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ABSTRACT Since lane geometry information can be used for controlling the pose of an intelligent vehicle,
a lane geometry map that contains the lane geometry information should have reliable accuracy. For
generating the reliable lane geometry map, lane curve which is detected from a lane detector is an useful
information because the lane geometry information can be obtained directly. However, since the detected lane
curve contains an uncertainty caused by the noise of the lane detector, the accuracy of the lane geometry map
can be degraded. In previous studies, a near point on each detected lane is sampled at each time stamp and
accumulated for reducing the noise effects of the lane detector. However, these sampled points also contain
the sensing noise of the lane detector and the density of accumulated points depends on the distance interval
of data acquisition. In this article, we proposed the probabilistic lane smoothing-based generation method
for the reliable lane geometry map. In the probabilistic lane smoothing, the lane geometry map is modeled
as the nodes with the uncertainty of its position obtained from the sensor error model. Each node of the lane
geometry map is smoothed based on the Bayesian filtering scheme. The evaluation results show that the lane
geometry map can be generated by reducing the noise of the detected lane curve. Additionally, the generated
lane geometry map is more reliable than the sampling point-based generated map in terms of the accuracy
of the distance and heading angle.

INDEX TERMS Lane geometry map, sensor error model, probabilistic smoothing, Bayesian filtering, lane
model.

I. INTRODUCTION
The proportion of traffic accidents caused by human
errors such as drowsiness driving, using smart-phones,
and inadequate judgment accounts for 94% of the total.
According to the National Highway Traffic Safety Admin-
istration (NHTSA) in North America, it is expected that 80%
of the accidents caused by human errors can be reduced
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that the vehicles become intelligent [1]. In this perspective,
the intelligent vehicles have been developed from Advanced
Driving Assistance Systems (ADAS) to an autonomous
driving [2], [3]. For the intelligent vehicles, the surrounding
road conditions such as road boundary and lane geometry
should be perceived. Among these kinds of the road condi-
tions, the lane geometry information can be used in various
applications of the intelligent vehicles such as lane keeping
systems [4], [5], vehicle path or motion planning [6]–[9] and
in-lane positioning of the ego-vehicle [10]–[15].
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FIGURE 1. Concepts of the sampling-based approaches for generating the
lane geometry map.

In order to perceive the surrounding lane geometry infor-
mation, the perception sensors such as camera and Light
Detection And Range (LiDAR) are widely used [16]–[20].
However, the lane geometry information from the perception
sensors has the sensor noise and detection failure problems.
In order to avoid these problems, lane geometry recogni-
tion methods with the precise map which contains road
boundary, road geometry, and lane geometry have been
studied [21]–[25]. Since the lane geometry information is
extracted from the precise map in the the precise map-based
lane geometry recognition methods, the reliability of the lane
geometry information in the precise map should be guaran-
teed as the accuracy [25].

The lane geometry map should have a centimeter-level
position accuracy. Since the width of the lane marker is usu-
ally about 20 cm, the position accuracy of the lane geometry
map should be satisfied under 20 cm for deciding the ego
lane correctly. In addition, the heading angle of the lane
geometry can be used to determine the reference heading
angle for controlling vehicle pose [4], [5], [26]. Therefore,
in order to prevent the instability of the controlled vehicle
pose, the heading angle error should be minimized.

For generating the reliable lane geometrymap, the detected
lane curve from a lane detector is useful information, because
the detected lane curve only contains the lane geometry
information, not other road conditions. The detected lane
curve has a higher uncertainty with a farther distance from
the lane detector due to the resolution of the sensors and
vehicle motion. Therefore, in the previous studies, a near
point on each detected lane is sampled at each time stamp and
accumulated for reducing the noise effects of the lane detector
as shown in Fig. 1. [12], [27], [28]. However, the sampled
points also contain the sensing noise caused by the resolution
of the lane detector, painting conditions of the lane markers
and potholes. In addition, the density of the accumulated
points depends on the distance interval of data acquisition.
For example, since the distance interval of data acquisition
increases when the probe vehicle drives faster, the distance

FIGURE 2. Limitations of the sampling-based lane geometry map
generation.

between each point which is sampled at each time stamp also
increases. The noise and data sparsity of the sampled points
cause the inaccuracy of the generated lane geometry map as
shown in Fig. 2.
In order to overcome the limitations of the previous meth-

ods, this article proposes the generationmethod of the reliable
lane geometry map based on probabilistic smoothing for
considering the uncertainty of the lane detector.

- The lane geometry map is modeled as nodes with the
uncertainty of each position.

- The uncertainty of each lane curve is obtained from the
sensor error model.

- The position of each node is updated with the lane curves,
which are accumulated by the probe vehicle with a lane
detector, based on the Bayesian filtering scheme.

