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ABSTRACT Autonomous driving is a promising technology to reduce traffic accidents and improve driving
efficiency. In this work, a deep reinforcement learning (DRL)-enabled decision-making policy is constructed
for autonomous vehicles to address the overtaking behaviors on the highway. First, a highway driving
environment is founded, wherein the ego vehicle aims to pass through the surrounding vehicles with an
efficient and safe maneuver. A hierarchical control framework is presented to control these vehicles, which
indicates the upper-level manages the driving decisions, and the lower-level cares about the supervision of
vehicle speed and acceleration. Then, the particular DRL method named dueling deep Q-network (DDQN)
algorithm is applied to derive the highway decision-making strategy. The exhaustive calculative procedures
of deep Q-network and DDQN algorithms are discussed and compared. Finally, a series of estimation
simulation experiments are conducted to evaluate the effectiveness of the proposed highway decision-
making policy. The advantages of the proposed framework in convergence rate and control performance are
illuminated. Simulation results reveal that the DDQN-based overtaking policy could accomplish highway
driving tasks efficiently and safely.

INDEX TERMS Autonomous driving, decision-making, deep reinforcement learning, dueling deep
Q-network, deep Q-learning, overtaking policy.

I. INTRODUCTION
Autonomous driving (AD) enables the vehicle to engage
different driving missions without a human driver [1], [2].
Motivated by the enormous potentials of artificial intelli-
gence (AI), autonomous vehicles or automated vehicles have
become one of the research hotspots all over the world [3].
Many automobile manufacturers, such as Toyota, Tesla, Ford,
Audi, Waymo, Mercedes-Benz, General Motors, and so on,
are developing their own autonomous cars and achieving
tremendous progress. Meanwhile, automotive researchers are
paying attention to overcome the essential technologies to
build automated cars with full automation [4].

Four significant modules are contained in autonomous
vehicles, which are perception, decision-making, planning,
and control [5]. Perception indicates the autonomous vehicles
know the information about the driving environments based
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on the functions of a variety of sensors, such as radar, lidar,
global positioning system (GPS), et al. [6]. Decision-making
controller manages the driving behaviors of the vehicles, and
these behaviors include acceleration, braking, lane-changing,
lane-keep and so on [7]. Planning function helps the auto-
mated cars find the reasonable running trajectories from one
point to another. Finally, the control module would command
the onboard powertrain components to operate accurately to
finish the driving maneuvers and follow the planning path.
According to the intelligent degrees of these mentioned mod-
ules, the AD is classified into six levels, from L0 to L5 [8].

Decision-making strategy is regarded as the human brain
and is extremely important in autonomous vehicles [9]. This
policy is often generated by the manual rules based on human
driving experiences or imitated manipulation learned from
supervised learning approaches [10]. For example,

Song et al. applied a continuous hidden Markov
chain to predict the motion intention of the surrounding
vehicles. Then, a partially observable Markov decision
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FIGURE 1. The constructed deep reinforcement learning-enabled highway overtaking driving policy for autonomous vehicles.

process (POMDP) is used to construct the general decision-
making framework [11], [12]. The authors in [13] developed
an advanced ability to make appropriate decisions in the
city road traffic situations. The presented decision-making
policy is multiple criteria, which helps the city cars make
feasible choices in different conditions. In Ref. [14],
Nie et al. discussed the lane-changing decision-making strat-
egy for connected automated cars. The related model is
combining the cooperative car-following models and candi-
date decision generation module. Furthermore, the authors in
[15] mentioned the thought of a human-like driving system.
It could adjust the driving decisions by considering the
driving demand for human drivers.

Deep reinforcement learning (DRL) techniques are taken
as a powerful tool to deal with the long sequential
decision-making problems [16]. In recent years, many
attempts have been implemented to study DRL-based
autonomous driving topics. For example, Duan et al. built
a hierarchical structure to learn the decision-making policy
via the reinforcement learning (RL) method [17]. The pro
of this work is independent of the historical labeled driving
data. Ref. [18], [19] utilized DRL approaches to handle the
collision avoidance and path following problems for auto-
mated vehicles. The relevant control performance is better
than the conventional RL methods in these two findings.
Furthermore, the authors in [20], [21] considered not only
path planning but also the fuel consumption for autonomous
vehicles. The related algorithm is deep Q-learning (DQL),
and it was proven to accomplish these two-driving missions
suitably. Han et al. employed the DQL algorithm to decide
the lane change or lane keep for connected autonomous cars,
in which the information of the nearby vehicles is treated
as feedback knowledge from the network [22]. The resulted

policy is able to promote traffic flow and driving comfort.
However, the common DRL methods are unable to address
the highway overtaking problems because of the continuous
action space and large state space [23].

