distance of pure pursuit
algorithm, salp swarm algorithm (SSA) is used in pure pursuit algorithm. Secondly, Brownian motion,
a random motion mechanism of particles, is introduced in SSA to enhance its exploitation and exploration
capabilities. Thirdly, to accelerate the convergence speed of SSA, a weighted mechanism which uses two
different weights in the search process to adjust the salps closer to the food source quickly is assigned. Based
on innovations 2 and 3, adaptive Brownianmotion salp swarm algorithm (ABMSSA) is proposed and applied
to pure pursuit algorithm. Finally, a velocity controller which outputs the speed of the next moment according
to the distance and time interval between the look-ahead point and the current vehicle position is designed
in OLDPPA, to ensure that the vehicle reaches its destination at a specified time. To verify the effectiveness
and efficiency of OLDPPA, OLDPPA is applied in four different paths and the corresponding results are
compared with other pure pursuit algorithms that use different look-ahead distances. Experimental results
show that the tracking accuracy of OLDPPA is better than other algorithms.

INDEX TERMS Pure pursuit algorithm, autonomous vehicles, salp swarm algorithm, velocity controller,
optimized look-ahead distance.

I. INTRODUCTION
With the development of artificial intelligence, autonomous
vehicles [1] have received more and more attention [2].
In general, autonomous vehicles are classified into four parts:
environment perception and localization [3], decision mak-
ing [4], path planning [5], and path tracking [6]. Path tracking
is the most important part of autonomous vehicles and the
goal of path tracking is to control the vehicle to accurately fol-
low the reference path given by path planning [7]. Pure pur-
suit algorithm is the most popular path tracking algorithm [8].
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Besides pure pursuit algorithm, the path tracking algorithm
mainly includes proportional-integral-derivative (PID) algo-
rithm [9], linear quadratic regulator (LQR) algorithm [10],
model predictive control (MPC) algorithm [11]. Compared
with other path tracking algorithms, pure pursuit algorithm
has a more simple implementation principle and better track-
ing results [12], [13].

Pure pursuit algorithm, a geometric control algorithm [14],
determines the look-ahead point according to the look-
ahead distance, then obtain the vehicle steering angle con-
trol input by the current heading angle and the distance
between the current position and the look-ahead point posi-
tion, so that the vehicle follows an arc trajectory passing
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through the look-ahead point. At present, a large number
of researchers spend their energy on pure pursuit algorithm.
Elbanhawi et al. [15] proposed a model predictive active
yaw control implementation of pure pursuit path track-
ing to improve tracking performance at high speeds.
Shan et al. [16] developed a new pursuit method, named
CF-Pursuit, which used a clothoid C curve to replace
the circle employed in pure pursuit algorithm to decrease
tracking errors. However, the tracking performance of
the existing pure pursuit algorithm is limited by the look-
ahead distance. If the look-ahead distance is too large,
it will cause the tracking path to be too smooth and the
tracking accuracy will be greatly reduced. If the look-ahead
distance is too small, the motion of the vehicle will be unsta-
ble. Many researchers adjust the look-ahead distance in a
way that the look-ahead distance is directly proportional to
the vehicle velocity [17], [18]. However, since the behav-
ior of the vehicle does not change in proportion to the
velocity, this method cannot completely solve the problem.
Yu et al. [19] used the fuzzy rule controller to adjust the
look-ahead distance. Serna et al. [20] estimated dynamically
look-ahead distance based on the vehicle speed and lateral
error. Wang et al. [21] improved look-ahead distance by a
2-degree polynomial function.

To sum up, although these methods can reduce various
errors, they usually specify a fixed look-ahead distancemanu-
ally through experiment or intuitive experience, which cannot
find the best look-ahead distance. However, the best look-
ahead distance not only can reduces the tracking error of
pure pursuit algorithm but also can improves the stability of
vehicle motion greatly. Thus, it is necessary to find the best
look-ahead distance.

To solve the above problem, salp swarm algorithm (SSA),
a kind of heuristic optimization algorithm that is relatively
new and good at present, is used to find the best look-ahead
distance. Heuristic algorithm is based on intuition experience
or simulating some natural phenomena and mechanical struc-
tures to search for the best solution within the acceptable
computational cost. In 1995, Kennedy and Eberhart [22] pro-
posed Particle Swarm Optimization (PSO), which is inspired
by the fact that a flock of birds always flies toward the area
around the bird closest to the food during the foraging pro-
cess.M.Dorigo et al. [23] proposedAnt ColonyOptimization
(ACO), inspired by the fact that ants can always crawl along
the shortest path when looking for food. Yang [24] proposed
firefly algorithm (FA) base on the phototaxis between fire-
flies. Gandomi et al. [25] proposed cuckoo search algorithm
(CSA) based on the cuckoo’s parasitic breeding behavior.
Yang and Gandomi [26] proposed bat algorithm (BA) based
on the ultrasonic characteristics of bats. SSA is chosen to
optimize the look-ahead distance because it has a simpler
implementation, lower parameters, and a smaller amount of
calculation.

However, the convergence speed of SSA is slow, and
it is easy to fall into the local optimum. Yang et al. [27]
proposed memetic salp swarm algorithm which uses multiple

independent salp chains to conduct exploration and
development at the same time to search for high-quality opti-
mal solutions quickly. Wang et al. [28] proposed an enhanced
salp group algorithm based on the simplex method. This sim-
plex method is a random mutation strategy which can expand
various populations and improve the local search ability of
the algorithm. Sayed et al. [29] proposed a novel chaotic salp
swarm algorithm which uses ten different chaotic maps to
accelerate the convergence speed and improve the accuracy of
results. Although these methods have made different changes
to accelerate the convergence speed and improve accuracy,
they still cannot satisfy the balance of the convergence speed
and accuracy in the path tracking of the autonomous vehicles.

