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ABSTRACT This work aims at developing an adaptive wavelet thresholding algorithm for speech enhance-
ment with significant performance improvement over other wavelet-based counterparts. This is accom-
plished through the formulation of the optimum threshold for noise reduction, based on the generalized
Gaussian priors to fully characterize the statistics of speech and noise wavelet coefficients. In addition,
through the frame-wise context modeling which enables tracking of the statistical characteristics of each
individual coefficient on the frame-wise basis, the optimum threshold is accurate and adaptive at both the
coefficient level and frame level. The frame-wise context model is formulated by virtue of the context sub-
space projection of the wavelet coefficients, with the context index employed as the invariant correspondence
between successive frame parameters, thereby enabling the frame-wise tracking at the coefficient level.
Simulation results show significant improvement over the wavelet-based speech enhancement algorithms in
terms of the segmental signal-to-noise ratio improvement by as much as 226%, the perceptual evaluation
of speech quality by 36%, the short-time objective intelligibility by 17.8% and the cepstral distance
by 33.3%. When benchmarked with the well-established short-time-Fourier-transform-based counterparts,
the proposed wavelet thresholding algorithm offers favorable and more robust performances, particularly
under non-stationary noise conditions, with no adverse musical noise effect.

INDEX TERMS Context modeling, speech enhancement, wavelet thresholding.

I. INTRODUCTION
Besides its typical applications in teleconferencing, hands-free
communications, hearing devices, etc., signal processing for
speech enhancement (SE) has recently witnessed increasing
demand in emerging applications. Much of this growth is
attributed to the increased adoption of voice-control applica-
tions, such as voice-activated robots and in-vehicle voice nav-
igation [1]–[3]. Moreover, Internet-of-Things (IoT) enabled
applications, such as smart home appliances and connected
machines, generally make use of voice commands [4]–[6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Wang .

Since these applications require automatic speech recogni-
tion, it is inevitable that environmental background noise is
picked up and the quality of speech signals to be processed
can be adversely affected. To this end, the SE is of the utmost
importance in maintaining the integrity of these evolving
applications.

Most of the SE algorithms developed so far are based
on the short-time Fourier transform (STFT). Among these,
the spectral subtraction (SS) has become one of the most
popular algorithms due to its simplicity [7]. However, its
major drawback is the associated high level of musical
noise, which usually has a negative impact on speech quality.
Various modified versions of the SS algorithms have been
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proposed to reduce the musical noise, such as multi-band
SS and iterative SS based on high-order statistics [8]–[12].
Another well-established STFT-based SE algorithms relies
upon the minimum mean square error (MMSE) estimation
of the speech spectrum [13]. Various MMSE estimators have
been developed to obtain enhanced speech from noisy speech
signals using different approximations of the complex-valued
spectrum [14]–[19]. As compared to their SS counterparts,
the MMSE estimators have been demonstrated to provide a
better performance trade-off between the noise attenuation
and musical noise effect, thereby yielding better enhanced
speech quality. Further improvement on the trade-off
can be obtained by incorporating uncertainty in speech
presence [17], [25] and a perceptual speech model [26].

Following its tremendous success for image
denoising [27]–[30], the wavelet thresholding has made
inroads into speech enhancement [31]–[41], which is
hereafter also referred to as speech denoising. This was
mainly motivated by advantages offered by the wavelet
transform (WT) over the STFT. Since the WT offers
time-frequency multi-resolution processing, it is more suit-
able to handling non-stationary signals inherent in the char-
acteristics of speech and its environmental noise. In addition,
the WT makes no use of windowing, which inevitably
entails bias-variance trade-off in spectral estimation, causing
possible generation of musical noise as experienced in the
STFT domain [39]. Another benefit of the WT is its sim-
plicity in processing real values typically associated with
speech wavelet coefficients instead of complex values in the
STFT domain.

Thus far, however, the level of speech enhancing per-
formances in the WT domain has been inferior to its
STFT counterparts. The main bottleneck lies in the difference
in the underlying characteristics between image and speech
signals. Since typical image wavelet coefficients exhibit a
near-sparse condition in each subband, image denoising by
thresholding the noise coefficients using the conventional
hard/soft threshold function is effective [27], [28]. On the
contrary, speech wavelet coefficients exhibit significant
deviation from the near-sparse condition, making them insep-
arable from the noise coefficients in a noisy speech environ-
ment. As a consequence, not only the wavelet thresholding
algorithms are less effective for speech denoising, but the
enhanced speech signals are also subject to high distortion.

To enable more distinctive separation between speech and
noise wavelet coefficients in each subband, various tech-
niques have been proposed. Instead of using the octave-band
WT, the wavelet packet transform (WPT) was employed for
fine-resolution uniform subband decomposition in [31]–[34],
and the perceptual wavelet packet (PWP) for non-uniform
subbands based on models of human auditory speech percep-
tion in [35]–[38]. To provide improved extraction of speech
from noise, the Teager energy (TE) operator was also uti-
lized in [31], [37], and [38]. With the use of a two micro-
phone system, the blind source separation (BSS) technique
was employed to separate the speech and noise wavelet

coefficients in [40], [41]. To reduce speech distortion, various
custom threshold functions with continuous derivative char-
acteristic were proposed in [36]–[41] to replace the hard/soft
threshold function.

In addition, various improved optimum thresholding
methods that incorporate characteristics of speech and/or
noise coefficients at both frame and subband levels have
been developed. In [32], the segmental signal-to-noise
ratios (SNR) of the wavelet coefficients were included for
the threshold calculation. In [33], the band recursive thresh-
old, based on a weighted sum of noise wavelet coefficients
from other subbands, was presented. In [34], the iterative
Kalman filter was applied to the thresholding method, assum-
ing Gaussian noise. It is not until recently that the prior
probability distributions of both speech and noise have been
incorporated, and significant performance improvement was
achieved. In [36], the threshold formulation was based on
the symmetric Kullback Leibler divergence and a Gaussian
distribution for both speech and noise wavelet coefficients.
In [37] and [38], the student’s t-distribution and the Rayleigh
distribution were employed, respectively, to model the
TE operated speech and noise coefficients.

In this work, we propose an adaptive wavelet thresholding
algorithm with the generalized Gaussian (GG) priors and
frame-wise context modeling for general purpose speech
enhancement, with emphasis on emerging voice-control
applications. The optimum threshold is made adaptive at both
the coefficient and frame levels by virtue of modeling each
individual wavelet coefficient as a GG random variable with
its standard deviation estimated and updated on a frame-wise
basis. Summarized below are the technical contributions of
the proposed algorithm and its main advantages over other
wavelet thresholding counterparts.
• Instead of employing the Gaussian priors in [36]
and [42], the student’s t-distribution prior in [37] and the
Rayleigh prior in [38] for the derivation of the optimum
threshold, the use of the GG priors in the proposed algo-
rithm fully represents the statistical characteristics of
speech and noise wavelet coefficients, and hence results
in more accurate optimum threshold, particularly over
various non-stationary noise conditions.

• The direct statistical modeling of the wavelet coeffi-
cients in the proposed algorithm is more accurate than
the indirect modeling of the TE operated PWP coef-
ficients in [37], [38], where only instantaneous energy
characteristics of wavelet coefficients are retained after
the TE operation.

• Through the frame-wise context modeling, the proposed
algorithm offers a different optimum threshold value
for each individual wavelet coefficient in each sub-
band, instead of using the same threshold value for
all the wavelet coefficients in each subband, as in the
WPT algorithms in [31]–[34], and the PWP algorithms
in [35]–[38].

• The frame-wise context modeling also offers statis-
tical estimation and update of each individual noise
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coefficient on a frame-to-frame basis. This is in
contrast to the WT-based algorithms with statistical
priors in [36]–[38], where the noise statistics were esti-
mated and updated at the subband level using the meth-
ods developed elsewhere, i.e. the noise energy method
in [32], and the improved minima controlled recursive
averaging (IMCRA) method in [43]. Note that, for the
conventional context modeling in [42], there was no
noise update, and the estimation was directly made at
the highest subband, and used across all the subbands.

• The coefficient-level thresholding results in a small
number of subbands as typically required in image
denoising, e.g. four octave bands (see Fig.3). This is
unlike the subband-level thresholding in otherWT-based
algorithms [31]–[38], which invariably requires more
than twice the number of subbands as compared to the
proposed algorithm, so as to achieve acceptable speech
enhancement performance.

• The coefficient-level thresholding enables the use of
a simple wavelet type (the Daubechies family in this
work), and the simple soft-threshold function with no
adverse effect on speech quality. This is in contrast to the
need for special psychoacoustic or perceptual wavelets
in [35]–[38] and more sophisticated custom threshold
functions by the subband-level thresholding algorithms
in [32], [33], [35], [37], and [38] to avoid excessive
distortion in the enhanced speech.