In this work, a DRL enabled highway overtaking driving
policy is constructed for autonomous vehicles. The proposed
decision-making strategy is evaluated and estimated to be
adaptive to other complicated scenarios, as depicted in Fig. 1.
First, the studied driving environment is founded on the high-
way, wherein an ego vehicle aims to run through a particular
driving scenario efficiently and safely. Then, a hierarchi-
cal control structure is shown to manipulate the lateral and
longitudinal motions of the ego and surrounding vehicles.
Furthermore, the special DRL algorithm called dueling deep
Q-network (DDQN) is derived and utilized to obtain the high-
way decision-making strategy. The DQL and DDQN algo-
rithms are compared and analyzed theoretically. Finally, the
performance of the proposed control framework is discussed
via executing a series of simulation experiments. Simulation
results reveal that the DDQN-based overtaking policy could
accomplish highway driving tasks efficiently and safely.

The main contributions and innovations of this work can
be cast into three perspectives: 1) an adaptive and optimal
DRL-based highway overtaking strategy is proposed for auto-
mated vehicles; 2) the dueling deep Q-network (DDQN)
algorithm is leveraged to address the large state space of
the decision-making problem; 3) the convergence rate and
control optimization of the derived decision-making policy
are demonstrated by multiple designed experiments.

This following organization of this article is given as
follows: the highway driving environment and the control
modules of the ego and surrounding vehicles are described
in Section II. The DQL and DDQN algorithms are defined in
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FIGURE 2. Highway driving environment for decision-making problem
with three lanes.

Section III, in which the parameters of the RL framework are
discussed in detail. Section IV shows the relevant results of
a series of simulation experiments. Finally, the conclusion is
conducted in Section V.

II. DRIVING ENVIRONMENT AND CONTROL MODULE
In this section, the studied driving scenario on the highway
is introduced. Without loss of generality, a three-lane free-
way environment is constructed. Furthermore, a hierarchical
motion controller is described tomanage the lateral and longi-
tudinal movements of the ego and surrounding vehicles. The
upper-level contains two models, which are the intelligent
driver model (IDM) and minimize overall braking induced
by lane changes (MOBIL) [24]. The lower-level focuses on
regulating vehicle velocity and acceleration.

A. HIGHWAY DRIVING SCENARIO
Decision-making in autonomous driving means selecting a
sequence of reasonable driving behaviors to achieve special
driving missions. On the highway, these behaviors involve
lane- changing, lane-keeping, acceleration, braking. The
main objectives are avoiding collisions, running efficiently,
and driving on the preferred lane. Accelerating and sur-
passing other vehicles is a typical driving behavior called
overtaking.

This work discusses the decision-making problem on the
highway for autonomous vehicles, and the research driving
scenario is depicted in Fig. 2. The orange vehicle is the
ego vehicle, and other green cars are named as surrounding
vehicles. There are three lanes in the driving environment,
and the derived decision-making policy in this paper is easily
generalized to different situations. The ego vehicle would be
initialized in the middle lane at a random speed.

The objective of the ego vehicle is to run as quickly as
possible without crashing the surrounding vehicles. Hence,
this goal is interpreted as efficiency and safety. The initial
velocity and position of the surrounding vehicles are designed
randomly. It implies the driving scenario consists of uncer-
tainties as to the actual driving. Furthermore, to imitate the
real conditions, the ego vehicle prefers to stay on lane 1
(L = 1), and it can overtake other vehicles from the right
or left sides.

At the beginning of this driving task, all the surrounding
vehicles located in front of the ego vehicle. In each lane,
the number of surrounding vehicles is M , which indicates
there are 3M nearby cars in this situation. Two conditions
would interrupt the ego vehicle, which is crashing other
vehicles or reaching the time limit. The procedure of running
from the starting point to the ending point is called as one
episode in this work.