This article is organized as follows. Chapter II describes
the previous studies, and chapter III represents the system
architecture of the proposed system. Chapter IV describes the
vehicle trajectory estimationmethod for solving themultipath
error and the signal outage problems of the GPS information.
In Chapter V, the probabilistic lane smoothing method is
proposed to reduce the noise of the detected lane. Chap-
ter VI describes the lane geometry modeling method for
modeling the lane geometry map as a B-spline curve. The
lane geometry map generated from the proposed method
was verified by comparing the precise digital map which
contains the road surface marker in Chapter VII. At the
end of this article, the conclusion and the future works are
given.

II. RELATED WORKS
For generating the reliable lane geometry map, many
approaches have been studied to extract the lane geometry
from various types of acquired data. For example, the aerial
images from a satellite or an aerial vehicle can be used to
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FIGURE 3. Overall system architecture for the proposed lane map generation method.

extract the lane geometry through manual or image process-
ing [29]–[32]. The aerial image can cover large region just
in a single image. However, resolution of the aerial image is
insufficient to guarantee the accuracy of the lane geometry
map [25]. Additionally, there are so many of blocked area
occluded by tunnels or road structures such as bridges and
underpasses.

Unlike the aerial image-based approaches, the probe
vehicle-based approaches acquired the information for the
surrounding road condition using the probe vehicle equipped
with the perception sensors such as camera or LiDAR [25],
[33]–[40]. In these approaches, the surrounding road infor-
mation is acquired by driving the probe vehicle in forms of the
image or point cloud. Since the acquired information does not
contain the lane geometry information, the lane information
should be extracted from the acquired information. However,
in the lane extraction process, the outlier problems are caused
by non-lane features such as arrow marks, crosswalks, and
surrounding vehicles. These outliers can occur the inaccuracy
of extracted lane geometry.

The detected lane curve from the lane detector is more
useful information than the accumulated point clouds and
the image, because the detected lane curve only contains
the lane geometry information, not other road conditions.
However, the detected lane curve has an uncertainty caused
by the resolution of the sensors and vehicle motion. In the
previous studies, a near point of detected lane at each time
stamp is sampled and accumulated for reducing the noise
effect of the lane detector [12], [27], [28]. In these studies,
the density of the accumulated points can be affected by the
distance interval of data acquisition. When the probe vehicle
moves faster, the distance interval of accumulated points is
increased. In addition, the near points also contains the noise
caused by the sensor resolution and the condition of the
lane marker. Data sparsity and noise problem can cause the
inaccuracy of the generated lane geometry map.

In order to overcome the limitations of the previous studies,
the probabilistic smoothing based map generation method is
proposed in this article. In the proposed method, the lane
geometry map is modeled by nodes which are generated from
detected lane information. Each node has the uncertainty
of its position, and the position of each node is updated
probabilistically with accumulated lane information which
located by near the node. Unlike the previous studies which
use just a sampled point from each time stamp, the proposed
method can reduce the inaccuracy of the lane geometry map,
because some lane information are used for determining the
position of each node and the sensor error model is applied
for considering the uncertainty of the lane detector.

III. SYSTEM ARCHITECTURE
The overall structure of the proposed method for generating
the lane geometrymap consists of four steps; data acquisition,
vehicle trajectory estimation, probabilistic lane smoothing,
and lane modeling as shown in Fig. 3.
In the first step, time synchronized raw data for the

lane geometry map generation such as GPS position, vehi-
cle motion information, and detected lane information are
acquired by a probe vehicle equipped with Real-Time Kine-
matic (RTK) GPS, wheel speed sensors, yaw rate sensor, and
lane detector.

The second step is a vehicle trajectory estimation. The
RTK-GPS has a centimeter-level accuracy under a reliable
GPS signal condition. The reliability of the RTK-GPS can
be worsened by multipath error and signal outage problem.
Since it is possible to detect the RTK-GPS malfunctions
by using the vehicle motion constraints, the vulnerability of
the RTK-GPS can be solved by data fusion with the vehi-
cle motion information [41], [42]. In order to improve the
reliability of the RTK-GPS information, the Rauch-Tung-
Striebel (RTS) smoother is used to estimate the probe vehi-
cle’s trajectory as proposed in [43].
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The third step is probabilistic lane smoothing. Since
the detected lane information contains the sensing noise,
the detected lane information should be smoothed for gen-
erating the lane geometry map. For smoothing the detected
lane information, the lane geometry map is modeled as the
nodes with uncertainty of its position. The nodes could be
updated using the Bayesian filtering schemewith the detected
lane information at time step tk . In order to update the nodes
probabilistically, the reliability of the detected lane informa-
tion should be modeled using the sensor error model. The
error model of the lane detector can be obtained based on the
cumulative distribution function of the Gaussian probabilistic
distribution.