• Unlike its BSS counterparts in [40], [41], the proposed
adaptive wavelet thresholding algorithm requires only
one single microphone.

This paper is organized as follows. In Section II, the oper-
ational overview of the proposed wavelet thresholding
SE algorithm is given. In Section III, the GG distribu-
tion model for typical speech and noise wavelet coeffi-
cients is characterized, followed by the formulation under
the GG priors to find the optimum threshold. In Section IV,
the frame-wise context modeling using a subspace formu-
lation for the frame-to-frame estimation and update of the
statistical parameters is detailed. The implementation, sim-
ulation, and comparative performance evaluation with the
recent state-of-the-art WT-based SE algorithms are pro-
vided in Section V. In addition, a benchmark with some
well-established STFT-based SE algorithms is also included.
It is demonstrated that the proposed adaptive wavelet thresh-
olding offers superior performances than theWT-based coun-
terparts, and exhibits more favorable and robust performances
as compared to the STFT-based algorithms, without the musi-
cal noise effect. Finally, the conclusion and prospects are
given in Section VI.

II. OVERVIEW OF PROPOSED ADAPTIVE WAVELET
THRESHOLDING
To describe the operational overview, the block diagram
of the proposed adaptive wavelet thresholding algorithm
for SE is shown in Fig. 1. From the diagram, the noisy
speech input signal is divided into frames, and each frame is

FIGURE 1. Block Diagram of the proposed wavelet thresholding algorithm
with frame-wise context modeling for speech enhancement.
(∗See Section IV, ∗∗See Section III).

transformed to the wavelet domain using a regular WT with
octave bands. This is followed by the frame-wise context
modeling where the statistical parameters of each individ-
ual speech and noise wavelet coefficients, including the
shape parameter and standard deviation under the GGmodel,
are estimated and updated on a frame-wise basis. Subse-
quently, the optimum coefficient-level threshold value, for-
mulated based on the Bayesian MMSE under the GG prior,
is determined. Each noisy speech coefficient is thresholded
accordingly using the soft-thresholding function to obtain
its clean speech estimate. The inverse WT is then applied,
and the denoised speech signal is reconstructed through the
overlap-add method.

In contrast to image denoising in [30], where an approxi-
mation using the Gaussian distribution for image and noise
coefficients was shown to be sufficient, the incorporation
of the GG distribution to the optimum threshold formu-
lation in this algorithm makes it highly compatible with
speech and its noise environments. As a result, consistent
speech enhancement performance under various noisy con-
ditions can be achieved. Through numerical computation,
an empirical near-optimal threshold as a function of the shape
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parameter and standard deviation of the GG model is devel-
oped, as will be described in Section III.

The frame-wise context modeling developed in this work
is the extension of the context modeling for image denoising
in [42] to speech enhancement which requires a frame-based
processing. Unlike image denoising, the frame-wise basis
of speech processing necessitates recursive updating and
transferring operation of parameters between frames. While
the operation can be executed at the subband level in the
WT domain, it is ill-defined at the individual wavelet coef-
ficient level, because there is no unique correspondence of
the wavelet coefficients between successive frames, due to
their inherent temporal characteristic. Based upon the oper-
ational insight of the context modeling as low-dimensional
subspace projection and clustering, it is thus proposed in
this work to project the current-frame temporal coefficients
into a subspace formed by the previous-frame counterparts,
before subsequent pairing between the context parameters of
the projected coefficients with the same context index. This
is henceforth denoted as the frame-wise context modeling.
Its operational details will be described in Section IV.

III. OPTIMUM THRESHOLD FORMULATION FOR SPEECH
ENHANCEMENT
Let the noisy speech signal, y(t), be modeled in the time
domain by y(t) = s(t) + n(t), where s(t) denotes the
clean speech and n(t) denotes the additive noise. Consider a
frame-wise processing, where the signals are divided into a
sequence of windowed time-domain frames, with each frame
represented by their corresponding M̃ × 1 vectors yyy(l), sss(l)
and nnn(l), where M̃ is the number of time-domain samples per
frame or frame length, and l denotes the frame index.

The WT is typically implemented as a critically-sampled
octave-band filter bank. This essentially groups the wavelet
coefficients into low/high subbands of different scales, and
each subband is related to the frequency band of the signals.
The wavelet coefficients in the high-frequency subband, Hi,
with i = 1, 2, . . . , I is called the details and those in the
low-frequency subband, Li, is called the approximations,
where i is the scale, and I is the largest number of scales.
A subband at scale i has sizeM = M̃/2i.
For each frame, the wavelet transform of the noisy speech

model is expressed by

YYY i(l) = SSS i(l)+NNN i(l) (1)

where YYY i(l) = W iyyy(l), SSS i(l) = W isss(l), and NNN i(l) = W innn(l)
denote the wavelet coefficients vectors of yyy(l), sss(l),
and nnn(l), respectively, andW i is the one-dimensional orthog-
onal WT operator at scale i. For notational convenience,
the scale, i, and the frame index, l, will not be explicitly
included, unless otherwise necessary for clarity.

Speech denoising using the wavelet thresholding method
is accomplished by applying the noisy speech wavelet coeffi-
cients, Y (j), in each subband with a threshold function, where
j = 1, 2, . . . ,M is the coefficient index. In speech denoising,

the soft-thresholding function

T (Y ,T ) = sgn(Y ) ·max(|Y | − T , 0) (2)

is typically employed, where T denotes the threshold value,
and sgn(·) denotes the sign of the wavelet coefficient, Y . The
function in (2) essentially shrinks its argument Y towards zero
by the threshold value, T , and hence is also called the shrink-
age function. The soft-thresholding offers small discontinuity
and less abrupt artifacts in the thresholded coefficients as
compared to the hard-thresholding, as well as less computa-
tional complexity as compared to other non-linear threshold-
ing functions [32], [38]. Note that, the thresholded wavelet
coefficients are subsequently transformed by W−1T (YYY ,T ),
where W−1 is the inverse WT operator, to reconstruct the
time-domain denoised signal.

A. PROBABILITY DISTRIBUTIONS OF SPEECH/NOISE
COEFFICIENTS
In order to achieve effective noise reduction based on a
statistical estimation framework, the probability distribution
function (pdf) associated with clean speech and noise signals
must be accurately modeled. In the STFT domain, a Gaussian
or normal distribution is typically assumed for the real and
imaginary discrete Fourier transform (DFT) coefficients of
the signals. However, it has been shown that, for a short-frame
period, a non-Gaussian distribution, such as a Laplacian
or Gamma distribution, provides a better fit [20]. These
non-Gaussian models are in fact special cases of a GG dis-
tribution model, where the GG pdf of a random variable X
with a zero mean is given by

p(X ) = GG(σ, β)

=
1

20(1+ 1
β
)A(σ, β)

exp

(
−

∣∣∣∣ X
A(σ, β)

∣∣∣∣β
)

(3)

where 0 denotes the gamma function, the shape parameter,
β > 0, is the measure of a peakness of the distribution,
A = [σ 20(1/β)/0(3/β)]1/2 is a scaling factor with
σ > 0 being the standard deviation. Note that, (3) becomes
a Laplacian distribution at β = 1, and a Gaussian or normal
distributions at β = 2.

Since the noise attenuation by thresholding of noisy speech
wavelet coefficients relies upon statistical estimation, a suit-
able probability distribution model for the wavelet coeffi-
cients is essential and must therefore be characterized. Fig. 2
shows histogram plots of the wavelet coefficients at subbands
L3, H3, H2, H1 for full-length clean speech and raw noise
data selected from the NOIZEUS database [44]. Note that,
all the histograms have the standard deviation normalized to
σ = 1 for ease of comparison. Also shown in each of the
plots is the GG distribution curve (solid lines) with its shape
parameter, β, estimated to fit the histogram by using the
maximum likelihood estimation (MLE) algorithm available
in MATLAB [45]. To show that the GG model can better
represent the statistical distribution of thewavelet coefficients
than the models employed by other algorithms, the fitted
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FIGURE 2. Histograms and fitted distribution curves at subbands L3, H3, H2, H1 for speech and noise signals selected from the NOIZEUS database.
(a) Histograms and fitted curves for wavelet coefficients of clean speech, car noise, and airport noise using GG model (black lines) and Gaussian model
(red lines), (b) histograms and fitted curves for TE operated wavelet coefficients of the same signals using Rayleigh model (blue lines).

distribution curve using the Gaussian model (red lines),
as employed in [36] and [42]), are included in Fig. 2(a) for
comparison. In Fig. 2(b), the distribution curves using the
Rayleigh model in [38] fitted to the histograms of the TE
operated wavelet coefficients of the same speech and noise
signals of Fig. 2(a) are given. As clearly observed in the fig-
ures, unlike the other distribution models, the GG model can
accurately capture the statistical distribution of the wavelet
coefficients across various conditions. Following this, the
GG distribution will be employed as the prior for speech
denoising using wavelet thresholding in this work.