Therefore, in order to meet the convergence speed and
accuracy requirements of path tracking, and find a suit-
able solution in the shortest possible time, adaptive brown-
ian motion salp swarm algorithm (ABMSSA) is proposed.
Firstly, to improve the accuracy of SSA and meet accuracy
requirements of path tracking, Brownianmotion is introduced
into the leader position update formula of SSA. Brownian
motion is a random motion mechanism of particles and the
step size of the particles movement is normally distributed.
Brownian motion prevents SSA from falling into a local opti-
mum by increasing the jumping ability of the salps. There-
fore, the accuracy of SSA is greatly improved. Secondly,
to accelerate the convergence speed of SSA and meet the
convergence speed requirement of path tracking, two adaptive
weights are added to the follower update formula of SSA.
The follower salps in SSA follow the adjacent salps blindly,
but the blindly following limits the search effect of SSA.
To solve this problem, the two adaptive weights which are
changed according to the fitness value of the current salp and
its adjacent salp is used into SSA. One of the two weights
affects the local optimization ability, and the other one affects
the global optimization ability. In this way, the convergence
speed of SSA is greatly accelerated by the joint adjustment
of the global optimization ability and the local optimization
ability.

To sum up, to find the optimal look-ahead distance of
pure pursuit algorithm to improve the accuracy, a novel pure
pursuit algorithm based on the optimized look-ahead distance
named OLDPPA is proposed. Firstly, ABMSSA is applied
to pure pursuit algorithm. The random look-ahead distance
is input into ABMSSA as the initial individual. After many
iterations, ABMSSA will output the best look-ahead dis-
tance by minimizing the fitness function which composed of
path error, vehicle steering angle change speed, and accel-
eration change speed. In this way, pure pursuit algorithm
will accurately choose the best look-ahead distance. The
look-ahead distance determines the driving state of the vehi-
cle. An unreasonable look-ahead distance increases the path
error. The optimal look-ahead distance reduces the track-
ing error of the pure pursuit algorithm and improves the
stability of vehicle motion. Secondly, a velocity controller
is designed in OLDPPA. This controller output the vehicle
speed of the next moment according to the distance and
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time interval between the look-ahead point and the current
vehicle position. The real-time updated speed ensures that
the vehicle reaches the target point within the required time.
In summary, compared with the classic pure pursuit algo-
rithm, OLDPPA not only improves the tracking accuracy but
also enhances punctuality.

In the rest of the paper, the related work is introduced
in section II which includes pure pursuit algorithm, salp
swarm algorithm, brown motion. Then section III describes
OLDPPA in detail. After that, section IV provides the exper-
imental results about OLDPPA and the comparison with
other related methods. Finally, a conclusion is illustrated in
section V.

II. RELATED WORK
A. PURE PURSUIT ALGORITHM
Pure pursuit algorithm is a geometric path tracking method.
In this paper, we do not pay attention to the internal dynamic
model of the vehicle, but only focus on the overall velocity
and heading changes of vehicles, so kinematics model [30]
based on the vehicle motion is selected to update the position.
Pure pursuit algorithm produces the steering angle required
to bring the vehicle back to the reference path. Fig. 1 shows
classical pure pursuit algorithm frame. Firstly, because the
driver usually looks forward when driving, pure pursuit algo-
rithm calculates and defines the look-ahead point on the refer-
ence path by the look-ahead distance and the current vehicle
actual position [31]. Then, pure pursuit algorithm outputs the
steering angle of the vehicle to follow the input look-ahead
point. Finally, autonomous vehicle outputs the vehicle actual
position and then continue to calculate the look-ahead point.

FIGURE 1. Classical pure pursuit algorithm frame.

Fig. 2 shows the schematic of pure pursuit algorithm and
each variable is marked. To obtain the steering angle output φ,
the look-ahead point and the vehicle (rear wheel) position are
connected by a straight line. The angle between the line and
the vehicle body is set as α, and α which is called look-ahead
distance angle [32] is written as (1).

α =

∣∣∣∣θ − arctan
(
ylook_ahead − y
xlook_ahead − x

)∣∣∣∣ (1)

FIGURE 2. Schematic of the pure pursuit algorithm.

where xlook_ahead and ylook_ahead describe the position of the
look-ahead point corresponding to vehicle position, x and y
describe the position of the vehicle, θ is the heading of the
vehicle. According to geometric knowledge, the radius of
curvature R that the vehicle needs to follow is shown in (2).

R =
ld

2 sinα
(2)

where ld represents the look-ahead distance followed by
the vehicle. According to Ackerman geometric model [33]
in Fig. 3, the vehicle steering angle φ is shown in (3).

φ = arctan
(
L
R

)
(3)

FIGURE 3. Ackerman geometric model.

where L is the wheelbase of the vehicle. By substituting (2)
into (3), the vehicle steering angle is written as follows.

φ = arctan
(
2L · sinα

ld

)
(4)

B. SALP SWARM ALGORITHM (SSA)
SSA is a kind of Meta-heuristic algorithm recently proposed
by Mirjalili et al. [34]. According to what Mirjalili has men-
tioned [34], Salps belong to the family of Salpidae and have a
transparent barrel-shaped body. Their tissues and movement
are very similar to jellyfish. In deep oceans, salps often form
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clusters called the salp chain. This swarming behavior helps
salps to quickly coordinate changes and find more food.
SSA has the advantages of fewer parameters and easy
implementation.

SSA divides the population into two groups: leader and
followers. The leader is the salp at the front of the chain,
and the rest are considered as followers. Leader guides swarm
and followers follow the leader [34]. The position of the salps
is defined in an n-dimensional search space, where n is the
number of variables for a given problem. The positions of all
salps are stored in a two-dimensional matrix called x, and the
food source which is the population target set to F .
The position of the leader salp is updated as follows.

x1j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj − c1
((
ubj − lbj

)
c2 + lbj

)
, c3 ≤ 0.5

(5)

where x1j and Fj represent the positions of leader salp and the
source of the food in the jth dimension, ubj and lbj are the
upper and lower bounds of the jth dimension, respectively.
c2 and c3 are the random numbers in the range of [0,1].
c1 is the most important parameter for balancing between the
exploitation and exploration and is mathematically defined as
follows.

c1 = 2e
−

(
4t
T

)2
(6)

where t is the current iteration and T is the maximum number
of iterations. The position of the follower salps is updated as
shown in (7).

x ij =
1
2

(
x ij + x

i−1
j

)
(7)

where i ≥ 2 and x ij denotes the position vector of the
ith follower salp at the jth dimension.