The final step is a lane modeling. The representation as
the sequential nodes is not suitable for the intelligent vehicle
systems because an enormous data storage is needed to save
the overall lane geometry map data; additionally, the compu-
tation burdens are increased to process the lane geometrymap
data [35]. The data storage can be reduced using the math-
ematical curve model because the sequential nodes can be
compressed mathematical curve equation. In this perspective,
the lane geometry map is modeled as a B-spline curve in the
lane modeling step as proposed in [43].

IV. VEHICLE TRAJECTORY ESTIMATION
When the probe vehicle acquires the data for generating the
lane geometry map, the global position of the probe vehicle
is a dominant factor for recognizing where the probe vehicle
is. In order to acquire the global position of the probe vehicle,
the RTK-GPS which has a centimeter-level accuracy is used
in this article.

A. RAUCH-TUNG-STRIEBEL SMOOTHER
Since it is possible to detect the RTK-GPS malfunctions
by using the vehicle motion constraints, the reliability of
the RTK-GPS information can be improved by data fusion
with the vehicle motion information. In order to improve the
reliability of the measured RTK-GPS information, the RTS
smoother which is one of the fixed-interval optimal smoother
is used in this article as proposed in [43]. Since the lane
geometrymap is generated in offline after completing the data
acquisition, the all acquired measurements in a fixed time
interval can be used for the fixed-interval optimal smoothing.

1) SYSTEM AND MEASUREMENT MODEL
The probe vehicle’s position at the next time step can be
predicted using the vehicle motion information such as speed
V and yaw rate ψ̇ . The predicted probe vehicle’s position
is used as the vehicle motion constraints for detecting the
RTK-GPS malfunction as shown in Fig. 4. The equation for
predicting the probe vehicle’s position is described in (1),
The system state xk which contains vehicle’s global position
X and Y , and the vehicle’s heading angle ψ at time step tk
can be obtained by using the previous system state xk−1 and
the vehicle motion information; vehicle speed Vk−1 and yaw
rate ψk−1. Noise ωk of the system model is the Gaussian

FIGURE 4. Detection of the RTK-GPS malfunction using the predicted
probe vehicle’s motion.

zero-mean white noise with covariance Qk .

xk = f (xk−1, uk−1, ωk−1), ωk ∼ (0,Qk )ψkXk
Yk

 =
 ψk−1 + ψ̇k−11t
Xk−1 + Vk−11t cos (ψk−1)
Yk−1 + Vk−11t sin (ψk−1)

+ ωk−1 (1)

The measurements from the RTK-GPS include the global
position XGPS and YGPS , and the heading angle ψGPS . Since
the measurements have a linear relationship to the system
state, the observation matrix Hk of the measurement model
can be defined as an identity matrix as described in (2). Noise
vk of the measurement model is the Gaussian zero-mean
white noise with covariance Rk .

yk = Hkxk + vk , vk ∼ (0,Rk )ψGPSkXGPSk
YGPSk

 =
 1 0 0
0 1 0
0 0 1

ψkXk
Yk

+ vk (2)

Since the system model for predicting the probe vehicle’s
position is a non-linear equation, the extended-Kalman filter
is used for the state estimation. The discrete-time extended
RTS smoother consists of two steps; forward filter and back-
ward filter [44].

2) FORWARD FILTERING
The initial state and covariance of the forward filter are
assumed as the stochastic expected value of the initial state
and covariance as described in (3). The subscript f means the
forward filter.

x̂+f 0 = E(x0)

P+f 0 = E
[
(x0 − x̂

+

f 0)(x0 − x̂
+

f 0)
T
]

(3)

In the forward filtering step of the RTS smoother,
the extended-Kalman filter is used to estimate the state at time
step tk in the fixed-time interval k = 1, . . . ,N where N is the
final time index because the system model for predicting the
probe vehicle’s position is a non-linear equation. In the time
update of the extended-Kalman filter, the state and covariance
can be predicted by considering the vehicle motion informa-
tion as described in (4).

x̂−f ,k = fk−1(x̂
+

f ,k−1, uk−1, 0)
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P−f ,k = Fk−1P
+

f ,k−1F
T
k−1 + Lk−1Qk−1L

T
k−1 (4)

Since the system model is a non-linear equation as
described in (1), the Jacobian equations of the system model
should be obtained based on (5).

Fk−1 =
∂fk−1
∂x

∣∣∣∣
x̂+f ,k−1

Lk−1 =
∂fk−1
∂ω

∣∣∣∣
x̂+f ,k−1

(5)

In the measurement update step of the extended-Kalman
filter, the state and covariance can be updated by considering
the RTK-GPS measurements as described in (6).