Without loss of generality, the parameters of the driving
scenario are settled as follows: the original speed of the ego
vehicle is chosen from [23], [25] m/s, its maximum speed
is 40 m/s, the length and width of all vehicles are 5m and
2m. The duration of one episode is 100s, and the simulation
frequency is 20 Hz. The initial velocity of the surrounding
vehicles is randomly chosen from [20], [23] m/s, and their
behaviors are manipulated by IDM and MOBIL. The next
section will discuss these two models in detail.

B. VEHICLE BEHAVIOR CONTROLLER
The movements of all the vehicles in the highway
environments are mastered by a hierarchical control frame-
work, as shown in Fig. 3. The upper-level applied IDM and
MOBIL to manage the vehicle behaviors, and the lower-level
aims to enable the ego vehicle to track a given target speed and
follow a target lane. In this work, the DRL method is used to
control the ego vehicle. The reference model implies that the
ego vehicle is controlled by the bi-level structure in Fig. 3,
which is taken as a benchmark to evaluate the DRL-based
decision-making strategy.

IDM in the upper-level is a prevalent microscopic model
[25] to realize car-following and collision-free. In the adap-
tive cruise controller of automated cars, the longitudi-
nal behavior is usually decided by IDM. In general, the
longitudinal acceleration is IDM is determined as [26]:

a = amax · [1− (
v
vtar

)δ − (
dtar
1d

)2] (1)

where v and a is the current vehicle speed and acceleration.
amax is the maximum acceleration, d is the distance to the
front car and δ is named as the constant acceleration param-
eter. vtar and dtar are the target velocity and distance, and
the desired speed is achieved by the amax and dtar . In IDM,
the expected distance dtar is affected by the front vehicle and
is calculated as follows:

dtar = d0 + Tv+
v1v

2
√
amaxb

(2)

where d0 is the predefinedminimum relative distance, T is the
expected time interval for safety goal,1v is the relative speed
between two vehicles, and b is the deceleration rate according
to the comfortable purpose.

In IDM, the relative speed and distance are defined a priori
to induce the vehicle velocity and acceleration at each time
step. The default configuration is introduced as following: the
maximum acceleration amax is 6 m/s2, acceleration argument
δ is 4, desired time gap T is 1.5 s, comfortable deceleration
rate b is -5 m/s2, and minimum relative distance d0 is 10m.
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FIGURE 3. The hierarchical control framework discussed in this work for the ego vehicle and surrounding vehicles.

Since the IDM is utilized to determine the longitudinal
behavior, the MOBIL is employed to make the lateral lane
change decisions [27]. MOBIL states that lane-changing
behaviors should be observed by two restrictions, which are
safety criterion and incentive condition. These constraints
are related to the ego vehicle e, the follower i (of the ego
vehicle) at current lane, and the follower j at the target lane
of lane change. Assuming aoldi and aoldj are the accelerations
of these followers before changing, and anewi and anewj are the
accelerations after changing.

The safety criterion requires the follower in the desired lane
(after changing) to limit its acceleration to avoid a collision.
The mathematic expression is shown as:

anewj ≥ −bsafe (3)

where bsafe is the maximum braking imposed to the follower
in the lane-changing behavior. By following (3), collision and
accidents could be avoided effectively.

The incentive condition is imposed on the ego vehicle and
its followers by an acceleration threshold ath:

anewe − a
old
e + z[(a

new
i − a

old
i )+ (anewj − a

old
j )] > ath (4)

where z is named as the politeness coefficient to determine the
effect degree of the followers in the lane-changing behaviors.
This incentive condition means the desired lane should be
safer than the old lane. For application, the parameters in
MOBIL are defined as follows: the politeness factor z is
0.001, safe deceleration limit bsafe is 2 m/s2, and acceleration
threshold ath is 0.2 m/s2. After deciding the longitudinal and
lateral behaviors in the upper-level, the lower-level is applied
to follow the target speed and lane.

C. VEHICLE MOTION CONTROLLER
In the lower-level, themotions of the vehicles in the longitudi-
nal and lateral direction are controlled. The former regulates

the acceleration by a proportional controller as:

a = Kp(vtar − v) (5)

where Kp is the proportional gain.
In the lateral direction, the controller deals with the

position and heading of the vehicle with a simple
proportional-derivative action. The position indicates the
lateral speed vlat of the vehicle is computed as follows:

vlat = −Kp,lat1lat (6)

where Kp,lat is named as position gain, 1lat is the lateral
position of the vehicle with respect to the center-line of the
lane. Then, the heading control is related to the yaw rate
command ϕ as:

ϕ̇ = Kp,ϕ(ϕtar − ϕ) (7)

where ϕtar is the target heading angle to follow the desired
lane and Kp,lat is the heading gain.