B. OPTIMUM THRESHOLD UNDER GG PRIORS
Fig. 3 shows the variation of the shape parameters of the
wavelet coefficients at all subbandswith the largest number of
scales, I = 3, for a wide range of signals from the NOIZEUS
database [44], including the shape parameters of clean speech
signals, βS , in Fig. 3(a), the shape parameters of various noise
signals, βN , i.e. a white Gaussian noise (WGN) in Fig. 3(b),
babble noise in Fig. 3(c), car noise in Fig. 3(d), and airport
noise in Fig. 3(e). Note that, for the noisy speech corpus
NOIZEUS, there are 30 IEEE speech sentences produced and

corrupted by different types of real-world noise signals from
the AURORA database [46] at different SNRs.

By inspecting Fig. 3, it is noticed that whereas the shape
parameters of clean speech signals, βS , at each subband only
vary slightly and stay less than 0.8, the shape parameters of
the noise signals, βN , exhibit more significant variations with
βN ranging from 1.0 to about 2.0 depending on the type of
noise. It is interesting to note that although the GGmodel was
also employed as the prior for the image denoising in [30],
it was only applied to the clean image, while a Gaussian
distribution is assumed for the noise. Evidently, this is not
suitable in speech denoising where the distribution of both
the speech and noise wavelet coefficients tend to be of a
super-Gaussian characteristic.

Under the GG distribution as the prior, the wavelet thresh-
olding algorithm using the shrinkage function for speech
enhancement can be formulated based on the Bayesian sta-
tistical framework. It is assumed that the wavelet coefficients
are modeled as independent samples of the GG distribution
at each subband, where S ∼ GG(σS , βS ) for the clean speech
wavelet coefficients with σS being their standard deviation,
and N ∼ GG(σN , βN ) for the noise wavelet coefficients
with σN being their standard deviation. Note that, the fol-
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FIGURE 3. Variation of the shape parameters, β, of the GG models for the
wavelet coefficients of speech and noise signals at all subbands (L3, H3,
H2, H1) with the largest number of scales I = 3. (a) βS of clean speech
data set, (b) βN of WGN, (c) βN of babble noise, (d) βN of car noise, and
(e) βN of airport noise. (10 data sets for speech and noises were chosen
from the NOIZEUS database.)

lowing derivation is also applicable to the case where each
wavelet coefficient at a subband is individually modeled as a
random variable in Section IV. Let the estimator of the clean
speech wavelet coefficients, Ŝ, be the shrinkage function
with the argument being the noisy wavelet coefficients, Y ,

as given by (2), i.e., Ŝ = T (Y ,T ). Based upon the Bayesian
MMSE approach, the optimum threshold, TB, is defined as
the value that minimizes the expected square error between
the coefficients of the estimated and actual clean speech with
respect to the joint pdf, p(Y |S). Thus, we have

E{̂S − S}2 = ESEY |S{T (Y ,T )−S}2

=

∫∫
∞

−∞

(
T (Y ,T )− S

)2
p
(
Y |S

)
p(S)dYdS (4a)

with

TB = argmin
T

ESEY |S{T (Y ,T )− S}2 (4b)

where the conditional coefficients are Y |S ∼ GG(σN , βN ),
and E{·} denotes the expectation operator. It is known that,
under the GG priors, the minimization given in (4a) and (4b)
has no closed-form solution for TB and one must resort to
numerical computation to find the optimum threshold.

Given the values of the shape parameters as summarized
in Fig. 3, it is assumed that βS is constant at 0.5 and the
range of βN is limited from 1.0 to 2.0, for simplification of
the empirical optimum threshold expression. The empirical
expression was assumed to be a product between σN and the
fractional polynomial expansion of the ratio σS/σN , with a
minimum possible number of terms that yield acceptable fit-
ting. After a few iterations to determine the forms of the expo-
nents and coefficients of the fractional polynomial, we arrive
at the following closed-form approximation of TB with a good
fit to the numerical computation using (4a) and (4b),

TB = σN

 K0
βS(

σS
σN

)K1

(
βS
βN
−

1
6

) +
(
1− K0

3βS

)
(
βS
βN
+

σS
σN

)K2

(
βS
βN

) + K3

.
(5)

The approximated optimum threshold for SE in (5) is depen-
dent on both the clean speech and noise standard deviations,
σS and σN , as well as the ratios σS/σN and βS/βN . Note that,
the squared standard deviation ratio, σ 2

S /σ
2
N , is equivalent

to the a priori SNR of the DFT coefficients defined in the
frequency-domain speech processing. As compared to the
simple approximated threshold based on the Gaussian priors
for image and noise signals in [30], the empirical closed-form
threshold in (5) is more involved because both clean
speech and noise wavelet coefficients are modeled by the
GG distribution.

For validation, Fig. 4 shows comparative plots of the nor-
malized optimum threshold, TB/σN , against σS/σN , using the
numerical computation in (4a), (4b), and the approximation
in (5), at a fixed βS = 0.5, and different βN values from 1.0 up
to 2.0. The constants in (5) at K0 = 0.5, K1 = 5, K2 = 6 and
K3 = 0.3 show good agreement to fit the numerical curves.
The closed-form equation offers the approximated threshold
values within a small deviation from the MMSE obtained
via numerical calculation over the given ranges of the shape
parameters. From the plots in Fig. 4, it can be deduced that
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FIGURE 4. Numerical (dotted · · · ) and approximated (solid −) normalized
optimum threshold TB/σN against σS/σN at βS = 0.5 and different values
of βN .

TB/σN generally increases as σS/σN decreases. In addition,
the rate of increase is higher at a smaller σS/σN .

Further insight can be gained by plotting TB/σN against
βN at different σS/σN ratios, as shown in Fig. 5. When
σS/σN ≥ 1, TB/σN stays practically independent on βN .
On the contrary, as σS/σN gets smaller, TB/σN starts to
increase sharply, particularly at a small βN < 1, where
the noise distribution becomes more super-Gaussian. This
is attributed to more occurrence of small noise amplitudes
which has more impact on speech degradation when the
σS/σN ratio is small, thereby resulting in a higher TB. Such
a high adaptivity of TB at a low σS/σN ratio indicates the
significance of incorporating the non-Gaussian distribution
model in the noise statistics for speech denoising.

FIGURE 5. Plot of normalized optimum threshold TB/σN against βN at
different values of σS/σN to investigate dependence of TB/σN on βN
and σS/σN .

The calculation of the optimum threshold, TB, under the
GG priors requires the estimation of the shape parameter, βN ,
and the standard deviations, σS and σN . The shape parameter
estimation is carried out at a subband level since it normally
exhibits small variation over each subband. The estimate of
the shape parameter, β̂N , can be determined at each subband
level by using the following equations derived by the method
of moment in [47] to avoid using the MLE algorithm in

MATLAB which entails high computational complexity, i.e.,

κ(Y ) =

[
1
M

∑M
j=1 |Y (j)|

]2
1
M

∑M
j=1 |Y (j)|2

(6)

β̂N =
1
2a1

(
−a1 +

√
a22 − 4a1a3 + 4a1κ(Y )

)
,

κ(Y ) ∈ [0.131, 0.449) (7)

a1 = −0.536, a2 = 1.169, a3 = −0.152. Note that,
with reference to [47], the parameter values are truncated to
three significant digits, and only the equations for the shape
parameter, βN ∈ [0.277, 2.632], are given here to cover
the typical range of speech wavelet coefficients summarised
in Fig. 3. If the estimate, β̂N , is outside this range, it will be
limited to the corresponding min/max range values.

In [30], the estimates of σS and σN were also accomplished
at a subband level, where all the wavelet coefficients in
the subband were employed to determine both σS and σN ,
and thus they all share the same TB. In particular, σN was
only obtained at H1 and its value was used at all subbands.
However, such a simple estimate will invariably result in
poor quality in the denoised speech because of inherent
non-sparsity in speech wavelet coefficients. A means to esti-
mate and update σS and σN at an individual coefficient level
in each subband on a frame-wise basis is the subject of the
next section.

IV. FRAME-WISE CONTEXT MODELING
In the frame-wise context model, the noisy speech wavelet
coefficients, YYY , in (1) at each subband are modeled as a
temporal mixture of GG random variables with different
standard deviations. As a consequence, a different optimum
threshold, TB(j), for each individual Y (j) can be determined
for j = 1, 2, . . . ,M , thereby yielding significant improve-
ment in speech denoising performance without the need for
fine subband resolutions as employed in most of the reported
WT-based algorithms for SE [38], [39].