Kf ,k = P−f ,kH
T
k (HkP

−

f ,kH
T
k +MkRkMT

k )
−1

x̂+f ,k = x̂−f ,k + Kf ,k
[
yk − hk (x̂

−

f ,k , 0)
]

P+f ,k = (I − Kf ,kHk )P
−

f ,k (6)

In contrast to the time update step, the measurement model
is a linear equation as described in (2). Therefore, the Jaco-
bian equation of the measurement model is not needed for the
measurement update step.

3) BACKWARD FILTERING
In the forward filtering of the RTS smoother, the state xk
is estimated just by updating with the measurements before
time step tk . If the measurements after the time step tk are
considered when the state xk is estimated, the accuracy and
reliability of the estimated state can be improved. In the
backward filtering of the RTS smoother, the state xk is
estimated in the reverse fixed-time interval k = N , . . . , 1
as described in (7). The subscript b means the backward
filter.

Kb,k = P+f ,kF
T
k (P
−

f ,k+1)
−1

Pb,k = P+f ,k − Kb,k (P
−

f ,k+1 − Pb,k+1)K
T
b,k

x̂b,k = x̂+f ,k + Kb,k (x̂b,k+1 − x̂
−

f ,k+1) (7)

The initial state x̂b,N and covariance Pb,N for the backward
filter can be obtained from the end of the forward filter as
described in (8).

x̂b,N = x̂+f ,N
Pb,N = P+f ,N (8)

V. PROBABILISTIC LANE SMOOTHING
A. SENSOR ERROR MODEL
Since the detected lane information contains the discontinuity
problems caused by the sensor noise. Therefore, the multiple
detected lane information should be smoothed to reduce the
discontinuity problems for generating the lane geometrymap.
In order to smooth the detected lane information probabilis-
tically, the reliability of the detected lane information should
be modeled using the sensor error model. The detected lane
information has a lower reliability with a farther distance

FIGURE 5. Sensor error model with the consistency weight regarding the
arc length of the detected lane.

FIGURE 6. Sampled points at regular intervals with the consistency
weight.

from the perception sensor. The reliability of the detected lane
information can be modeled as the consistency weightw(l) as
shown in Fig. 5. [45].
The consistency weight w(l) is modeled based on the mod-

ified cumulative distribution function of a Gaussian proba-
bilistic distribution with N (leff , σ 2

eff ) as described in (9). leff
means the effective distance which represents the valid range
of the detected lane information and σeff means the standard
deviation of the effective distance uncertainty.

w(l) =
1

σeff ·
√
2π

∫
∞

l
e

−(−l+leff )
2

2σ2eff dl (9)

B. BAYESIAN FITLERING-BASED PROBABILISTIC LANE
SMOOTHING
1) INITIALIZATION
In order to initialize for generating the lane geometry map
in the proposed method, the detected lane information is
accumulated. First, the detected lane information is sampled
as points with regular intervals. Each sampled point has the
consistency weight which represents the reliability of the
position information obtained from the sensor error model as
shown in Fig. 6.
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FIGURE 7. Initialization for the lane geometry map by accumulating the
weighted sampled point and applying the weighted least square method.

Weighted sampled points are accumulated until the accu-
mulated length is longer than the minimal length linit to
initialize the lane geometry map. From these accumulated
points, the initial lane geometry map can be approximated
based on the weighted least square method using the weight
of each accumulated point as shown in Fig. 7.
The nodes of the initialized lane geometry map have the

covariance which represents the reliability of their position
information. The covariance of each node can be obtained
from the sensor error model depending on each node’s posi-
tion as described in (10). Subscript i and jmean the node and
the location index of each lane.{

Pi,j = x(di,j)−1 · I if di,j ∈ [0,∞)
Pi,j = Pinit · I if di,j ∈ (−∞, 0)

(10)

2) COORDINATE UPDATE
In order to update the lane geometry map, the detected
lane information is used. However, since the lane geome-
try map is on the global coordinates and the detected lane
information is on the ego vehicle’s coordinates, the coordi-
nates conversion must be preceded. If the coordinates of the
detected lane information are converted from the coordinates
of the ego vehicle to the global coordinates, the detected
lane information is represented as a non-linear equation.
Comparing with the case when the representation of the
detected lane information is a linear equation, it is hard
to find the nearest measurement point from each node for
updating each node of the lane geometry map. Therefore,
in order to update the lane geometry map with the detected
lane information at time step tk , the coordinates of the lane
geometry map should be converted from the global coordi-
nates to the ego vehicle coordinates. The conversion relation-
ship consists of two parts; translation and rotation as shown
in Fig. 8.

FIGURE 8. Relationship for coordinates conversion from the global
coordinates to the ego vehicle coordinates.