C. BROWNIAN MOTION
Brownian motion [35], a random motion mechanism of
tiny particles in liquids, was proposed by British botanist
Robert Brown in 1827. In 1918, Wiener defined Brownian
motion and a proof of existence. Brownian motion is also
called the Wiener process. The study of Brownian motion
marks the beginning of the study of stochastic differential
equations. The Wiener process shows that the increment of
Brownian motion conforms to the normal distribution. For
one-dimensional Brownian motion, let Wt be the Brownian
real-valued process on the probability space, then1Wt which
is the increment of Wt is shown in (8) according to what
Novikov has mentioned [35].

1Wt ∼ N (0, h) , ∀t > 0, h > 0 (8)

where h is the step size.

III. METHODOLOGY
OLDPPA has two key steps: using ABMSSA to optimize the
look-ahead distance and controlling the vehicle speed in real
time by the velocity controller.

A. ABMSSA
ABMSSA, which is based on SSA, uses Brownian
motion and an adaptive weight mechanism to improve the
exploitation and exploration capabilities and accelerate the
convergence speed of SSA. The flowchart of ABMSSA is
presented in Fig. 4.

1) BROWNIAN MOTION
Brownianmotion is introduced into the leader position update
mechanism of SSA to enhance the exploitation and explo-
ration capabilities. In this way, the leader position update
formula of SSA is changed from (5) to (9).

x1j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
·Wt , c3 ≥ 0.5

Fj − c1
((
ubj − lbj

)
c2 + lbj

)
·Wt , c3 ≤ 0.5

(9)

This method not only increases the jumping ability of salps
to prevent falling into a local optimum but also improves the
diversity of SSA.

2) ADAPTIVE WEIGHT
During the search process of SSA, the region of the optimal
solution is expected to be determined at an early stage. To this
end, two different adaptive weights are designed to accelerate
the convergence speed. The update formulas for the two
adaptive weights are as follows.

w1 =
2f 2

(
x ij
)

f 2
(
x i−1j

)
+ f 2

(
x ij
) (10)

w2 =
f 2
(
x i−1j

)
f 2
(
x i−1j

)
+ f 2

(
x ij
) (11)

where f
(
x ij
)
and f

(
x i−1j

)
are the fitness values of the ith fol-

lower salp at the jth dimension and the adjacent salp followed
by it. And then, in this paper, the follower position update
formula of SSA is changed from (7) to (12).

x ij =
1
2
w1 ·

(
x ij + x

i−1
j

)
+ w2 ·

(
Fj − x ij

)
(12)

where Fj is source of the food in the jth dimension. w1 affects
the local optimization ability of SSA, and w2 affects the
global optimization ability. In this way, the joint adjustment
of the global optimization ability and the local optimization
ability make the salps access to the food source quickly.
Therefore, the region of the optimal solution is determined
at an early stage and the convergence speed is significantly
accelerated.

B. VELOCITY CONTROLLER
Autonomous vehicles need to reach the destination at a spec-
ified time in many cases, such as changing lanes, over-taking,
etc. Classical pure pursuit algorithm only provides the vehicle
with a real-time control input of the steering angle, and does
not provide the real-time control input of the vehicle speed.
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FIGURE 4. The flowchart of the ABMSSA.

This means that classical pure pursuit algorithm cannot meet
the punctuality demand of path tracking in these cases. To this
end, a velocity controller is proposed, which outputs the
speed of the next moment according to the distance and time
interval between the look-ahead point and the current vehicle
position.

Fig. 5 shows the tracking details and parameters with the
velocity controller. Where ti is the ith time point, xi and yi
describe the vehicle position at the ith time point, the first
green point in Fig. 5 is set as the look-ahead point at the
ith time point. This look-ahead point is also the reference path
point at the nth time point tn, then the time interval 1T is
shown in (13).

1T = tn − ti (13)

FIGURE 5. Tracking details and parameters of the velocity controller.

In fact, the steering angle control input from pure pursuit
algorithm causes the vehicle to follow an arc trajectory, so it
is more reasonable to replace the straight line distance with
the arc length between the look-ahead point and the vehicle
position. According to geometric knowledge, si, the length of
the arc trajectory that the vehicle plans to pass through the
look-ahead point at the ith time point is shown in (14).

si = 2αiRi (14)

where αi is the look-ahead distance angle at the ith time point,
which is obtained by (1). Ri is the radius of curvature at the
ith time point, which is obtained by (2). Then vi which is the
velocity control output of the velocity controller at the ith time
point is defined as (15).

vi =
si
1T

(15)

By substituting (2) and (14) into (15), vi is written as (16).

vi =
αild

1T sinαi
(16)

The design of this velocity controller greatly improves the
punctuality of path tracking with pure pursuit algorithm, and
also reduces the path tracking error.
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C. OLDPPA
The control framework of OLDPPA is shown in Fig. 6.
First, in OLDPPA, ABMSSA is used to obtain the opti-
mized look-ahead distance byminimizing the fitness function
given by (17). Then the look-ahead point is selected by the
look-ahead distance and the vehicle current position. After
that, according to the look-ahead point, pure pursuit algo-
rithm outputs the steering angle control input. Meanwhile,
the velocity controller output the velocity control input of the
controlled vehicle. The steering angle control input and
the velocity control input control the vehicle to follow this
look-ahead point. Next, the vehicle actual position is output.
The next look-ahead point is selected by the vehicle position
and the optimized look-ahead distance. OLDPPA will always
work until the vehicle tracks the end of the reference path.

FIGURE 6. OLDPPA control frame.

The fitness function of ABMSSA to optimize the
look-ahead distance is as follows.

J = w1

n−1∑
i=0

√(
yi − yref _i

)2
+
(
xi − xref _i

)2
+w2

n−1∑
i=1

(θi − θi−1)

1t
+ w3

n−1∑
i=1

(ai − ai−1) (17)

where xi and yi describe the vehicle position at the ith
(1 ≤ i ≤ k) time point, xref _i and yref _i describe the refer-
ence path position at the ith (1 ≤ i ≤ k) time point, θi is
the heading angle at the ith (1 ≤ i ≤ k) time point, ai is the
acceleration value at the ith time point, and k is the number
of time points. w1, w2, and w3 are constants. In this paper,
w1, w2, w3 are set as 0.5, 0.3, and 0.2. This fitness function
consists of three parts: path error, the heading angle variation,
and the acceleration variation. The first part, that is, the error
between the vehicle position and the reference path point,
represents the accuracy of the path tracking. The second part
and the third part represent safety and comfort when the
vehicle is following the path.