The frame-wise context model for speech denoising com-
putes and updates the threshold value on a frame-by-frame
basis. In order to enable recursive updates of the model over
successive frames, it is proposed in this work an interpreta-
tion of the context modeling in view of subspace projection
and clustering. Specifically, the context model is essentially
a low-dimensional subspace representation of the wavelet
coefficients. The main assumption is that high-dimensional
data can be better clustered by exploiting a certain similarity
measure in the projected lower-dimensional subspace, which
adequately describes the data. Such an interpretation is use-
ful for both in-frame and successive-frame correspondences
between the wavelet coefficients and their contextual param-
eters, as will be later described later in Section IV-C.

The block diagram showing the operation of the
frame-wise context modeling is given in Fig. 6. The wavelet
coefficients are first projected onto the context subspace. This
is followed by a formation of clusters, or context clustering,
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FIGURE 6. Block diagram of the proposed frame-wise context modeling.

in the context subspace by grouping the coefficients whose
associated context values are close within a specified range.
Note that, these clustered coefficients are not necessarily
adjacent in the temporal WT domain. With respect to the
cluster in the context subspace, the shape parameter, β, and
standard deviation, σ , are estimated under the GG model
assumption. By pairing between the same index in the pro-
jected context subspace, the recursive update of the statistical
parameters within the same frame and between successive
frames can be accomplished.

A. CONTEXT SUBSPACE PROJECTION
The subspace projection of the frame-wise context model is
formulated by expressing the context of each wavelet coef-
ficient, Y (j), as a weighted average of the absolute values
of its neighbouring coefficients, with the least-square (LS)
error minimization being the objective function. Note that,
the absolute value is employed because more correlation, and
hence more statistical information from the otherwise uncor-
related nearby coefficients of the orthogonal wavelets, can be
acquired [42]. As theoretically shown in [48], unlike other
minimization criteria such as sparseness and low rank, the
LSmethod takes the correlation structure of data into account.
As a result, highly correlated data tend to be grouped together
in the low-dimensional LS projected subspace, yielding better
clustering, and thus more accurate estimation of the associ-
ated GG model parameters of each wavelet coefficient.

Under the LS subspace formulation, the context model-
ing can be described as follows. At a given subband with
M wavelet coefficients, the context value, Z (j), of the

coefficient Y (j), which is essentially the projection of |Y (j)|
onto the LS subspace, is given by

ZZZ = PPP|YYY | (8)

with

PPP = UUU (UUUTUUU )−1UUUT
+ λIII (9)

where YYY is the M × 1 vector containing all the Y (j) coef-
ficients, ZZZ is an M × 1 vector containing all the associated
context values Z (j) of Y (j),PPP is theM ×M projection matrix
analytically derived from theM ×pmatrixUUU , III is anM ×M
identity matrix. The operator | · | denotes the absolute value
of each element in a vector. The regularization parameter,
λ, helps control over-fitting in the LS method [48]. The
matrixUUU has each of its rows formed by the absolute values of
p neighbouring coefficients of Y (j), including its parent coef-
ficient at lower subband, with the choice of p appropriately
selected to capture to local contextual standard deviation of
Y (j) [42]. Note that, in (8) and (9), the matrix PPP essentially
projects |YYY | onto the column space of the matrixUUU , yielding
the context vector ZZZ .

B. CONTEXT CLUSTERING
The clusters in the projected context subspace,Q, are formed
by grouping the coefficients, Y (j), that have close context
values, Z (j). Following this, the context values Z (j) of Y (j) are
sorted in ascending orders, and subsequently given indices
k = 1, 2, . . . ,M , to yield Z (k) of Y (k), where k denotes
the context index. This temporal-context index association,
or j− k index association, between Z (j) and Z (k) leads to the
rearrangement of Y (j) to Y (k), which enables classification of
the wavelet coefficients into the same local cluster by virtue
of some nearest context indices, k , as the similarity measure.
The noisy speech projection matrix, PPPY , projects |YYY |

onto a noisy speech subspace, QY , and the noise projection
matrix, PPPN , projects |NNN | onto a noise subspace, QN .
Although, by using (9), the projection matrix, PPPY , can be
determined during a speech-activity (SA) frame when YYY =
SSS + NNN , and the projection matrix, PPPN , during a non-speech-
activity (NSA) frame (or noise-only frame) when YYY = NNN ,
the definitions of PPPY and PPPN are general irrespective of the
frame type.

Fig. 7 shows the diagram illustrating the projection and
association among the wavelet coefficient, Y (j), in the
temporal domain, Y (kY ) in the noisy speech context sub-
space, QY , and Y (kN ) in the noise context subspace,
QN . Through the projection matrix PPPY , Y (j) is rearranged
as Y (kY ), forming the j − kY index association. Simi-
larly, through the projection matrix PPPN , Y (j) is rearranged
as Y (kN ), forming the j − kN index association. In the
context subspace, the standard deviations, σY associated
with Y (kY ), and σN associated with Y (kN ), can then be cal-
culated via the context clustering.

Fig. 8 helps illustrate the rearrangement, clustering, and
j − kY ,N index association through the subspace projection.
The plots in the figure show the rearrangement of Y (j) from
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FIGURE 7. Diagram illustrates the rearrangement and j − k association
between Y (j ) in the temporal domain and Y (kY ,N ) in the context
subspace through the projection matrices, PPPY (during an SA frame) and
PPPN (during an NSA frame). By using the context clustering, σY ,N
associated with Y (kY ,N ) can then be calculated.

an SA frame as Y (kY ) in a noisy speech context subspace
in Fig. 8(a), and of Y (j) from an NSA frame as Y (kN ) in
a noise context subspace in Fig. 8(b). Note that, the speech
samples of these plots are corrupted by additive WGN at
5-dB SNR, with M = 256 and the number of neighbouring
coefficients is p = 3 at subband H1. By examining the
coefficient samples, a, b, c, d from an SA frame in Fig. 8(a),
and e, f , g, h from an NSA frame in Fig. 8(b), it is seen that
although they are far apart under the temporal index, j, they
can become adjacent and hence are within the same local
cluster under the context index, kY and kN . This indicates
the correlation between the coefficient samples in the corre-
sponding context subspace, as determined by the LS subspace
formulation. The plots also illustrate the index association
between the coefficient samples.With the samples, a, b, c and
d from an SA frame in Fig. 8(a), we have Y (j) at j = 29, 70,
129, and 207, associated with Y (kY ) at kY = 218, 208, 217,
and 211, respectively. With the samples, e, f , g and h from
an NSA frame in Fig. 8(b), we have Y (j) at j = 25, 77, 126,
and 211, associated with Y (kN ) at kN = 96, 92, 87, and 101,
respectively.

An approach introduced here to find the cluster mem-
bers of Y (k0) under the context index makes use of two
opposite-sliding windows along the context index, k , each
containing L coefficients to make a total of 2L + 1 cluster
points. The choice of the parameter L is a trade-off between
the locality of each cluster and the accuracy of its estimated
standard deviation.

Illustrated in Fig. 9 are two possible conditions encoun-
tered by the opposite-sliding windows. Under the condition
L < k0 < (M − L) (e.g., the window pair A-B for k0 = 128
in Fig. 9), those Y (k) whose context indices fall within the two
opposite windows adjacent to the index k0 are recruited as the
members of Y (k0). On the other hand, under the conditions
k0 ≤ L (e.g., the window pair C-D for k0 = 10 in Fig. 9) and
k0 ≥ (M−L), one of the L-point windows can no longer slide,
and thus the members within the window become fixed. With
such a condition, the cluster of Y (k0) is instead formed by
the members of the non-sliding window that contains k0, and

FIGURE 8. Plots of sample wavelet coefficients Y (j ) versus temporal
index, and their corresponding Y (k) versus context index after subspace
projection onto (a) a noisy speech context subspace, and (b) a noise
context subspace. Two groups of coefficient points (a,b, c,d ) from an SA
frame and (e, f ,g,h) from an NSA frame are included to help examine
the rearrangement, context clustering, and j − k index association.

the sliding window adjacent to k0. Unlike the use of a single
sliding window in [42], the two-window approach guarantees
non-fixed members for all the clusters. This provides a con-
sequent benefit to better estimation of the standard deviation
associated with the random variable, Y (k0), particularly when
k0 is near both ends of the context index.

Having finished forming the clusters, the contextual stan-
dard deviation of the wavelet coefficient, Y (k0), which
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FIGURE 9. Opposite-sliding window pair A-B and C-D, with L = 16 at
M = 256, for determining the clusters of Y (k0) at k0 = 128 (k0 = M/2)
and k0 = 10 (k0 ≤ L), respectively.

is σY (k0), is estimated from the root mean square value of
all the coefficients within its cluster, which is

σ 2
Y (k0) =

1
2L + 1

∑
k∈Bk0

Y 2(k) (10)

where Bk0 denotes the cluster member set.
Fig. 10 shows sample plots of the standard deviations

versus the context index of wavelet coefficients, calculated
by the opposite-sliding window approach to form the cluster
members, and by using (10) with L = 16 and M = 256.