The rotation matrix Rk,ego and translation matrix Tk,ego can
be obtained by using the estimated vehicle position xk which
contains the vehicle’s heading angle ψk , and the vehicle’s
global position Xk and Yk . The rotation matrix Rk,ego consists
of the trigonometrical function with the vehicle’s heading
angle ψk from the estimated vehicle position xk . The trans-
lation matrix Tk,ego consists of the relative position from the
vehicle’s global position Xk and Yk as described in (11).

Rk,ego =
[
cos (−ψk ) − sin (−ψk )
sin (−ψk ) cos (−ψk )

]
Tk,ego =

[
−Xk
−Yk

]
(11)

The converted position of each node of the lane geometry
map can be obtained by applying the translation matrix Tk,ego
and rotation matrix Rk,ego as described in (12).[

Xi,j,ego
Yi,j,ego

]
= Rk,ego

([
Xi,j,world
Yi,j,world

]
+ Tk,ego

)
(12)

3) MEASUREMENT UPDATE
After the coordinates of the lane geometrymapwas converted
from the global coordinates to the ego vehicle’s coordinates,
the position of each node of the lane geometry map can
be updated using the detected lane information at time step
tk . In order to update the position of each node, the mea-
surement point should be selected from the detected lane
information. The nearest measurement point Zi,j within a
certain boundary from each node is used as the measure-
ment point for updating the position of each node as shown
in Fig. 9.

The nearest measurement point Zi,j from each node is
represented by its position on the ego vehicle coordinates as
described in (13).

Zi,j =
[
Xmeas,ego
Ymeas,ego

]
(13)

The covariance of the measurement point which means
the reliability of the position can be obtained based on the
sensor error model depending on the arc length li,j,meas of
the detected lane information to the measurement point as
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FIGURE 9. Nearest measurement point for updating the position of each
node.

described in (14).

Pi,j,meas =
[
w(li,j,meas)−1 0

0 w(li,j,meas)−1

]
(14)

In order to update the position and covariance of each
node of the lane geometry map probabilistically, the Bayesian
filtering scheme is used. A Kalman gain Ki,j is calculated
based on the measurement point’s covariance Pi,j,meas and the
priori covariance of each node P−i,j. The posteriori position of
each node [X+i,j,ego,Y

+

i,j,ego]
T and posteriori covariance of each

node P+i,j can be calculated as described in (15).

Ki,j = P−i,j(P
−

i,j + Pi,j,meas)
−1

P+i,j = (I − Ki,j)P
−

i,j[
X+i,j,ego
Y+i,j,ego

]
=

[
X−i,j,ego
Y−i,j,ego

]

+Ki,j

(
Zi,j −

[
X−i,j,ego
Y−i,j,ego

])
(15)

The new node of the lane geometry map is generated using
the end point of the detected lane information. If the distance
d between the end point of the detected lane information and
the end node of the lane geometry map is larger than the
predefined threshold dnew, the new node of the lane geometry
map is generated on the position of the end point of the
detected lane information. The covariance of the new node
is initialized by using the covariance of the end measurement
point which is obtained based on the sensor error model as
described in (16).[

Xnew,j,ego
Ynew,j,ego

]
= Zend,j, Pnew,j = Pend,j,meas (16)

When the intelligent vehicle uses the lane geometry map,
the lane geometry map around the vehicle is found based
on the global position of the vehicle. Therefore, the node of
the lane geometry map should be on the global coordinates.

Similar to the coordinate update step, the rotation matrix
Rk,world and translation matrix Tk,world can be obtained by
using the estimated vehicle position xk which contains the
vehicle’s heading angle ψk , and the vehicle’s global posi-
tion Xk and Yk . The rotation matrix Rk,world consists of the
trigonometrical function with the vehicle’s heading angle ψk
from the estimated vehicle position xk . The translation matrix
Tk,world consists of the relative position from the vehicle’s
global position Xk and Yk as described in (17).

Rk,world =
[
cos (ψk ) − sin (ψk )
sin (ψk ) cos (ψk )

]
Tk,world =

[
Xk
Yk

]
(17)

The converted position of each node of the lane geome-
try map can be obtained by applying the translation matrix
Tk,world and rotation matrix Rk,world as described in (18).[

Xi,j,world
Yi,j,world

]
= Rk,world

[
Xi,j,ego
Yi,j,ego

]
+ Tk,world (18)

VI. LANE GEOMETRY MODELING
Each lane in the lane geometry map generated from the
previous probabilistic lane smoothing step is represented as
a number of the nodes. Because the lane representation using
a number of the nodes is not suitable for the application of
the intelligent vehicles, the lane geometry map is modeled to
the mathematical curve model in the lane geometry modeling
step. In order to reduce the number of representations of the
lane geometry map, the lane geometry map is modeled as a
B-spline curve as proposed in [43].