Hence, the movements of the surrounding vehicles are
achieved by the bi-level control framework in Fig. 3.
The position, speed, and acceleration of these vehicles are
assumed to be known to the ego vehicle. This limitation
propels the ego vehicle to learn how to drive in the scenario
via the trial-and-error procedure. In the next section, the DRL
approach is introduced and established to realize this learning
process and derive the highway decision-making policy.

III. DRL METHODOLOGY
This section introduces the RL method and exhibits the
special DRL algorithms. The interaction in RL between
the agent and the environment is first explained. Then,
the DQL algorithm that incorporates the neural network and
Q-learning algorithm is formulated. Finally, a dueling net-
work is constructed in a DQL algorithm to reconstitute the
output layer of the neural network, and thus raise the DDQN
method.
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A. RL CONCEPT
RL approach describes the process that an intelligent agent
interacts with its environment. It is powerful and useful to
solve sequential decision-making problems. The goal of the
agent is to search an optimal sequence of control actions
based on feedback from the environment. Owing to its char-
acteristics of self-evaluation and self-promotion, RL iswidely
used in many research fields [2], [28]–[31].

In the decision-making problem on the highway, the agent
and environment are the ego vehicle and surrounding vehi-
cles (including the driving conditions), respectively. This
problem is able to be mimicked by the Markov decision
processes (MDPs), which indicates the next state variable
is only concerned with the current state and action [32].
It means the discussed sequential decision-making prob-
lem of autonomous driving has the Markov property. The
related MDP often represents the RL interaction as a tuple
(S, A, P, R, γ ), in which S and A are the state and control
sets. P and R are the significant elements of the environ-
ments in RL, and they mean the transition and reward model,
respectively. In RL, the current action would influence the
immediate and future rewards synchronously. Hence, γ is a
discount factor to balance these two parts of rewards.

To represent the list of future rewards, the accumulated
reward Rt is defined as follows:

Rt =
∑∞

t
γ t · rt (8)

where t is the time instant, and rt is the relevant reward.
To record the worth of the state s and state-action pair (s, a),
two value function as expressed by the accumulated reward
as:

V π (st )
.
= Eπ [Rt |st , π] (9)

Qπ (st , at )
.
= Eπ [Rt |st , at , π] (10)

where π is called as control action policy, V is state value
function, and Q is the state-action function (called Q table
for short). To be updated easily, the state-action function is
usually rewritten as the recursive form:

Qπ (st , at ) = Eπ [rt + γ max
at+1

Qπ (st+1, at+1)] (11)

Finally, the optimal control action with respect to the
control policy π is determined by the state-action function:

π (st ) = argmax
at

Q(st , at ) (12)

Therefore, the essence of different RL algorithms is updating
the state-action function Q(s, a) in various ways. According
to the style of updating rules, the RL algorithms could have
diverse classifications, such as model-based and model-free,
policy-based and value-based, temporal-difference (TD), and
Monte-Carlo (MC) [33].

B. DEEP Q NETWORK
Deep Q network (DQN) is first presented to play the Atari
games in [34]. It synthesizes the strengths of deep learn-
ing (neural network) and Q-learning to obtain the new

state-value function. In the common Q-learning, the updating
rule of this function is narrated as follows:

Q(s, a)← Q(s, a)+ α[r + γ max
a′

Q(s′, a′)− Q(s, a)] (13)

where α ∈ [0, 1] is named as a learning rate to trade-off the
old and new learned experiences from the environment. s′ and
a′ are the state and action at the next time step.
The common Q-learning is unable to handle the problem

with a large space of state variable because it needs an enor-
mous time to obtain the mutable Q table. Thus, in DQN,
a neural network is employed to approximate the Q table as
Q(s, a; θ ). For the neural network, the inputs are the arrays
of state variables and control actions, and the output is the
state-value function [34].

To measure the discrepancy between the approximated and
actual Q table in DQN, the loss function is introduced like the
following expression:

L(θ ) = E[
∑N

t=1
(yt − Q(s, a; θ ))2] (14)

where

yt = rt + γ max
a′

Q(s′, a′; θ ′) (15)

As can be seen, there are two parameters (θ and θ ′) of the
neural network, which delegate two networks in DQN. These
networks are prediction and target networks. The former is
applied to estimate the current control action, and the latter
aims to generate the target value. In general, the target net-
work would copy the parameters from the prediction network
every certain number of time steps. By doing this, the target
Q table will converge to predict one to some extent to remit
the network instability.