D. THE OVERALL PROCESS OF OLDPPA
The steps of OLDPPA are shown in Fig. 7. First, the refer-
ence path and the initial position of the vehicle need to

FIGURE 7. Flowchart of OLDPPA.

be determined. Second, ABMSSA is used, and the optimal
look-ahead distance is obtained by minimizing the fitness
function given by (17). Third, the look-ahead point is select-
ed by the optimal look-ahead distance. Fourth, according
to the pure pursuit algorithm and the velocity controller
which is designed in this paper, the vehicle’s steering angle
and velocity control input are respectively output. Fifth,
the vehicle outputs its own actual position. Sixth, deter-
mine whether the current time of the vehicle is less than
or equal to the time corresponding to the end of the ref-
erence path and if so, return to the third step, otherwise,
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TABLE 1. Benchmark functions.

return to the first step after generating a new reference
path.

In OLDPPA, an improved algorithm ABMSSA based on
SSA is proposed to optimize the look-ahead distance and a
new velocity controller is designed to improve the punctuality
of vehicle path tracking.
IV. EXPERIMENTS AND ANALYSIS
A. BENCHMARK FUNCTIONS
In this section, the presented ABMSSA algorithm is veri-
fied with twelve benchmark functions [36] which have been

shown in Table 1. The ABMSSA algorithm is compared with
SSA [34], GWO [37], WOA [38], ESSA [39] andMSSA [40]
by solving the twelve benchmark functions, as Table 2 shows.
To get a fair comparison, the population number is set as
30, the total iterations are set as 500, and the executed runs
are set as 30 times to compute the average and standard
deviation of best solutions as shown in Tables 3. All of the
codes are implemented in MATLAB R2016a and run on a
Window 10 PC with Intel Core i5-4200M 2.50 GHz CPU and
8 GB RAM.
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TABLE 2. Other algorithm for comparison.

TABLE 3. The results of algorithms for optimizing benchmark function.

In Table 3, the best results are highlighted in bold. Mean-
while, the convergence curves of the six algorithms are shown

in Fig. 8. According to Table 3, in addition to the benchmark
functions F5 and F7, it can be seen that the average and
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FIGURE 8. The convergence curves of algorithms for optimizing benchmark function.
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standard deviation of ABMSSA obtained by solving other
benchmark functions are better than the other five algorithms.
A better average indicates that the average performance of
ABMSSA is better than the other five algorithms, and a
smaller standard deviation indicates that ABMSSA is more
stable. Although the average obtained by ABMSSA is not
the best in solving the benchmark function F5, the standard
deviation of ABMSSA is the best. Thus ABMSSA has great
advantages when the stability of the optimization algorithm
is required. Although the average and standard deviation
obtained by ABMSSA are not the best in solving the bench-
mark function F7, it can be seen from Fig. 8 that the con-
vergence speed of ABMSSA is faster than other algorithms,
so when the convergence speed of the optimization algorithm
is required, ABMSSA has great advantages. Observing the
convergence curve in Figure 8, it can be found that ABMSSA
achieves good results in the early convergence stage, and the
convergence speed is faster. In summary, the performance of
ABMSSA is higher than the other five algorithms, which not
only can obtain better optimal values, but also has a faster
convergence speed.

B. SIMULATION AND PERFORMANCE EVALUATION OF
OLDPPA
To verify the effectiveness of the proposed OLDPPA con-
troller, CarSim-Matlab/simulink co-simulation and analysis
are performed. Four different paths are constructed in this
section: a straight path, a sinusoidal path, a parabolic path,
and a lane changing path. These four paths represent the
common driving states of vehicles, including going straight,
turning continuously, avoiding obstacles, and changing lanes.
It is reasonable that the four paths are selected to demonstrate
the effectiveness of OLDPPA. On these four paths, the perfor-
mance comparison between OLDPPA controller and classic
pure pursuit controller is introduced. In OLDPPA, the look-
ahead distance of the pure pursuit controller is optimized
and a real-time velocity controller is proposed. To high-
light the comparison results, we have compared OLDPPA
with two classical pure pursuit controllers which have dif-
ferent look-ahead distances, and the look-ahead distance of
one classic pure pursuit controller is set to 4.0m (CPP-4m)
and the other is set to 8.0m (CPP-8m). In this experi-
ment, the parameters of the simulation vehicle is shown
in Table 4.

TABLE 4. The parameters of the simulation vehicle.

FIGURE 9. Tracking performance experiment results with OLDPPA,
CPP-4m and CPP-8m for the straight path. (a) Global path, (b) Lateral
offset, (c)Longitude offset, (d) Heading offset, (e) Steering wheel angle.

1) STRAIGHT PATH
We choose 80 path points to form a straight path. The velocity
of classic pure pursuit controller is set to 2.0m/s. Fig. 9 com-
pares the tracking performance of the three controllers based
on the experimental results of tracking path, lateral offset,
longitudinal offset, heading offset and steering angle on a
straight path.

It can be seen from Fig. 9a that the tracking paths of the
three controllers are not much different. But from Fig. 9b,
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FIGURE 10. Comparison of experiment results with OLDPPA, CPP-4m and
CPP-8m for the straight path. (a) Peak lateral offset, (b) Peak longitude
offset, (c) Peak heading offset, (d) Peak steering speed.

it can be found that the lateral offset of OLDPPA is reduced
to 0 more quickly which is obtained by the reference path
point and the vehicle position according to time. FromFig. 9c,
it can be seen that the longitude offset of OLDPPA has
always been smaller than CPP-4m and CPP-8m and has been
close 0 which is also obtained by the reference path point
and the vehicle position according to time. It is illustrated
that OLDPPA makes path tracking more accurate and more
timely according to Fig. 9b and Fig. 9c. Looking at Fig. 9d,
although the peak heading offset of CPP-8m is smaller than
OLDPPA, OLDPPA reduces the heading error to 0 faster.
Fig. 9e represents the stability of the vehicle during path
tracking, although CPP-8m makes the vehicle more stable,
under the reasonable steering angle, OLDPPA returns to the
reference path faster. In summary, compared to the other two
controllers on the straight path, OLDPPA has higher accuracy
and better punctuality.