A. B-SPLINE CURVE
The B-spline curve is one of the representations of the spline
curve which consists of control points, knot vectors, and basis
functions. Since each section is represented by a separate
polynomial, the B-spline curve has a property that even if a
part of the control points is changed, the entire curve is not
affected. Additionally, comparing with the conventional lane
geometry representation, the lane geometry representation
with the B-spline curve has an advantage that it is simple
to express mathematically. The B-spline curve C(t) can be
represented using the parametric spline equation as described
in (19). pmeans the order of the spline. bj is a set of the control
points and t is a parameter of the spline.

C(t) =
n∑
j=0

Nj,p(t)bj, t ∈ [Tp−1,Tn+1] (19)

The knot vector T which contains a non-decreasing
sequence of real value is described in (20).

T = [T0,T1, . . . ,Tn+p−1,Tn+p] (20)

In order to fix the endpoints of the spline curve to
the endpoints of control points, the first and last set of
knots are defined with the same value as described in (21).
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tstart and tend means the parameter of the endpoints of the
spline curve.

T0 = T1 = · · · = Tp−1 = tstart
Tn+1 = Tn+2 = · · · = Tn+p = tend (21)

Nj,p(t) is the basis function of the spline curve with order
p as described in (22).

Ni,0(t) =

{
1, if t ∈ [Ti,Ti+1]
0, otherwise

Ni,j(t) =
t − Tj

Ti+j − Ti
Ni,j−1(t)

+
Ti+j−1 − t

Ti+j−1 − Ti+1
Ni+1,j−1(t) (22)

B. GRADUAL CORRECTION METHOD-BASED LANE
GEOMETRY MODELING
The nodes of the lane geometry map from the probabilistic
lane smoothing step are modeled as a B-spline curve using
the gradual correction method. For modeling as the B-spline
curve, the several factors of the B-spline curve such as the
number of control points, the order of the spline, and knots
vector should be determined. Among these factors, the num-
ber of control points is the dominant factor for modeling
the lane geometry because it affects the quality and data
storage of the lane geometry map. The gradual correction
method which provides a suboptimal solution about the num-
ber of control points and other factors is used. The process
of the lane geometry modeling consists of following two
steps.

1) INITIALIZATION
The interval between the nodes is irregular because the new
node is not generated with a regular interval and the position
of each node is updated probabilistically. Therefore, the spa-
tial resampling is performed by resampling the sequential
points pi with regular intervals.

The parameter of the resampled sequential points pi is cal-
culated based on the chord length parameterization method.
The parameter ti can be obtained from the chord length that
is the distance between the two adjacent points as described
in (23).

ti =
i∑

j=0

1j, where 1j = |pj − pj−1| (23)

When the B-spline model is approximated using the grad-
ual correction method, the principal parameter vector should
be constructed. The minimum number p of the principal
parameters are required for the lane geometry model using
the p-order B-spline. The initial principal parameter vector is
constructed using uniformly divided values of the parameter

value ti as described in (24).

Tprincipal =



0
t
round(

1
p− 1

m)

t
round(

2
p− 1

m)

. . .

tm



T

(24)

2) GRADUAL CORRECTION METHOD
In the gradual correction method, the error between the lane
geometry map data and the B-spline model is gradually cor-
rected until the error is less than an acceptable tolerance
range. Based on the principal parameter vector, the knots can
be determined. The knot vector T is constructed by using
the average of the principal parameter vector Tprincipal as
described in (25). The τj are the elements of the principal
parameter vector Tprincipal containing k + 1 elements.

Tp+i−1 =
1

p− 1

i+p−2∑
j=i

τj, i = 1, . . . , k − p+ 1 (25)

Addition to the principal parameter vector Tprincipal and
knot vector T , the control points bj is needed to approxi-
mate the B-spline model. The control points are determined
applying the least square method for minimizing the error
between the approximated B-spline curve and the resampled
sequential points pi as described in (26).

E(b0, . . . , bn) =
m∑
i=0

∥∥C(t̄i)− pi∥∥2 (26)

If the maximum error is larger than the acceptable tol-
erance range, the new principal parameter vector should
be updated. The new element of the principal parameter
vector is determined as a parameter of the dominant point
for the resampled sequential points pi. The dominant point
can be determined by using the segment region error. The
segment region error-based dominant point selection method
can prevent the unstable problem caused by a concentration
of the principal parameters and knots on the small curve
region. The segment region error can be calculated by the
trapezoidal method as described in (27). s means the start
resampled sequential point and e is the end resampled sequen-
tial point in each segment. err i means the error between the
approximated B-spline curve and the resampled sequential
points pi. The dominant point is selected as the maximum
error point in the region with the maximum segment region
error.

errsegment =
e−1∑
i=s

(err i + erri+1)(ti+1 − ti)
2

(27)

By using the new principal parameter vector, the knot vec-
tor T and the control points bj can be obtained based on (25)
and (26). After obtaining the new principal parameter vector,
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TABLE 1. Vehicle motion sensor specification.

