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ABSTRACT Accurate and reliable wind speed forecasting is crucial for wind farm planning and grid
operation security. To improve the accuracy of wind speed forecasting, a novel combined model is proposed
for wind speed forecasting in this article. First, the complete ensemble empirical mode decomposition
adaptive noise (CEEMDAN) and permutation entropy (PE) are employed to decompose the original wind
speed time series into the sub-series with obvious complexity different; To overcome the disadvantage
of weak generalization ability of single deep learning method when facing diversiform data, a cluster of
gated recurrent unit networks (GRUs) with different hidden layers and neurons are applied to capturing
the unsteady characteristics and implicit information of each sub-series; The predictions of the GRUs of
each sub-series are aggregated into a nonlinear-learning regression top-layer which is consisted of radial
basis function neural network (RBFNN), and improved bat algorithm (IBA) is introduced to optimize the
parameters of RBFNN; Lastly, the prediction values of each nonlinear-learning top-layer are superimposed
to obtain the final prediction values. To validate the effectiveness of the model, 15-min and 1-h wind speed
data from the wind farm in Zhangjiakou, China, are used as test cases. The experimental results demonstrate
that the proposed combined model can achieve the best performance and stability compared to other models.
Such as the performance evaluation indexes (RMSE = 0.3294, MAPE = 2.6169%) are smallest obtained
from case study 1, and (RMSE = 0.5876, MAPE = 4.7875%) are smallest obtained from case study 2.

INDEX TERMS Wind speed forecasting, combined model, complete ensemble empirical mode decompo-
sition adaptive noise, gated recurrent unit.

I. INTRODUCTION
Due to the rapid development of modern industry, the rapid
consumption of fossil fuels, the problems of environmen-
tal degradation and traditional resource consumption have
become some increasingly serious. Wind energy as an envi-
ronmentally friendly renewable energy, has been widely rec-
ognized and promoted worldwide. According to the Global
Wind Energy Council, as of the end of 2018, the total
installed capacity of wind power has reached 591GW in
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the worldwide, 209533 MW was contributed by China [1].
However, the randomness, abruptness and uncertainty of
wind resources can not only destroy the reliability and stabil-
ity for the wind farms and power system operation, but also
result in low efficiency and high operating cost. And these
will bring great challenges to the safe and stable operation
of wind farms and grids with large-scale wind power inte-
gration [2], [3]. Therefore, reliable and precise wind speed
forecasting not only helps to maintain the stability of the
wind turbine output and develop an optimal wind farm main-
tenance plan, but also can reduce the operating cost of the
power system [4]. In recent years, with the increasing number
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of wind farms, power generation companies have established
corresponding wind farm centralized monitoring centers to
facilitate centralized management and dispatch. And this
allows the forecasting systems originally set up in the wind
farms to be moved to the centralized monitoring center,
and then the centralized control center distributes the wind
speed and wind power prediction results obtained by the
prediction system to the corresponding wind farms, thereby
greatly saving costs. However, due to the scale, geographic
location, climatic conditions and wind turbine models of each
wind farm are different [5], it is difficult for the wind speed
forecasting strategy of the same centralized control center to
adapt to the characteristics of different wind farms, which
gives the centralized control center management scheduling
brings many problems. Therefore, it is necessary to propose
a reliable and accurate wind speed forecasting method that
is universally applicable to multiple wind farm environments
under the centralized control system. Moreover, the cen-
tralized management of wind farms provides environmental
support for us to build a wind speed forecasting system with
more complex algorithms and stronger adaptability.