To quantitatively evaluate the performance of the three
controllers, the peak of the lateral offset, the peak longi-
tudinal offset, the peak heading offset, and the peak steering
speed on this straight path are compared, as shown in Fig. 10.
The peak lateral offset of the tracking path of the three
controllers is not much different, but the peak longitude offset
of OLDPPA is about 2.5m smaller than CPP-4m and 1.8m
smaller than CPP-8m. The peak heading offset of OLDPPA
is close to that of CPP-4m, which is about 0.1rad smaller than
that of CPP-4m. The peak steering speed of OLDPPA is about
25 deg/s smaller than that of CPP-4m. Although CPP-8m
has a better performance in the peak heading offset and the
peak steering speed, CPP-8m cannot return to the reference
path quickly, and the path tracking accuracy is much lower
than OLDPPA.

2) SINUSOIDAL PATH
We choose 80 path points to form a sinusoidal path. We set
the velocity of classic pure pursuit controllers to 5.0m/s.

FIGURE 11. Tracking performance experiment results with OLDPPA,
CPP-4m, and CPP-8m for the sinusoidal path. (a) Global path, (b) Lateral
offset, (c) Longitude offset, (d) Heading offset, (e) Steering wheel angle.

Fig. 11 compares the tracking performance of the three con-
trollers based on the experimental results of tracking path,
lateral offset, longitudinal offset, heading offset and steering
angle on this sinusoidal path.

It can be seen from Fig. 11a that the tracking path of
OLDPPA fits the reference path best. From Fig. 11b and
Fig. 11c, it can be seen that OLDPPA performs best, and
the lateral and longitude offsets are always close to 0.
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FIGURE 12. Comparison of experiment results with OLDPPA, CPP-4m, and
CPP-8m for the sinusoidal path. (a) Peak lateral offset, (b) Peak longitude
offset, (c) Peak heading offset, (d) Peak steering speed.

It means that OLDPPA tracks very accurately on this sinu-
soidal path. Observing Fig. 11d, the heading offset fluctuation
of OLDPPA has always been less than CPP-4m and CPP-8m
and has been floating within a small range of 0. From
Fig. 11e, it can be found that the steering angle of OLDPPA
is more stable than CPP-4m and CPP-8m, and CPP-4m is so
instability that it has even caused a shocking phenomenon.
To summarize, compared with the other two controllers on
this sinusoidal path, OLDPPA has higher accuracy, better
punctuality, and better stability.

Similarly, quantitative comparison and evaluation results
of the three controllers for this sinusoidal path are shown
in Fig. 12. OLDPPA has the best performance in the peak
lateral offset, peak longitude offset, and peak heading offset.
In the peak lateral offset, OLDPPA is about 9.1m smaller
than CPP-4m and about 16.2m smaller than CPP-8m. In the
peak longitude offset, OLDPPA is about 26.6m smaller than
CPP-4m and about 27m smaller than CPP-8m. The peak
heading offset peak is about 1.0rad smaller than CPP-4m and
about 0.5rad smaller thanCPP-8m. In the peak steering speed,
OLDPPA is about 136.5deg/s less than CPP-4m. Although
the peak steering speed of OLDPPA is about 20deg/s than
CPP-8m, its steering speed is reasonable and has an excellent
lateral offset, longitudinal offset and heading offset. This
indicates that the path tracking accuracy of OLDPPA is much
higher than CPP-8m.

3) PARABOLIC PATH
We choose 80 path points to form a parabolic path which is
seen as the path when the vehicle avoids obstacles. We set
the speed of two classic pure pursuit controllers to 2.0m/s.
The experiment results of the three controllers are compared
in Fig. 13.

It can be seen from Fig. 13a that the tracking path of
OLDPPA fits the reference path best, and CPP-4m and
CPP-8m do not reach the end of the reference path within

FIGURE 13. Tracking performance experiment results with OLDPPA,
CPP-4m and CPP-8m for the parabolic path. (a) Global path, (b) Lateral
offset, (c)Longitude offset, (d) Heading offset, (e) Steering wheel angle.

a specific time. From Fig. 13b and Fig. 13c, the lateral and
longitude offset of OLDPPA are smaller than CPP-4m and
CPP-8m and are always close to 0, which shows that
OLDPPA is also very accurate when tracking on this
parabolic path. From Fig. 13d, the heading offset fluctuation
has always been less than CPP-4m and CPP-8m and has been
floating within a small range of 0. From Fig. 13e, it can
be found that the steering angle of OLDPPA is more stable
than that of CPP-4m, and a little bigger than CPP-8m, it is
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FIGURE 14. Comparison of experiment results with OLDPPA, CPP-4m, and
CPP-8m for the parabolic path. (a) Peak lateral offset, (b) Peak longitude
offset, (c) Peak heading offset, (d) Peak steering speed.

because that the tracking path of CPP-8m is relatively smooth.
However CPP-8m is unable to track reference path points at
the corner of the path, so the tracking effect is not as good as
OLDPPA. In summary, compared to the other two controllers
on this parabolic path, OLDPPA has higher accuracy and
better punctuality.

Fig. 14 shows the quantitative comparison results of the
three controllers for this parabolic path. In the peak lateral
offset, OLDPPA is about 4.4m smaller than CPP-4m and
about 3.8m smaller than CPP-8m. In the peak longitude
offset, OLDPPA is about 8.4m smaller than CPP-4m and
about 7.1m smaller than CPP-8m. The peak heading offset
of OLDPPA is about 0.1rad smaller than that of CPP-4m, and
the peak steering speed of OLDPPA steering angular velocity
is about 25.7 deg/s smaller than that of CPP-4m. Although
the peak heading offset and the peak steering speed offset
of OLDPPA are smaller than OLDPPA, CPP-8m’s tracking
accuracy is indeed much lower than OLDPPA.

4) LANE CHANGING PATH
We choose 80 path points to form a lane changing path.
The speeds of both classical pure pursuit controllers are set
to 2.0m/s. The experiment results of the three controllers are
compared in Fig. 15.