TABLE 2. Vehicle motion sensor specification.

FIGURE 10. Sensor configuration of the probe vehicle.

the knot vector, and the control points, the improved B-spline
curve for lane geometrymap is able to be approximated. If the
maximum error between the improved B-spline curve and the
resampled sequential points pi is larger than the acceptable
tolerance range, the gradual correction method is iteratively
executed to make the maximum error under the acceptable
tolerance error.

VII. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENTS
In order to evaluate the proposed method, the probe vehi-
cle which equipped with a lane detector, RTK-GPS, vehi-
cle motion sensors is used as shown in Fig. 10. When the
probe vehicle drives, the raw data such as the detected lane
information, vehiclemotion information, and vehicle position
information are acquired with time synchronization.

In order to obtain the vehicle motion information, the yaw
rate sensor and wheel speed sensors are used. The specifica-
tions of the vehicle motion sensors are described in Table 2.
Since the yaw rate can be filtered with a simple mathematical
model, the yaw rate sensor is used for estimating the rotation
motion. The vehicle motion information is obtained from the
Controller Area Network (CAN) without installing additional
sensors because the probe vehicle is equipped an Electronic
Stability Control (ESC) system.

In this article, the probe vehicle’s position is acquired
from the RTK-GPS. The RTK-GPS has a centimeter-level
accuracy about the position. The detail specifications of the
RTK-GPS are described in Table 1. For detecting the lane

FIGURE 11. Test site (a) Aerial image and road images of the test site,
(b) The precise lane marker map about the test site.

information, the Mobileye Q3 is used. The lane detector pro-
vides the lane information in the forms of a cubic polynomial
on the coordinates of the ego vehicle. The length of the
detected lane and the quality of the detected lane informa-
tion which indicates the reliability are also provided. From
this information, the detected lane information can be used
selectively.

In order to evaluate the generated lane geometry map
from the proposed method, the test site is selected where the
precise lane marker map was already constructed. The road
of test site contains the shadow of the traffic signs, different
types of lane, and cracks which can increase inaccuracy
of the lane detector as shown in Fig. 11-(a). Because the
lane can be blocked by surrounding vehicles consistently,
the probe vehicle accumulates the lane information with
low traffic condition, so that the lane detector could detect
lanes. The travel distance of the selected test site is about
1.6 km. The precise lane marker map for the evaluation was
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FIGURE 12. Evaluation results of the distance error (a) Left lane geometry map, (b) Right lane geometry map.

FIGURE 13. Evaluation results of the heading angle error (a) Left lane geometry map, (b) Right lane geometry map.

precisely generated manually to remove the fault features
and add the undetected road surface marker feature as shown
in Fig. 11-(b) [46]. The 3431 time-synchronized data about
the detected lane information, vehicle motion information,
and vehicle position information are acquired when the probe
vehicle was driving in this test site and are used to generate
the lane geometry map.

B. COMPARISON WITH THE PRECISE LANE MARKER MAP
As mentioned in the previous section, the generated lane
geometry map is evaluated by comparing the precise lane
marker map. In order to indicate the location of the lane
geometry map, the location of the lane geometry map is
separated by the left side and the right side based on the
direction of the probe vehicle. The generated lane geometry
map with the precise lane marker map is described in Fig. 14.
The lane geometry curves of the left and right lane geometry
map are fitted qualitatively with the precise lane marker
map in case of the solid and dashed lane marker as shown
in Fig. 14-(a), (c), (e). Additionally, in lane geometry model-
ing step of the proposed method, the lane geometry map was
modeled as the mathematical curve using the nodes of each

lane. Therefore, the lane geometry map can be generated by
interpolating the no lane conditions such as intersection as
shown
in Fig. 14-(b), (d), (f). In the follows in this section, the gener-
ated lane geometry is evaluated on the distance error and the
heading angle error to check how it fits well with the ground
truth and how the noise of the detected lane information is
reduced.

1) DISTANCE ERROR
In order to check how the noise of the detected lane infor-
mation is reduced and how the generated lane geometry
map fits well, the lane geometry maps which are generated
by using the sampled points are also evaluated. Since the
reliability of the detected lane information depends on the dis-
tance from the lane detector, the sampled points are selected
based on the distance from the sensor. The results of the
distance error between the ground truth, and the generated
lane geometry map from the sampled points and the proposed
method are described in Fig. 12. In the intersection area,
the distance error cannot be calculated because the ground
truth does not exist. Therefore, the maximum distance error
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FIGURE 14. The generated lane geometry map compared with the precise lane marker map (a), (c), (e) The lane geometry map on the solid and
dashed lane marker, (b), (d), (f) The lane geometry map on the intersection.