FIGURE 10. Plots of standard deviations versus context index,
determined from the clustering of the sample wavelet coefficients
using (10), for (a) Y (kY ) of Fig. 8(a) and (b) Y (kN ) of Fig. 8(b), with L = 16.

Fig. 10(a) shows σY (kY ) associated with each individual
wavelet coefficient, Y (kY ), in Fig. 8(a). Fig. 10(b) shows
σN (kN ) associated with each Y (kN ) in Fig. 8(b). Note that,
each coefficient is modelled as a random variable under the
GG pdf as explained in Section 3. By examining the coef-
ficient samples a, b, c, d in Fig. 10(a), which correspond to
the sample coefficients in Fig. 8(a), the standard deviation,
σY (kY ), of Y (kY ) are σY (218) = 0.0375, σY (208) = 0.034,
σY (217) = 0.0373, and σY (211) = 0.0359. Similarly, for
the samples e, f , g, h in Fig. 10(b), which correspond to
the sample coefficients in Fig. 8(b), the standard deviation,
σY (kN ), of Y (kN ) are σN (96) = 0.0199, σN (92) = 0.0198,
σN (87) = 0.0202, and σN (101) = 0.0195.

It should be noted that the standard deviation of a ran-
dom variable is proportional to the spreading of its value.
As noticed in Fig. 10(a) and Fig. 10(b), the value of σY (kY )
falls at kY = 146, and that of σY (kN ) falls at kN = 155
and kN = 230. Therefore, as observed in Fig. 8, the corre-
sponding wavelet coefficients Y (kY ) in Fig. 8(a) and Y (kN )
in Fig. 8(b) tend to have lower values than their neighbouring
coefficients. As also noticed from Fig. 10, σY and σN tend to
increase at a larger context index, where more coefficients
with higher values are observed. In addition, σY increases
more sharply at high context indices. This reflects the typ-
ical characteristic of speech wavelet coefficients in Y (kY ),
which exhibits more probability at higher amplitudes than its
noise, with the shape parameter condition βS < βN in the
GG models.

Under the assumption of independent speech and noise sig-
nals, the estimated contextual standard deviation, σ̂S , of the
clean speech coefficient, S(j), can be determined by

σ̂ 2
S (j) = max

[(
σ 2
Y (j)− σ

2
N (j)

)
, σ 2
ε

]
(11)

where σε is a lower-bound value for σS , introduced to enable a
control of possible low-level speech artifacts after denoising.
It is important to point out that the calculation of σ̂ 2

S in (11)
is carried out in the temporal WT domain with the associ-
ation between the temporal index, j, and the context index,
kY , kN , determined through PPPY , PPPN , respectively, as already
described and summarized in the diagram of Fig. 7.

C. FRAME-WISE CONTEXT UPDATE OF NOISE
Since a speech signal is processed on a frame-wise basis,
it is evident from (11) that in order to compute σ̂S , σY , and
σN must be simultaneously available at the same time-frame
index. One simple method is to set σN = σY during an
NSA frame, and according to (11), σ̂S is equal to σε. How-
ever, this method can result in a significant attenuation of
speech when an SA frame is incorrectly identified as an
NSA frame by the voice activity detector (VAD). Moreover,
during an SA frame, σN is not available and thus needs to
be estimated from previous NSA frames. Whereas σY can be
calculated independently at a current frame, the estimation
of σN , or σ̂N , during an SA frame requires the data between
frames in order to obtain more accuracy [49]. This invariably
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requires an approach to accomplish frame-to-frame cor-
respondence between the contextual standard deviations.
A practical means to the estimation of σN and the correspon-
dence will be developed later in this section.

1) CONTEXT PAIRING
One practical approach widely employed in the STFT-based
SE algorithms is to estimate and update noise signal during
NSA frames. By assuming that noise is more stationary than
speech, and that there exists certain noise correlation between
successive frames, the estimated noise parameters can be
maintained and employed during subsequent SA frames.
To this end, the NSA and SA frames are detected by means
of a VAD.

In the STFT, signals are transformed from the time domain
onto the frequency domain, and the frame-invariant frequency
index is employed as the correspondence for recursive updat-
ing and transferring operation of parameters between suc-
cessive frames. By contrast, the wavelet coefficients of the
WT is of temporal nature, making the coefficient index j
varying between frames. To resolve this issue, it is proposed
that the context index, kN , obtained from the noise subspace
projection in the context model, serves as the frame-invariant
index to perform the contextual noise-parameter correspon-
dence, both within the same frame and between successive
frames. This is possible under the quasi-stationary noise
assumption where the noise subspace and statistics between
successive frames are considered to be correlated. In partic-
ular, the noise projection matrix, PPPN , is employed to project
|YYY | ontoQN in order to obtain the j− kN index association at
each frame. The frame correspondence is then accomplished
by means of pairing the noise parameters with the same noise
context index kN in QN .

2) RECURSIVE UPDATE
Having established the noise context index as the
frame-invariant correspondence, the estimation and update of
the standard deviation, σ̂N , and the noise projection matrix,
PPPN , can now be described. During the first few frames, it is
assumed thatYYY = NNN . Thus, both the parameters σ̂N andPPPN of
the noise wavelet coefficients can be initialized by the context
modeling. For subsequent frame index, l, if an NSA frame
is detected, YYY (l) = NNN (l) will be used to partially modify the
parameters in a recursive manner. This recursive update using
partial estimates of the current frame serves not only to track
the non-stationarity associated with the noise signal, but also
to make the denoising algorithm more robust to inaccuracy
of the VAD. On the other hand, if an SA frame is detected,
YYY (l) = SSS(l)+NNN (l), σ̂N andPPPN obtained in the previous frame
index, l − 1, are maintained.

Based upon the described operation, the update equations
can be given as follows. Since the noise projection matrix,
PPPN , is a function of UUU , which is in turn derived from YYY (l) =
NNN (l) during an NSA frame, it can be recursively estimated

and updated under the noise context index by

N (kN , l) = αnN (kN , l − 1)+ (1− αn)Ñ (kN , l) (12a)

with

Ñ (kN , l) =

{
N (kN , l − 1) SA
Y (kN , l) NSA

(12b)

where αn is a tracking factor between successive frames.
Following this,PPPN (l) is updated, and σN (l) is obtained by the
context modeling using PPPN (l). Subsequently, the estimated
noise standard deviation, σ̂N (l), is recursively updated and
estimated by

σ̂ 2
N (kN , l) = ασ · σ̂

2
N (kN , l − 1)+ (1− ασ ) · σ̃ 2

N (kN , l)

(13a)

with

σ̃ 2
N (kN , l) =

{
σ̂ 2
N (kN , l − 1) SA
σ 2
N (kN , l) NSA

(13b)

where ασ is a smoothing factor between successive frames.
It can be summarized from the above equations that, when

an NSA frame is detected, Ñ (l), and thus PPPN (l), σN (l) and
σ̃N (l) are successively updated, followed by the update of
the estimated noise standard deviation, σ̂N (l), using (13a)
and (13b). On the other hand, when an SA frame is detected,
Ñ (l) is maintained at Ñ (l − 1), and σ̃N (l) is maintained at
σ̃N (l − 1). Thus, it follows from (13a) and (13b) that PPPN (l)
and hence σ̂N (l) are maintained as the previous values at the
frame index, l − 1, for an SA frame.

V. SIMULATION AND PERFORMANCE EVALUATION
The proposed adaptive wavelet thresholding algorithm for
SE based on the GG priors and frame-wise context model-
ing is hereafter denoted as GGFC. The performance of the
GGFC algorithm was evaluated by making a comparison to
most recently reported WT-based SE algorithms. With exten-
sive evaluation and overall state-of-the-art performances,
the wavelet thresholding using symmetric Kullback–Leibler
divergence [36], denoted as the SKL algorithm, and the
Rayleigh modeled TE operated wavelet thresholding [38],
denoted here as the RTE algorithm, were included. Note that
the SKL and RTE algorithmsmade use of the PWP transform,
with the threshold formulation at the subband level derived by
incorporating the Gaussian priors for the PWP coefficients
in the SKL, and the Rayleigh priors for TE operated PWP
coefficients in the RTE.Whereas the GGFC algorithm is fully
equipped with the frame-wise noise estimation and update at
the coefficient level, both the SKL and RTE algorithms relied
on the existing noise estimation methods at the subband level,
developed in [32] for the SKL, and in [43] for the RTE.

To appreciate the level of performance gained by the
GGFC, a comparison with the wavelet thresholding using
the Gaussian prior and the conventional context modeling
in [42], denoted as the GC algorithm, was also included.
Unlike the GGFC which makes use of the GG priors, the use
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of the Gaussian prior in the GC algorithm is ineffective in
capturing the varying statistical distributions of speech and
noise wavelet coefficients (see also Fig. 2(a)), yielding a less
accurate optimum threshold equation. In addition, the con-
ventional context modeling only provides a simple noise
estimation using themedian value of the coefficients obtained
in the highest subband, with no frame-wise updating and
tracking of the noise statistics [42].