It can be seen from Fig. 15a that the tracking effect of
OLDPPA is the best. Many reference path points of CPP-4m
and CPP-8m have not even been tracked, and it is obvious
that CPP-4m and CPP-8m have not reached the end of the
reference path within a specific time. From Fig. 15b and
Fig. 15c, the lateral and longitude offsets of OLDPPA are sig-
nificantly smaller than CPP-4m and CPP-8m and are always
close to 0, which indicates that OLDPPA has highly tracking
accuracy on this lane change path. In Fig. 15d, the heading
error of OLDPPA is also smaller than CPP-4m and CPP-8m,
and it always floats within a small range of 0. Fig. 15e,
it can be found that the steering angle change of OLDPPA is

FIGURE 15. Tracking performance experiment results with OLDPPA,
CPP-4m and CPP-8m for the lane changing path. (a) Global path,
(b) Lateral offset, (c) Longitude offset, (d) Heading offset, (e) Steering
wheel angle.

more stable than CPP-4m. Because CPP-8m’s tracking path is
relatively smooth, CPP-8m is unable to track reference path
points at the corner of the path, so even though CPP-8m’s
steering angle change is more stable than OLDPPA, the track-
ing performance is far worse than OLDPPA. To summarize,
OLDPPA has a better tracking effect on this lane changing
path.
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FIGURE 16. Comparison of experiment results with OLDPPA, CPP-4m, and
CPP-8m for the lane changing path. (a) Peak lateral offset, (b) Peak
longitude offset, (c) Peak heading offset, (d) Peak steering speed.

The quantitative comparison results of the three controllers
for this parabolic path are shown in Fig. 16. OLDPPA per-
forms best on the peak lateral offset, peak longitude offset
and peak heading offset. In the peak lateral offset, OLDPPA
is about 0.65m smaller than CPP-4m and about 0.57m smaller
than CPP-8m. In the peak longitudinal offset, OLDPPA is
about 14.1m smaller than CPP-4m and about 12.3m smaller
than CPP-8m. The peak heading offset of OLDPPA is about
0.28rad less than CPP-4m and about 0.30rad less than
CPP-8m. The peak steering speed of OLDPPA is about
19.7 deg/s smaller than that of CPP-4m. Although the
peak steering speed of OLDPPA is about 27.8 deg/s
higher than CPP-8m, OLDPPA’s tracking accuracy is higher
than CPP-8m.

C. DISCUSSION
According to the above observations, it can be concluded
that ABMSSA has better performance than other algorithms
by solving the other ten benchmark functions in addition to
F5 and F7. Although the average obtained byABMSSA is not
the best in solving the benchmark function F5, the standard
deviation of ABMSSA is the best. Thus ABMSSA has great
advantages when the stability of the optimization algorithm
is required. Although the average and standard deviation
obtained by ABMSSA are not the best in solving the bench-
mark function F7, it can be seen from Fig. 8 that the con-
vergence speed of ABMSSA is faster than other algorithms,
so when the convergence speed of the optimization algorithm
is required, ABMSSA has great advantages.

It also can be seen that the tracking accuracy of OLDPPA
is higher than the other two algorithms. In terms of tracking
stability, OLDPPA is not as stable as CPP-8m, but the sta-
bility of OLDPPA is acceptable and can make the vehicle
return to the reference path faster. Although OLDPPA has
good tracking performance, it still has some limitations. The
computational cost in OLDPPA is relatively high, and the
optimized look-ahead distance may not be the best result

because the number of optimization iterations is limited when
ABMSSA is used to optimize the look-ahead distance.

V. CONCLUSION
This study presents OLDPPA based on the optimized look-
ahead distance. First, Brownian motion is introduced in SSA
to improve the exploitation and exploration capabilities. Sec-
ond, two adaptive weight is added to the position update
mechanism of SSA to accelerate the convergence speed.
Based on the two points, ABMSSA is proposed. Third,
ABMSSA is used to optimize the look-ahead distance of
pure pursuit algorithm. Finally, a new velocity controller is
designed in pure pursuit algorithm. OLDPPA solves the prob-
lem that the existing pure pursuit algorithms cannot find the
best look-ahead distance. OLDPPA not only greatly improves
the tracking accuracy of pure pursuit algorithm, but also
effectively enhances the tracking punctuality.

To verified the effectiveness of OLDPPA, we have fol-
lowed four different kinds reference paths, including straight
path, sinusoidal path, parabolic path, and lane changing path.
Compared with the other two pure pursuit algorithms without
optimized look-ahead distances, the lateral error, longitudinal
error, and heading angle error of OLDPPA are all obvious
smaller when tracking the four paths, and the steering angle
is relatively stable. It indicates that the OLDPPA is more
suitable to be used in path tracking.

It is worth concerned that, compared with deep learning
algorithm, OLDPPA has better interpretability and lower
computational cost in improving the accuracy of path track-
ing of autonomous vehicles. But when the data set is large,
deep learning algorithm have greater advantages. In the
future, we can try to combine deep learning and path track-
ing of autonomous vehicles to improve the accuracy of
path tracking in the face of large data sets. In addition,
the stability and convergence for OLDPPA are an open
problem.

REFERENCES
[1] D. J. Fagnant and K. Kockelman, ‘‘Preparing a nation for autonomous

vehicles: Opportunities, barriers and policy recommendations,’’
Transp. Res. A, Policy Pract., vol. 77, pp. 167–181, Jul. 2015, doi:
10.1016/j.tra.2015.04.003.

[2] Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, and C. Hu,
‘‘A motion planning and tracking framework for autonomous vehicles
based on artificial potential field elaborated resistance network approach,’’
IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1376–1386, Feb. 2020, doi:
10.1109/TIE.2019.2898599.

[3] C. Ji, Y. Li, J. Fan, and S. Lan, ‘‘A novel simplification method for 3D
geometric point cloud based on the importance of point,’’ IEEE Access,
vol. 7, pp. 129029–129042, 2019, doi: 10.1109/ACCESS.2019.2939684.

[4] J. Nie, J. Zhang, W. Ding, X. Wan, X. Chen, and B. Ran,
‘‘Decentralized cooperative lane-changing decision-making for connected
autonomous vehicles,’’ IEEE Access, vol. 4, pp. 9413–9420, 2016, doi:
10.1109/ACCESS.2017.2649567.

[5] A. Artunedo, J. Godoy, and J. Villagra, ‘‘A primitive comparison for traffic-
free path planning,’’ IEEE Access, vol. 6, pp. 28801–28817, 2018, doi:
10.1109/ACCESS.2018.2839884.

[6] C. Sun, X. Zhang, Q. Zhou, and Y. Tian, ‘‘A model predictive
controller with switched tracking error for autonomous vehicle
path tracking,’’ IEEE Access, vol. 7, pp. 53103–53114, 2019, doi:
10.1109/ACCESS.2019.2912094.