170332 VOLUME 8, 2020



S. Kim et al.: Probabilistic Smoothing Based Generation of a Reliable Lane Geometry Map With Uncertainty of a Lane Detector

and Root Mean Square Error (RMSE) are only obtained in
the non-intersection area.

In the case of the left lane geometry map, the maximum
distance error of each lane geometry map generated from the
farthest-, the mid-, and the nearest-points of the detected lane
information is 0.349 m, 0.264 m, and 0.186 m. By applying
the proposed method to generate the lane geometry map,
the maximum distance error can be reduced to 0.083 m. The
RMSE is also reduced from 0.047 m to 0.035 m comparing
with the lane geometrymap generated from the nearest-points
as shown in Fig. 12-(a).

Similar to the left lane geometry map, the maximum dis-
tance error of the right lane geometry map is reduced from
0.304 m, 0.185 m, and 0.198 m to 0.070 m comparing with
the lane geometry map generated from the farthest-, mid-,
nearest-points. The RMSE is also reduced from 0.050 m to
0.034 m comparing with the lane geometry map generated
from the nearest-points as shown in Fig. 12-(b). Since the
width of the lane marker is about 0.15 0.20 m, the maximum
distance error and the RMSE of the left and right lane geome-
try map generated from the proposed method are acceptable.

2) HEADING ANGLE ERROR
In the same as the distance error comparison, the lane geom-
etry maps which are generated by using the sampled points
are also evaluated to check how the noise of the detected lane
information is reduced. The results of the heading angle error
between the ground truth, and the generated lane geometry
map from the sampled points and the proposed method are
described in Fig. 13. In the intersection area, the heading
angle error cannot be calculated because the ground truth
does not exist. Therefore, the maximum heading angle error
and RMSE are only obtained in the non-intersection area.

In the case of the left lane geometry map, the maxi-
mum heading angle error of each lane geometry map gen-
erated from the farthest-, the mid-, and the nearest-points of
the detected lane information is 6.521 deg, 4.090 deg, and
1.782 deg. By applying the proposed method to generate the
lane geometry map, the maximum heading angle error can
be reduced to 0.733 deg. The RMSE is also reduced from
0.427 deg to 0.119 deg comparingwith the lane geometrymap
generated from the nearest-points as shown in Fig. 13-(a).
Similar to the left lane geometry map, the maximum head-

ing angle error of the right lane geometrymap is reduced from
6.317 deg, 3.678 deg, and 1.170 deg to 0.704 deg comparing
with the lane geometry map generated from the farthest-,
mid-, nearest-points. The RMSE is also reduced from
0.302 deg to 0.114 deg comparing with the lane geom-
etry map generated from the nearest-points as shown
in Fig. 13-(b). When the intelligent vehicle uses the lane
geometry information 100 m ahead to the longitudinal direc-
tion, the RMSE (0.119 deg and 0.114 deg) of each lane
geometry map generated from the proposed method causes
0.208 m and 0.119 m lateral errors. Since the width of the
lane marker is about 0.15 0.20 m, the heading angle error of
each lane geometry map is acceptable.

VIII. CONCLUSION
This article has presented a probabilistic smoothing-based
generationmethod of the reliable lane geometrymap. In order
to use the lane geometry map for the lane geometry informa-
tion in the intelligent vehicle, the lane geometry map should
guarantee its accuracy. Since the lane curve accumulated by
the probe vehicle contains the noise caused by the resolution
of the sensor and vehicle motion, the acquired data is refined
through the probabilistic smoothing technique to reduce the
effect of the sensor noise. In the probabilistic smoothing
technique, the lane geometry map is modeled as the nodes
with the uncertainty of each node’s position obtained from
sensor error model. The position and uncertainty of each node
are updated by the Bayesian filtering scheme. The proposed
map generation method also contains the process of vehicle
trajectory estimation and lane geometry modeling. In the
vehicle trajectory estimation step, the reliability of RTK-GPS
can be improved by the RTS smoothing with the RTK-GPS
and vehiclemotion information. The generated lane geometry
map is modeled as a B-spline curve model by using the
gradual correction method for reducing the data storage of
the lane geometry map in lane geometry modeling step. The
experimental results showed that the noise of the detected
lane curve could be reduced by using the probabilistic lane
smoothing algorithm and the generated lane geometry has a
reliable accuracy for using the intelligent vehicle in terms of
distance error and heading angle error.

Although the proposed method can be used to generate the
reliable lane geometry map, the various road conditions were
not considered; for example, road connection relationship in
an intersection, and lane split and merge condition. There-
fore, the author plans to improve the proposed algorithm for
covering the upper various road conditions.
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