In DQN, the online neural network is updated by gradient
descent as follows:

∇θL(θ ) = E[(yi − Q(s, a; θ ))∇θQ(s, a; θ )] (16)

This operation makes the DQN as an off-policy algorithm,
and the states and rewards are acquired by a special criterion.
This rule is known as epsilon greedy, which indicates that the
agent executes the exploration (choose a random action) with
probability ε, and makes exploitation (use the current best
action) with probability 1-ε.

C. DUELING DQN ALGORITHM
In some RL problems, the selection of current control action
may not cause negative results, apparently. For example,
in the highway environment, many actions would not lead to
the collision. However, these choices may indirectly result in
bad rewards afterward [34]. Motivated by this insight, a duel-
ing network is proposed in this work to estimate the worth
of the control actions at each step. A new neural network
is constructed to approximate the Q table in the highway
decision-making problem, as shown in Fig. 4.

Two streams of fully connected layers are used to estimate
the state-value function V (s) and the advantage function
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FIGURE 4. The dueling network combined with state-value network and advantage network for Q table updating.

A(s, a) of each action. Therefore, the state-action function
(Q table) is constituted as follows:

Qπ (s, a) = Aπ (s, a)+ V π (s) (17)

It is obvious that the output of this new dueling network is
also a Q table, and thus the neural network used in DQN can
also be employed to approximate this Q table. The network
with two parameters is computed as:

Qπ (s, a; θ ) = V π (s; θ1)+ Aπ (s, a; θ2) (18)

where θ1 and θ2 are the parameters of state-value function and
advantage function, respectively.

To update the Q table in DDQN and achieve the optimal
control action, (18) is reformulated as follows:

Qπ (s, a; θ ) = V π (s; θ1)+ (Aπ (s, a; θ2)−max
a′

Aπ (s, a′; θ2))

(19)

a∗ = argmax
a′

Q(s, a′; θ ) = argmax
a′

A(s, a′; θ2) (20)

It can be decerned that the input-output interfaces in DDQN
and DQN are the same. Hence, the gradient descent in (16) is
capable of being recycled to train the Q table in this work.

D. VARIABLES SPECIFICATION
To derive the DDQN-based decision-making strategy, the
preliminaries are initialized as follows, and the calculative
procedure is easily transformed into an analogous driving
environment. The control actions are the longitudinal and
lateral accelerations (a1 and a2) with the units m/s2:

a1 ∈ [−5, 5]m/s2 (21)

a2 ∈ [−1, 1]m/s2 (22)

It is noticed that when these two accelerations are zeros,
the ego vehicle adopts an idling control.

After obtaining the acceleration actions, the speed and
position of the vehicle can be computed as follows:{

vt+11 = vt1 + a1 ·1t
vt+12 = vt2 + a2 ·1t

(23){
d t1 = vt1 ·1t +

1
2 · a1 ·1t

2

d t2 = vt2 ·1t +
1
2 · a2 ·1t

2 (24)

where v1, v2 are the longitudinal and lateral speed of the
vehicle, respectively, similar to the d1 and d2. The policy
frequency is 1 Hz, which indicates the time interval 1t is
1 second. It should be noticed that (23) and (24) are feasible
for the ego vehicle and surrounding vehicles simultaneously,
and these expressions are considered as the transition model
P in RL. Then, the state variables are defined as the relative
speed and distance between the ego and nearby cars:

1dt =
∣∣degot − d

sur
t

∣∣ (25)

1vt =
∣∣vegot − vsurt ∣∣ (26)

where the superscript ego and sur represent the ego vehicle
and surrounding vehicles, respectively.

Finally, the reward model R is constituted by the optimal
control objectives, which are avoiding collision, running as
fast as possible, and trying the driving on lane 1 (L = 1).
To bring this insight to fruition, the instantaneous reward
function is defined as follows:

rt = −1 · collision− 0.1 ∗ (vtego − v
max
ego )

2
− 0.4 ∗ (L − 1)2

(27)

where collision ∈ {0, 1} and the goal of the DDQN-based
highway decision-making strategy is maximizing the cumu-
lative rewards.