166538 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.tra.2015.04.003
http://dx.doi.org/10.1109/TIE.2019.2898599
http://dx.doi.org/10.1109/ACCESS.2019.2939684
http://dx.doi.org/10.1109/ACCESS.2017.2649567
http://dx.doi.org/10.1109/ACCESS.2018.2839884
http://dx.doi.org/10.1109/ACCESS.2019.2912094


R. Wang et al.: Novel Pure Pursuit Algorithm for Autonomous Vehicles

[7] B. Zhang, C. Zong, G. Chen, and B. Zhang, ‘‘Electrical vehicle path
tracking based model predictive control with a Laguerre function and
exponential weight,’’ IEEE Access, vol. 7, pp. 17082–17097, 2019, doi:
10.1109/ACCESS.2019.2892746.

[8] J. Morales, J. L. Martínez, M. A. Martínez, and A. Mandow, ‘‘Pure-pursuit
reactive path tracking for nonholonomic mobile robots with a 2D laser
scanner,’’ EURASIP J. Adv. Signal Process., vol. 2009, no. 1, Dec. 2009,
Art. no. 935237, doi: 10.1155/2009/935237.

[9] R. Marino, S. Scalzi, and M. Netto, ‘‘Nested PID steering control for lane
keeping in autonomous vehicles,’’ Control Eng. Pract., vol. 19, no. 12,
pp. 1459–1467, Dec. 2011, doi: 10.1016/j.conengprac.2011.08.005.

[10] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, ‘‘The explicit
linear quadratic regulator for constrained systems,’’ Automatica, vol. 38,
no. 1, pp. 3–20, Jan. 2002, doi: 10.1016/S0005-1098(01)00174-1.

[11] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and
L. B. Becker, ‘‘A predictive controller for autonomous vehicle path track-
ing,’’ IEEE Trans. Intell. Transp. Syst., vol. 10, no. 1, pp. 92–102,
Mar. 2009, doi: 10.1109/TITS.2008.2011697.

[12] Z. Wang, Y. Bai, J. Wang, and X. Wang, ‘‘Vehicle path-tracking linear-
time-varying model predictive control controller parameter selection con-
sidering central process unit computational load,’’ J. Dyn. Syst., Meas.,
Control, vol. 141, no. 5, pp. 1–12, May 2019, doi: 10.1115/1.4042196.

[13] Q. Q. Yao and Y. Tian, ‘‘A model predictive controller with longitudinal
speed compensation for autonomous vehicle path tracking,’’ Appl. Sci.,
vol. 9, no. 22, p. 4739, Nov. 2019, doi: 10.3390/app9224739.

[14] H. Andersen, Z. J. Chong, Y. H. Eng, S. Pendleton, and M. H. Ang,
‘‘Geometric path tracking algorithm for autonomous driving in pedestrian
environment,’’ in Proc. IEEE Int. Conf. Adv. Intell. Mechatronics (AIM),
Jul. 2016, pp. 1669–1674.

[15] M. Elbanhawi, M. Simic, and R. Jazar, ‘‘Receding horizon lateral vehicle
control for pure pursuit path tracking,’’ J. Vib. Control, vol. 24, no. 3,
pp. 619–642, Feb. 2018, doi: 10.1177/1077546316646906.

[16] Y. Shan, W. Yang, C. Chen, J. Zhou, L. Zheng, and B. Li, ‘‘CF-pursuit:
A pursuit method with a clothoid fitting and a fuzzy controller for
autonomous vehicles,’’ Int. J. Adv. Robot. Syst., vol. 12, no. 9, p. 134,
Sep. 2015, doi: 10.5772/61391.

[17] H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro, ‘‘Pure pursuit
revisited: Field testing of autonomous vehicles in urban areas,’’ in Proc.
IEEE 4th Int. Conf. Cyber-Phys. Syst., Netw., Appl. (CPSNA), Nagoya,
Japan, Oct. 2016, pp. 7–12.

[18] M.-W. Park, S.-W. Lee, and W.-Y. Han, ‘‘Development of lateral con-
trol system for autonomous vehicle based on adaptive pure pursuit algo-
rithm,’’ in Proc. 14th Int. Conf. Control, Automat. Syst. (ICCAS), Seoul,
South Korea, Oct. 2014, pp. 1443–1447.

[19] L. Yu, X. Yan, Z. Kuang, B. Chen, and Y. Zhao, ‘‘Driverless bus path
tracking based on fuzzy pure pursuit control with a front axle reference,’’
Appl. Sci., vol. 10, no. 1, p. 230, Dec. 2019, doi: 10.3390/app10010230.

[20] C. G. Serna, A. Lombard, Y. Ruichek, and A. Abbas-Turki, ‘‘GPS-based
curve estimation for an adaptive pure pursuit algorithm,’’ in Proc. MICAI,
Cancun, Mexico, 2017, pp. 497–511.

[21] W.-J. Wang, T.-M. Hsu, and T.-S. Wu, ‘‘The improved pure pursuit algo-
rithm for autonomous driving advanced system,’’ in Proc. IEEE 10th Int.
Workshop Comput. Intell. Appl. (IWCIA), Hiroshima, Japan, Nov. 2017,
pp. 33–38.

[22] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco, CA,
USA: Morgan Kaufmann, 2001.

[23] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’
IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006, doi:
10.1109/MCI.2006.329691.

[24] X. S. Yang, ‘‘Firefly algorithms for multimodal optimization,’’ in Stochas-
tic Algorithms: Foundations and Applications. Berlin, Germany: Springer,
2009, pp. 169–178, doi: 10.1007/978-3-642-04944-6_14.

[25] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, ‘‘Cuckoo search algorithm:
A metaheuristic approach to solve structural optimization problems,’’ Eng.
Comput., vol. 29, no. 1, pp. 17–35, Jan. 2013.

[26] X. Yang and A. H. Gandomi, ‘‘Bat algorithm: A novel approach for global
engineering optimization,’’ Eng. Comput., vol. 29, no. 5, pp. 464–483,
Jul. 2012, doi: 10.1108/02644401211235834.