To benchmark the performance with the well-established
STFT-based counterparts, a comparison to the MMSE
log-spectral amplitude (LSA) algorithm [15] and the
soft-mask with posteriori SNR uncertainty (SMPO) algo-
rithm [17] was also given. Whereas the proposed algorithm
operates in the wavelet domain and employs the GG priors,
both the LSA and SMPO operated in the frequency domain
and made use of the Gaussian priors in their formulation
of the speech enhancing gain function. Unlike the proposed
algorithm, the LSA and SMPO also incorporated speech
presence probability and SNR uncertainty, respectively, for
further improvement. Also note that, the LSA algorithm
included the estimation and update of noise during speech
pauses, and the SMPO relied on the continuous noise estima-
tion method developed elsewhere in [43].

For the performance evaluation, the NOIZEUS database
in [44], which is a standard noisy speech corpus designed
specifically for evaluating speech enhancement algorithms,
was employed. Note that, the GGFC algorithm is devel-
oped with emphasis on emerging voice-control applications,
such as smart home appliances and in-vehicle voice naviga-
tion. With this application perspective, the selected practical
noise conditions for performance evaluation, in addition to
white Gaussian noise (WGN), were babble noise, car noise,
and airport noise, which are of non-stationary and colored
noise types. Whereas the WGN is stationary and employed
mainly for primary testing of noise attenuation performance,
the other selected noise types are non-stationary and typi-
cally present in practical noise environment of the targeted
voice-control applications. Note that, the babble noise rep-
resents conversations among groups of people, the car noise
represents in-vehicle sounds from engine, wind, etc., and the
airport noise represents mixed types of indoor noise in a busy
public area, including multi-tone noise sounds.

Whereas the comparison to the LSA and SMPO algorithms
could be made extensively using the noise types and speech
measures as summarized above, the comparison to the SKL
and RTE algorithms were made based on the available data
in [36] and [38], due to the lack of public access to their
implementation codes. Note that, the speech data was based
on the NOIZEUS database for the RTE algorithm, and the
compatible TIMIT database for the SKL algorithm. Both the
NOIZEUS and TIMIT databases have been widely utilized
for SE performance evaluation, and yielded similar average
results under the tested WGN and babble noise conditions.
Also note that, for the SKL algorithm in [36], only the average
performance across the noise types was reported.

A. SIMULATION RESULTS
1) PARAMETER SETUP OF THE GGFC ALGORITHM
The proposed GGFC algorithm was implemented using
the Daubechies wavelet family, which has been extensively
employed in other applications including image denoising.
Note that, since the use of the Daubechies type with the
order more than seven yielded similar performance results,
the Daubechies-8 type was employed for efficient compu-
tation with some performance margins. The octave-band
decomposition was chosen at three levels, i.e., the largest
scale at I = 3, so as to cover three major frequency
bands of typical speech, including low- and high-frequency
voiced spectral bands, and high frequency unvoiced spec-
tral band. An overcomplete wavelet expansion implemented
using non-subsampled filter bank in [42] was adopted to
obtainmore attenuated artifacts in denoised signals. TheVAD
was based on a combination of the simple energy-ratio test
using the average variance ratio, σ 2

Y /σ
2
N , over the subband,

and the zero-crossing rate test of the coefficients Y i(j) over
the frame.

The details and values of the constant parameters employed
in the GGFC algorithm were summarized below. The shape
parameter of the clean speech in the GG model was set at
βS = 0.5, based on the plot of βS variation against speech
data set in Fig. 3(a). For the following parameters, they
were optimized based on the perceptual evaluation of speech
quality (PESQ) scores in 5-dB babble noise, and consistent
results were obtained for other noise types. In the frame-wise
context model, the number of the neighboring points, p, of the
matrix UUU , that forms the projection matrix PPP in (9), from
p = 3 up to p = 9 was verified through simulations to
capture the locality of the contextual standard deviation of
each coefficient Y (j), where similar speech enhancement per-
formances were obtained. Therefore, p = 3 (two neighboring
and one parent coefficient points) was selected for efficient
computation. The regularization parameter λ in (9), which
helps control overfitting, was chosen to be 0.01. The number
of coefficients L in (10) for one sliding window of the context
cluster was set at L = 16. In the noise update equations (12)
and (13), the tracking and smoothing factors were optimized
at αn = 0.22 and ασ = 0.98, which help control the effect of
abrupt noise fluctuation between frames, particularly under
non-stationary noise conditions. Note that, for initialisation,
we set αn = ασ = 0 at frame l = 1.

The details of the computed parameters in the
GGFC algorithm are summarized as follows. The projection
matrix, PPP, which projects the wavelet coefficients into the
context subspace is calculated using (9), with the context
parameters of the coefficients computed using (8). The esti-
mated standard deviations of noisy speech, σY , and clean
speech, σS , are given by (10) and (11), respectively. The
estimated standard deviation of noise, σN , is given by (12)
and (13). The estimated shape parameter of the noise in the
GG model, βN , is determined by using (6) and (7). The
optimum threshold value, TB, for removing noise from noisy
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speech at the coefficient-level, through the soft threshold
function in (2), is determined using (5).

Below is the outline in a step-by-step manner of the GGFC
algorithm.
Step 1: Divide the input noisy speech, y(t), into a sequence
of overlapped frames to obtain y(l) with frame length, M ,
at frame l.
Step 2: Apply the octave-band wavelet transform on y(l) to
obtain the noisy wavelet coefficients, Y i(j, l), at the coeffi-
cient index, j, of scale, i (i = 1, 2, . . . I ), where I is the largest
number of scale.
Step 3: Use (8) and (9) to calculate the noisy speech projec-
tion matrix, PPPiY (l), and project Y i(j, l) onto the noisy speech
context subspace to obtain Y i(kY , l). Subsequently, apply
the context clustering and calculate the standard deviation,
σ iY (kY , l), using (10). Use the j−kY association obtained from
the subspace projection to map from σ iY (kY , l) to σ

i
Y (j, l).

Step 4: Use (12a) and (12a) along with (6) and (7) to update
the noise projection matrix, PPPiN (l), in the noise context sub-
space, kN . Then, use PPPiN (l) to project Y i(j, l) onto the noise
context subspace, apply the context clustering and calcu-
late the noise standard deviation, σ iN (kN , l), at the context
index kN .
Step 5: Use (13a) and (13b) to update the estimated noise
standard deviation, σ̂ iN (kN , l). Then apply the j− kN associa-
tion obtained from the noise subspace projection to map from
σ̂ iN (kN , l) to σ̂

i
N (j, l).

Step 6: Use (11) to obtain the standard deviation of the
estimated clean speech, σ̂ iS (j, l), by putting σN (j) = σ̂ iN (j, l).
Step 7: If an NSA frame, update the estimated noise shape
parameter, β̂ iN (j, l), by using (7). Then, calculate the adaptive
threshold, T iB(j, l) by using (5), with the shape parameter
βN = β̂

i
N (j, l) and the standard deviations, σS = σ̂ iS (j, l) and

σN = σ̂
i
N (j, l).

Step 8: Apply the soft-threshold function in (2) to Y i(j, l) at
T = T iB(j, l) to obtain Ŝ i(j, l).
Step 9: Apply the inverse wavelet transform to the esti-
mated clean speech wavelet coefficients, ŜSS

i
(l), to obtain the

time-domain clean speech, ŝ(l). Reconstruct the enhanced
speech signal, ŝ(t), by the overlap-add method.

In the following simulations, the sampling frequency of
the speech data was at 8 kHz, and the frame period at 32
ms, yielding the number of samples, M = 256, samples per
frame. The frame overlap was chosen to be 50%. To obtain
each SNR level, the active speech level of the clean speech
was first determined. Subsequently, a noise segment of the
same length as the speech was selected, appropriately scaled
to reach the desired SNR level, and added to the clean speech
signal.

The measures employed to evaluate performance of these
investigated algorithms were the segmental SNR improve-
ment (1SegSNR) for noise attenuation; the perceptual eval-
uation of speech quality (PESQ) score [50], the short-time
objective intelligibility (STOI) score [51], and the cepstral
distance (CD) measure [44], for speech quality. Different

levels of input SNR were employed ranging from −5 dB to
+15 dB, with a 5-dB step. Each data point in the plots of
the performance measures was based on average simulation
results using a total of 20 sentences with ten male and ten
female noisy speech signals selected from the NOIZEUS
database [44]. These objective results shown in Fig. 11
to Fig. 14 were averaged from 20 enhanced speech sig-
nals. In addition, an investigation using the spectrograms of
enhanced speech signals was also included.