The proposed decision-making control policy is trained
and evaluated in the simulation environment based on the
OpenAI gym Python toolkit [35]. The numbers of lanes and
surrounding vehicles are 3 and 30. The discount factor γ
and learning rate α are 0.8 and 0.2. The layers of the value
network and advantage network are both 128. The value of ε
decreases from 1 to 0.05 with the time step 6000. The training
episode in different DRL approaches are 2000. The next
section discusses the effectiveness of the presented decision-
making strategy for autonomous vehicles.

IV. RESULTS AND EVALUATION
In this section, the proposed highway decision-making policy
is estimated by comparing it with the benchmark methods.
These techniques are the reference model in Fig. 3 and
the common DQN in Section III.B. The optimality is ana-
lyzed by conducting a comparison of these three methods.
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FIGURE 5. Average reward variation in three compared methods: the
reference model, DQN and DDQN.

Furthermore, the adaptability of the presented approach is
verified by implementing the trained model into a similar
highway driving scenario.

A. OPTIMALITY EVALUATION
The reference model, DQN, and DDQN are compared in this
subsection. All of them adopted a hierarchical control frame-
work. The lower-levels are the same and utilize (5)-(7) to reg-
ulate the acceleration, position, and heading. The upper-levels
are different, which are IDM and MOBIL, DQN algorithm
in Section III.B, and DDQN algorithm in Section III.C. The
default parameters are the same in DQN and DDQN.

Fig. 5 depicts the normalized average rewards of these
three methods. Based on the definition of reward function
in (27), higher reward indicates driving on the preferred lane
with a more efficient maneuver. It is obvious that the training
stability and learning speed of DDQN are better than the other
two approaches. Besides, after about 500 episodes, the reward
in DDQN is greater than the other two approaches, and it
keeps this momentum all the time. And they are both better
than the referencemodel. It is mainly caused by the advantage
network inDDQN. This network could assess theworth of the
chosen action at each step, which helps the ego vehicle to find
a better decision-making policy fleetly.

To observe the trajectories of state variables in this work,
Fig. 6 shows the average vehicle speed and traveling distance
in these three compared techniques. They are all trained by
2000 episodes. A higher average implies that the ego vehicle
could run through the driving scenario faster and achieve
greater cumulative rewards. The travel distance is affected
by collision conditions and vehicle speed. A higher traveling
distance means the ego vehicle could drive longer during a
time limit without collision. The random set of the initial
speeds and positions of surrounding vehicles is the reason for
the average speed and travel distance (of the ego vehicle) fluc-
tuating until the training is over. These results directly reflect
safety and efficiency demand. The noticeable differences are
able to certify the optimality of the proposed algorithm.

As the ego vehicle is not willing to crash the surrounding
vehicles, the collision conditions of these three control cases
are described in Fig. 7, wherein collision has two values

FIGURE 6. Vehicle speed and traveling distance of the ego vehicle in each
episode of these compared techniques.

FIGURE 7. Collision conditions of the ego vehicle in each compared
method: collision = 0, the ego vehicle does not crash other vehicles;
collision = 1, the ego vehicle crashes other vehicles.

(collision = 0 or 1). It can be noticed that the DDQN,
DQN, and reference model-enabled agents could avoid a
collision after 1300, 1700, 1950 episodes, respectively. This
appearance can also prove that the DDQN-based agent is
more intelligent other two agents. As the safety claim is the
first concern for the actual application of automated driving,
the learned decision-making model based on DDQN is more
promising to be employed in real-world environments.

Furthermore, to defense the concrete control actions are
different in these three methods. The curves of control action
sequences of one successful episode (means the ego vehi-
cle could drive from the starting to ending point) are given
in Fig. 8. The actions in longitudinal and later directions of
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FIGURE 8. Control actions in one successful episode of three compared
methods: Index = 1, changing left lane; Index = 2, idling speed; Index = 3,
changing right lane; Index = 4, running faster; Index = 5, running slower.

FIGURE 9. Mean discrepancy of Q table in the training process of two
DRL approaches.

the ego vehicle are uninformed as five selections. They are
changing left lane, changing right lane, idling speed, running
faster, running slower. The differences between these trajec-
tories indicate that the proposed decision-making policy is
different from the two benchmark methods (in the same suc-
cessful episode). Overall, according to all the display results
in this subsection, the optimality of the DDQN-enabled
decision-making strategy is illuminated.