[27] B. Yang, L. Zhong, X. Zhang, H. Shu, T. Yu, H. Li, L. Jiang, and
L. Sun, ‘‘Novel bio-inspired memetic salp swarm algorithm and appli-
cation to MPPT for PV systems considering partial shading condi-
tion,’’ J. Cleaner Prod., vol. 215, pp. 1203–1222, Apr. 2019, doi:
10.1016/j.jclepro.2019.01.150.

[28] D. Wang, Y. Zhou, S. Jiang, and X. Liu, ‘‘A simplex method-based salp
swarm algorithm for numerical and engineering optimization,’’ inProc. Int.
Conf. Intell. Inf. Process. Berlin, Germany: Springer, 2018, pp. 150–159.

[29] G. I. Sayed, G. Khoriba, and M. H. Haggag, ‘‘A novel chaotic salp swarm
algorithm for global optimization and feature selection,’’ Appl. Intell.,
vol. 48, pp. 3462–3481, Mar. 2018, doi: 10.1007/s10489-018-1158-6.

[30] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, ‘‘Kinematic and
dynamic vehicle models for autonomous driving control design,’’ in
Proc. IEEE Intell. Vehicles Symp. (IV), Seoul, South Korea, Jun. 2015,
pp. 1094–1099.

[31] H.-G. Park, K.-K. Ahn,M.-K. Park, and S.-H. Lee, ‘‘Study on robust lateral
controller for differential GPS-based autonomous vehicles,’’ Int. J. Precis.
Eng. Manuf., vol. 19, no. 3, pp. 367–376, Mar. 2018, doi: 10.1007/s12541-
018-0044-9.

[32] K. Lee, S. Jeon, H. Kim, and D. Kum, ‘‘Optimal path tracking con-
trol of autonomous vehicle: Adaptive full-state linear quadratic Gaussian
(LQG) control,’’ IEEE Access, vol. 7, pp. 109120–109133, 2019, doi:
10.1109/ACCESS.2019.2933895.

[33] Y. Liu, D. Iacomini, B. Powell, J. Gafford, J. Ball, J. Shi, and C. Davenport,
‘‘Development, testing, and assessment of a kinematic path-following
model for towing vehicle systems,’’ SAE Int. J. Vehicle Dyn., Stability,
vol. 3, no. 1, pp. 57–70, Jan. 2019, doi: 10.4271/10-03-01-0005.

[34] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and
S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017, doi: 10.1016/j.advengsoft.2017.07.002.

[35] A. Novikov, D. Kuzmin, and O. Ahmadi, ‘‘Random walk methods
for Monte Carlo simulations of Brownian diffusion on a sphere,’’
Appl. Math. Comput., vol. 364, Jan. 2020, Art. no. 124670, doi:
10.1016/j.amc.2019.124670.

[36] S. Mirjalili, ‘‘The ant lion optimizer,’’ Adv. Eng. Softw., vol. 83, pp. 80–98,
May 2015, doi: 10.1016/j.advengsoft.2015.01.010.

[37] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.
2013.12.007.

[38] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv.
Eng. Softw., vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.
2016.01.008.

[39] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, ‘‘Enhanced
salp swarm algorithm: Application to variable speed wind genera-
tors,’’ Eng. Appl. Artif. Intell., vol. 80, pp. 82–96, Apr. 2019, doi:
10.1016/j.engappai.2019.01.011.

[40] K. Gholami and M. H. Parvaneh, ‘‘A mutated salp swarm algorithm for
optimum allocation of active and reactive power sources in radial distri-
bution systems,’’ Appl. Soft Comput., vol. 85, Dec. 2019, Art. no. 105833,
doi: 10.1016/j.asoc.2019.105833.

RUI WANG received the B.S. degree from the
College of Software, Jilin University, Changchun,
China, in 2018, where she is currently pursuing
the master’s degree. Her research interests include
path tracking of autonomous vehicles and swarm
intelligence algorithm.

YING LI received the B.S., M.S., and Ph.D.
degrees from Jilin University. From 2000 to
2006, she was an Associate Professor with the
Department of Space Information Processing, Jilin
University, where she has been a Professor in
computer application technology since 2006. She
has published over 60 articles in journals and inter-
national conference. Her research interests include
big data, 3D visual modeling, 3D image process-
ing, machine vision, and machine learning. She is
a Fellow of the China Computer Federation.

VOLUME 8, 2020 166539

http://dx.doi.org/10.1109/ACCESS.2019.2892746
http://dx.doi.org/10.1155/2009/935237
http://dx.doi.org/10.1016/j.conengprac.2011.08.005
http://dx.doi.org/10.1016/S0005-1098(01)00174-1
http://dx.doi.org/10.1109/TITS.2008.2011697
http://dx.doi.org/10.1115/1.4042196
http://dx.doi.org/10.3390/app9224739
http://dx.doi.org/10.1177/1077546316646906
http://dx.doi.org/10.5772/61391
http://dx.doi.org/10.3390/app10010230
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1016/j.jclepro.2019.01.150
http://dx.doi.org/10.1007/s10489-018-1158-6
http://dx.doi.org/10.1007/s12541-018-0044-9
http://dx.doi.org/10.1007/s12541-018-0044-9
http://dx.doi.org/10.1109/ACCESS.2019.2933895
http://dx.doi.org/10.4271/10-03-01-0005
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.amc.2019.124670
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.engappai.2019.01.011
http://dx.doi.org/10.1016/j.asoc.2019.105833


R. Wang et al.: Novel Pure Pursuit Algorithm for Autonomous Vehicles

JIAHAO FAN received the B.S. degree from the
Computer Science and Technology College, Jilin
University, Changchun, China, in 2015, and the
master’s degree from Jilin University, in 2017,
where he is currently pursuing the Ph.D. degree.
His research interests include swarm intelligence
algorithm, machine learning, image processing,
data mining, and 3D data processing.

TAN WANG received the B.S. degree in journal-
ism and communication from the Jilin University
of Finance and Economics, Changchun, China,
in 2017, and the M.S. degree from Northeast Nor-
mal University, Changchun, in 2020. She works
in part-time with Space Technology (Jilin) Com-
pany Ltd. Her research interests include media
technology ethics, network ecological, and feature
selection.

XUETAO CHEN received the B.S. degree from the
Computer Science and Technology College, Jilin
University, Changchun, China, in 2018, where
he is currently pursuing the master’s degree.
His research interests include deep learning,
machine learning, image processing, and 3D data
processing.

166540 VOLUME 8, 2020