2) NOISE ATTENUATION PERFORMANCE
The evaluation of noise attenuation performance was per-
formed using the SegSNR improvement,1SegSNR, defined
as the difference between theSegSNR of the output enhanced
speech and that of the input noisy speech, during all SA
frames. Since the SegSNR of the enhanced speech should
be larger than that of noisy speech, higher 1SegSNR values
indicate better noise attenuation performance.

Under the WGN in Fig. 11(a), and the car noise
in Fig. 11(c), the proposed GGFC algorithm offered sig-
nificantly higher 1SegSNR values than the WT-based GC
and RTE algorithms. As compared to the LSA and SMPO
algorithms, the GGFC yielded comparable 1SegSNR per-
formance, with slightly lower values at low to medium SNRs,
and slightly higher at medium to high SNR levels.

Under the babble noise in Fig. 11(b), the GGFC algorithm
still significantly outperformed the GC and RTE, and offered
higher 1SegSNR values than the SMPO at low to medium
SNR levels, and the LSA at medium to high SNR levels.

Under the airport noise in Fig. 11(d), the GGFC outper-
formed the GC, LSA, and SMPO algorithms, with similar
trends to the babble noise condition. Note that, results of the
RTE algorithm under the airport noise were not available.

As compared to the SKL algorithm, the GGFC offered
higher 1SegSNR values than the average 1SegSNR across
the noise types, as illustrated in Fig. 11(a) to Fig. 11(d), except
at 15-dB SNR level in the babble noise condition. However,
at such a high SNR level, speech is less corrupted and hence
the improvement is less critical. Moreover, it is evident that
the noise attenuation offered by the SKL algorithm at other
SNR levels was considerably lower than other algorithms.

3) SPEECH QUALITY PERFORMANCE VIA PESQ
The PESQ measure relies upon the psychoacoustics about
how human listeners process tones and bands of noise.
Specifically, it takes into account the frequency resolution
non-uniformity, frequency-dependent sensitivity, and loud-
ness perception non-linearity of human auditory process-
ing [44]. The PESQ score normally ranging from 0.5 to
4.5 was demonstrated to have high correlation (> 0.92) with
speech quality measured by the subjective listening tests eval-
uated using the Mean Opinion Score (MOS) [52]. A higher
noise attenuation, better clean speech preservation, and more
distributed residual noise in the enhanced speech spectrum
yield a higher PESQ score.
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FIGURE 11. 1SegSNR values of the enhanced speech signals using different SE algorithms in (a) WGN, (b) babble, (c) car,
and (d) airport noise conditions. A higher 1SegSNR value indicates better performance. The results of the SKL algorithm
at −5dB were not available in [36]. The RTE results under the airport noise condition were not available in [38].

The plots in Fig. 12 show the PESQ scores obtained by
the GGFC algorithm in comparison to its WT-based and
STFT-based counterparts under different noise conditions.
Note that, the results of the RTE algorithms under the airport
noise were not available.

Under the WGN condition in Fig.12(a), the GGFC algo-
rithm clearly exhibited higher PESQ scores than the GC,
and comparable PESQ scores to the RTE, with slightly
less at low and high SNRs, and slightly higher at medium
SNR levels. As compared to its STFT-based counterparts,
the GGFC yielded slightly less PESQ scores than the SMPO,
and comparable PESQ scores to the LSA, with slightly less
at +15-dB SNR and slightly higher values at low to medium
SNR levels.

Under the babble noise in Fig. 12(b) and the car noise
in Fig. 12(c), the GGFC algorithm offered higher PESQs than
the GC, RTE, and LSA algorithms. The GGFC algorithm also
yielded higher PESQs than the SMPO, except at 0-dB SNR
level under the car noise condition.

Under the airport noise in Fig. 12(d), whereas the
GGFC algorithm yielded comparable PESQ scores at high
SNR levels, it clearly offered higher PESQ scores than the
LSA and SMPO algorithms at low to medium SNR levels.
The GGFC also clearly offered higher PESQ scores than the
GC algorithm.

In comparison to the WT-based SKL algorithm, the GGFC
offers higher PESQ scores than the average PESQ values

obtained across the noise types, as shown in Fig. 12(a) to
Fig. 12(d).

4) SPEECH INTELLIGIBILITY PERFORMANCE VIA STOI
The STOI measure is based on the correlation between
temporal envelopes of the clean and degraded speeches in
short-time segments [51]. The STOI scores provide high
correlation with speech intelligibility and listening tests, with
a higher STOI value indicating better performance.

Shown in the plots of Fig. 13 are the STOI scores obtained
by the GC, GGFC, LSA, and SMPO algorithms under dif-
ferent noise conditions. Note that for the SKL and RTE
algorithms in [36] and [38], the STOI measures were not
reported.

Under the WGN condition in Fig. 13(a), the GGFC algo-
rithm exhibited slightly higher scores than the LSA, and
slightly lower scores than the SMPO algorithm. Under the
babble noise in Fig. 13(b), it yielded comparable scores to
the LSA and SMPO, with slightly higher scores at low SNRs,
and slightly less at high SNR levels. Under the car noise
in Fig. 13(c), it also yielded comparable STOI scores to the
LSA and SMPO, with slightly lower scores at −5-dB and
+15-dB SNR levels. Under the airport noise in Fig. 13(d),
it exhibited slightly less STOI scores than the SMPO at high
SNR levels, and comparable scores to the LSA. Under all the
noise conditions, the GGFC algorithm offered higher STOI
scores as compared to the GC algorithm.
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FIGURE 12. PESQ scores of the enhanced speech signals using different SE algorithms in in (a) WGN, (b) babble,
(c) car, and (d) airport noise conditions. A higher PESQ score indicates better performance. The results of the SKL
algorithm at −5dB were not available in [36]. The RTE results under the airport noise condition were not available
in [38].

5) SPEECH QUALITY PERFORMANCE VIA CD
The CD measure is based on the log-spectral distance
between the enhanced and clean speech spectra to determine
their dissimilarity [44]. A higher noise attenuation and bet-
ter preservation of enhanced speech spectrum yields lower
CD values.

Fig. 14 shows the plots of the CD measures under dif-
ferent noise conditions obtained by the GGFC, GC and the
STFT-based algorithms, where a lower CD value indicates
a better performance. Note that, CD comparisons were not
available for the SKL and RTE algorithms in [36] and [38].

Consider the CD results under the WGN in Fig. 14(a),
the GGFC exhibited lower CD values than the GC and LSA,
and comparable CD values to the SMPO, with slightly lower
values at low to medium SNRs, and slightly higher at high
SNR levels. Under the babble noise in Fig. 14(b), the car
noise in Fig. 14(c), and the airport noise in Fig. 14(d),
the GGFC algorithm yielded comparable CD values to the
SMPO, and clearly offered lower CD values than the GC and
LSA algorithms.

6) SPECTROGRAMS
A comparison among the WT-based GC and GGFC, and
the STFT-based algorithms is also investigated via the spec-
trogram plots of their enhanced speech signals under the
babble noise condition with the input SNR of 10 dB.
The spectrogram plots of the clean speech and noisy
speech signals with 10-dB input SNR of babble noise, and

their corresponding enhanced speech signals employing the
SE algorithms are shown in Fig. 15.

Note that, by comparing the spectrograms of the enhanced,
noisy, and clean speech signals, the objective and subjective
measures can be implied. A higher noise attenuation in the
enhanced speech indicates a higher segmental SNR improve-
ment. Better preservation of the enhanced speech spectrum
implies lower CD measures and higher PESQ scores.

By inspecting Fig. 15, it is evident that the GC algo-
rithm yielded the highest residual noise, and the least pre-
served spectrum in the enhanced speech signal. Also, whereas
the GGFC, LSA, and SMPO algorithms can significantly
reduce the background noise, the spectral components of the
enhanced speech obtained by the GGFC is better preserved.
Furthermore, it can be noticed that the spectral components
of the residual noise associated with the LSA and SMPO
appears to be isolated, and those of the GGFC algorithm
distribute more uniformly over frequencies, thereby entailing
no musical noise effect.

7) SUBJECTIVE LISTENING TEST
A subjective listening test was carried out based on the 5-scale
Mean Opinion Score (MOS) with 15 listeners. Listeners
were asked to rate the sound quality of each speech signal
from 1-poor, 2-bad, 3-fair, 4-good, and 5-excellent. Table 1
shows the MOS values for the tested clean and noisy speech
signals with additive babble noise at a 5-dB input SNR.
Also given in the table are the MOS values of the enhanced
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FIGURE 13. STOI scores of the enhanced speech signals using different SE algorithms in (a) WGN,
(b) babble, (c) car, and (d) airport noise conditions. A higher STOI value indicates better performance. The
SKL and RTE results in [36] and [38] were not available.