B. COMPARISION BETWEEN DQN AND DDQN
Since DQN and DDQN are two permanent DRL algorithms,
this experiment aims to appraise the learning and training
procedure of these two approaches. As the target of the neural
network is acquiring the mutable Q table. The normalized
mean discrepancy of the Q table in the training process of
these two methods is displayed in Fig. 9. The downtrend
graphs indicate that both ego vehicles become more familiar
with the driving environment by interacting with it. Further-
more, it can be discerned that the DDQN could learn more
knowledge about the traffic situations with the same episodes,
and thus results in the faster learning course. Hence, the ego
vehicle could manipulate more efficiently and safely by the
guidance of the DDQN algorithm.

FIGURE 10. Accumulated rewards in DQN and DDQN: the higher
accumulated reward indicates better control action choices.

FIGURE 11. Normalized reward in the testing experiment of three
compared methods.

To exhibit the usage of the dueling network in future
decisions in this autonomous driving problem, Fig. 10
discusses the track of the cumulative rewards. The uptrend
variation implies that the control action choices are capable of
improving future rewards. As the DDQN is larger than DQN,
it signifies the related agent could achieve better control
performance. This is also attributed to the advantage network
in DDQN, which enables the ego vehicle to quantify the
potential worth of current control action. To assess the above-
mentioned decision-making policies in a similar driving con-
dition, the next subsection discusses the adaptability of these
strategies.

C. ADAPTABILITY ESTIMATION
After learning and training the automated vehicles in highway
driving environments, a short episode is applied to test their
adaptive capacity. The testing number of episodes is 10 in
this work. The default settings and the number of lanes and
surrounding vehicles are the same as the training process.
The learned parameters of the neural networks are saved
and can be utilized directly in the new conditions. The most
concerning elements are the average reward and collision
conditions of the testing operation.

Fig. 11 shows the normalized average reward of the
reference model, DQN, and DDQN methods in the testing
experiment. From (27), the reward ismainly influenced by the
collision conditions and vehicle speed. The average reward
may not achieve the highest score (100 in this work) because
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FIGURE 12. One typical testing driving condition: the ego vehicle has to
execute car-following behavior for a long time.

FIGURE 13. Another representative testing driving condition: the ego
vehicle make a dangerous lane changing and a collision happens.

the ego vehicle has to slow down sometimes to avoid a col-
lision. The ego vehicle also needs to change to other lanes to
realize the overtaking process. Without loss of generality, two
typical situations (two episodes, A and B points in Fig. 10) are
chosen to analyze the decision-making behaviors of the ego
vehicle.

Fig. 12 depicts one driving situation that there are three
surrounding vehicles in front of the ego vehicle (the episode
represented by A point). The ego vehicle has to execute the
car-following maneuver for a long time and wait for the
opportunity the overtake them. As a consequence, the vehicle
speed may not reach the maximum value, and the ego vehi-
cle may not surpass all the surrounding vehicles before the
destination. Furthermore, an infrequent driving condition is
described in Fig. 13 (the episode represented by B point).
The ego vehicle wants to achieve a risky lane-changing to
obtain higher rewards. However, it cashed nearby vehicles
because the operation space is not enough. This situation may
not happen in the training process, and thus the ego vehicle
could cause a collision.

Based on the detailed analysis in Fig 12 and 13, it hints
us to spend more time training the mutable decision-making
strategy. These results also remind us that the relevant control

TABLE 1. Training and testing time of DQN and DDQN methods.

policy has the potential to be applied in real-world environ-
ments. Table 1 provides the training and testing time of the
DQN, andDDQN approaches. Although the training time can
be only realized offline, the learned parameters and policies
are able to be utilized online. This inspires us to implant
our decision-making policy in the visualization simulation
environments and to conduct the related loop experiments in
the future.

V. CONCLUSION
This paper discusses the highway decision-making problem
using the DRL technique. By applying the DDQN algorithm
in the designed driving environments, an efficient and safe
control framework is constructed. Depending on a series of
simulation experiments, the optimality, convergence rate, and
adaptability are demonstrated. In addition, the testing results
are analyzed, and the potentials of the presented method to be
applied in real-world environments are proven. Future work
includes the online applications of highway decision-making
by executing hardware-in-loop (HIL) experiments.Moreover,
the real-world collected highway database can be used to
estimate the related overtaking strategy.
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