FIGURE 14. CD values of the enhanced speech signals using different SE algorithms in (a) WGN, (b) babble,
(c) car, and (d) airport noise conditions. A lower CD value indicates better performance. The SKL and RTE results
in [36] and [38] were not available.

speech signals using the LSA, SMPO, GC, and the proposed
GGFC algorithms. It is evident from Table 1 that the listeners,
on average, were more satisfied with the enhanced speech
quality of the GGFC algorithm. It should be noted that, by lis-
tening to these enhanced speech signals, the residual noise of

the GC and GGFC was found to be similar to a white noise
type, while those of the LSA and SMPO resembled a musical
noise type, in line with the spectrogram plots in Fig. 15. Also,
the subjective results were consistent with the highest PESQ
score offered by the GGFC under the babble noise and 5-dB
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FIGURE 15. Spectrogram plots of (a) clean speech, (b) noisy speech signal with 10-dB SNR babble noise, and the enhanced speech
signals using the (c) LSA, (d) SMPO, (e) GC, and (f) proposed GGFC algorithms. The sentence (‘‘The birch canoe slid on the smooth
planks’’) was taken from the NOIZEUS database.

TABLE 1. MOS values of the investigated SE algorithms.

SNR conditions in Fig. 12. Note that, the PESQ measure is
highly correlated with the subjective MOS test [52].

B. OVERALL PERFORMANCE EVALUATION
ACROSS NOISE TYPES
From the description based on Fig. 11 to Fig. 14 in the pre-
vious sections, it is clear that the proposed GGFC algorithms
significantly outperformed the WT-based GC, RTE, and
SKL algorithms. When benchmarked with the well-
established STFT-based LSA and SMPO counterparts,
the GGFC offered competitive performances in the
non-stationary noise conditions, and slight underperformance
in the WGN condition. This is mainly attributed to the
direct use of the Gaussian priors in the derivation of the
LSA and SMPO algorithms. Furthermore, unlike the GGFC
algorithm which is developed in its intrinsic form in this
work, additional enhancement techniques, also based on the
Gaussian distribution, were incorporated, including the use of
speech presence probability in the LSA, and SNR uncertainty

in the SMPO. Note however that, because their operations
mainly rely on the Gaussian assumption, both STFT-based
algorithms are less effective under various non-stationary
noise types. As will be evident later in this subsection,
more consistent and robust performance, particularly across
non-stationary noise types in practical scenarios, can be
achieved by the proposed GGFC algorithm.

To provide a comparative overall performance evaluation
in a quantitative manner, the 1SegSNR, PESQ, STOI, and
CD measures in Fig. 11 to Fig. 14 were averaged across
all noise types at each of the input SNR level. The results
are given in Table 2 to Table 5, where the boldface and
underlined numbers indicate the best and second-best perfor-
mances, respectively. Also, each table provides the average
measureswith andwithout the stationaryWGN.Note that, the
performance under the WGN is normally included for a pre-
liminary test. Because typical speech noise is non-stationary
by nature, the average measures across the non-stationary
noise types should better provide a true comparative assess-
ment among the investigated SE algorithms.

In terms of 1SegSNR in Table 2, it is evident that
the proposed GGFC algorithm significantly outperformed
the WT-based GC, RTE, and SKL algorithms at all the
SNR levels. In comparison to the STFT-based LSA and
SMPO, the GGFC offered the best performance except
at 0-dB SNR level when including the WGN. Under
practical non-stationary noise conditions, however, the
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TABLE 2. The average values of 1SegSNR of the enhanced speech signals using different SE algorithms, across all non-stationary noise types (babble, car,
and airport noises) and all noise types (WGN, babble, car, and airport noises), for various input SNR levels. A higher 1SegSNR value indicates better
performance. The boldface and underlined numbers indicate the best and second-best performances, respectively.

TABLE 3. The average values of PESQ scores of the enhanced speech signals using different SE algorithms, across all non-stationary noise types (babble,
car, and airport noises) and all noise types (WGN, babble, car, and airport noises), for various input SNR levels. A higher PESQ score indicates better
performance. The boldface and underlined numbers indicate the best and second-best performances, respectively.

TABLE 4. The average values of STOI measures of the enhanced speech signals using different SE algorithms, across all non-stationary noise types
(babble, car, and airport noises) and all noise types (WGN, babble, car, and airport noises), for various input SNR levels. A higher STOI value indicates
better performance. The boldface and underlined numbers indicate the best and second-best performances, respectively.

TABLE 5. The average values of CD measures of the enhanced speech signals using different SE algorithms, across all non-stationary noise types (babble,
car, and airport noises) and all noise types (WGN, babble, car, and airport noises), for various input SNR levels. A lower CD value indicates better
performance. The boldface and underlined numbers indicate the best and second-best performances, respectively.

GGFC algorithm outperformed the STFT-based LSA and
SMPO counterparts at all input SNR levels.

In terms of the average PESQ performance in Table 3,
the GGFC algorithm also offered significant improvement
over the GC, RTE, and SKL across all the noise types and
SNR levels. The GGFC outperformed the STFT-based LSA
and SMPO counterparts, except at 0-dB SNR level when
including the WGN. Similar to the average 1SegSNR mea-
sures in Table 2, considering mainly non-stationary noise in
practice, the GGFC algorithm offered the best performance
at all input SNR levels.

In terms of the average STOI performance in Table 4,
whereas the GGFC algorithm outperformed the GC and
LSA algorithms, it practically shared the best STOI scores
with the SMPO counterpart at all the SNR levels, across the
average noise types with and without the stationary WGN.

In terms of the average CD performance in Table 5, it is
clear that the GGFC algorithm outperformed both the GC and

LSA algorithms. In comparison to the STFT-based SMPO,
it offered the best performance at low to medium SNR levels,
and the second-best at high SNR levels when the WGN was
included. Under the non-stationary noise types, although the
GGFC algorithm was second-best at 15-dB SNR, it outper-
formed the SMPO at other lower SNR levels, where speech
was more corrupted by noise, and hence improvement was
more critical.

From the above comparative results, the followings can
be deduced. The proposed GGFC algorithm significantly
outperformed the WT-based algorithms under all the noise
conditions and SNR levels. From the tables, the improvement
could be as much as 226% over the RTE algorithms in terms
of 1SegSNR at 0-dB SNR, 36% over the SKL algorithm in
terms of the PESQ at 0-dB SNR, 17.8% over the GC algo-
rithm in terms of the STOI at -5-dB SNR, and 33.3% over the
GC algorithm in terms of the CD at 15-dB SNR level. In com-
parison to the well-established STFT-based LSA and SMPO,
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the GGFC algorithm practically offered the best overall per-
formance measures across the non-stationary noise types at
different SNR levels. Moreover, whereas the second-best per-
formance in terms of the average 1SegSNR in Table 2 and
the PESQ scores in Table 3were shared among the RTE, LSA,
and SMPO algorithms, the GGFC always maintained the best
performance, particularly under the non-stationary noise con-
ditions. This clearly demonstrates not only the performance
consistency over the SNR levels, but also the robustness
across the performance measures, of the GGFC algorithm.

VI. CONCLUSION AND PROSPECTS
The proposed adaptive wavelet thresholding for speech
enhancement based on the GG priors and frame-wise con-
text modelling has been demonstrated to provide consider-
able improvement over other WT-based algorithms. When
benchmarked against the well-established STFT-based coun-
terparts, it has also been demonstrated to offer advantages not
only in terms of overall performance, but also in terms of per-
formance robustness, across various practical non-stationary
noise conditions. Another important advantage includes no
adverse effect from the residual musical noise, typically
present in the enhanced speech of the STFT-based algorithms.

Because the proposed algorithm provides different opti-
mum threshold values for each individual wavelet coefficient
in each subband, independent of the number of bands, it also
works well for a wideband noisy speech signal with a higher
sampling frequency and higher speech and noise spectral
contents. This is in contrast to its WT-based counterparts that
make use of the WPT and subband-level thresholding, where
higher spectral contents yield lower frequency resolution in
each subband with consequent performance reduction.

Since the proposed algorithm has been developed in its
intrinsic form, even greater improvement is entirely pos-
sible with additional refinement methods. In particular,
by virtue of the MMSE framework and the context index
as the frame-invariant correspondence similar to the fre-
quency index, it is readily amenable to the incorporation
of various enhancement methods already incorporated in
the STFT-based algorithms, such as the inclusion of speech
presence probability, SNR uncertainty, the use of continuous
noise estimation, etc. With the time-frequency multi-
resolution characteristic that makes the wavelet signal pro-
cessing inherently more suitable to handle non-stationary
speech and its noise signals, it is expected that the pro-
posed algorithmwill give the wavelet thresholding for speech
enhancement a renewed impetus in its quest to be a viable
alternative to the STFT-based counterparts.
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