In recent years, many researchers have given much atten-
tion to the research of the methods of wind speed prediction.
Thesemethods can be classified into the following four types:
Physical models, conventional statistical models, artificial
intelligence models, and hybrid models. Physical models
always use current geographic data and a variety of meteo-
rological data to solve complex mathematical models such as
temperature, pressure and humidity, and it has a large error
in wind speed forecasting in short-term or ultra-short term.
The widely used conventional statistical models include the
ARIMA (autoregressive integrated moving average) model,
the quantile-regression model (QR), and the Kalman-filter
model. Masseran [6] has proposed a prediction model con-
sisting of ARIMA and ARCH (Autoregressive Conditional
Heteroskedasticity). Kavasseri and Seetharaman [7] proposed
a fraction-ARIMA to predict the wind speed of one-day and
two-day ahead in North Dakota. The conventional statistical
model uses historical data to establish a predictive model,
which can capture the linear relationship of the training data
set well. However, due to the randomness and inherent com-
plexity of the wind speed, the conventional statistical model
has a low prediction accuracy. With the rapid development of
artificial intelligence technology, artificial intelligence mod-
els have been successfully applied to time series prediction.
Among them, back propagation neural network (BPNN),
RBFNN, extreme learning machine (ELM), wavelet neural
network (WNN) and other artificial neural networks, support
vector machine (SVM) and expert systems have been widely
used in wind speed prediction [8], [9]. Wang et al. [10]
used RBFNN to predict wind speed. The experimental results
show that the method has achieved certain improvement in
accuracy. Santamaríabon et al. [11] used SVM to predict
wind speed in the short and medium term. Jiang et al. [12]
proposed a v-SVM hybrid short-term wind speed prediction
model based on the cuckoo search algorithm optimization,

which has improved the nonlinear approximation ability of
the prediction model.

At present, a large number of wind speed prediction meth-
ods have been proposed, which improve the accuracy of
wind speed prediction to some extent. However, the original
wind speed time series is noisy and unstable. Therefore,
directly using the original wind speed time series to estab-
lish a prediction model will produce a large of mistakes
[13], [14]. The research shows that the data analysis method
for wind speed time series can reduce the influence of
wind speed non-stationarity on the prediction results. The
decomposition-reconstruction prediction model based on
signal analysis method has received more and more atten-
tion [15]. Empirical Mode Decomposition (EMD) is an
adaptive signal processing method that decomposes time
series into an intrinsic mode functions (IMFs) and a residue
[16], [17]. Reference [18] proposed a newmethod by combin-
ing the two technologies of EMD and Elman neural network
(ENN). The model showed a better and more accurate predic-
tion. However, EMD has many drawbacks, such as end effect,
mode-mixing [19]–[21], and so on. As an extension of EMD,
ensemble empirical mode decomposition (EEMD) decom-
poses signals by adding white Gaussian noise and treating the
average result as a real final result [22]–[24], which improves
the EMD and avoids the phenomenon of modal-aliasing.
However, the white noise added by the EEMD method in
practice has not been completely offset after multiple averag-
ing. CEEMDAN is proved to be an important improvement
progress on EEMD [25]. Ye et al. [26] combined EMD
and its improved version, EEMD/CEEMD/CEEMDAN with
Support Vector Regression (SVR), to establish a predictive
model. The results show that CEEMDAN-SVR is the best
method.

In recent years, deep learning has been growing rapidly,
which has achieved obvious advantages in different applica-
tion fields, and has received more and more attention. [27].
Among the many deep learning methods, GRU and LSTM
has improved the recurrent neural network (RNN) with
special memory structure and gate structure to enhance
long-term memory [28], [29]. And they have compensated
for the gradient explosion of RNN and the long-term depen-
dence of time series. However, GRU uses a gated recurrent
neural network structure, which has fewer training parameters
than LSTM. Meanwhile GRU is superior to LSTM in fore-
casting accuracy and forecasting speed, and it shows more
adaptability in the analysis of time series data [30], [31].
Therefore, the GRU is chosen as the principal forecasting
engine in this article. In recent years, in order to obtain
an advanced prediction approach for higher accuracy levels
and wider forecast horizons, the approaches called as hybrid
models and combined models have emerged [32]–[34].
Niu and Wang [35] proposed a including complete ensemble
empirical mode decomposition with adaptive noise and a
multi-objective grasshopper optimization algorithm based on
a no-negative constraint theory. The advantages of each indi-
vidual forecasting model are effectively utilized, the stability
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and accuracy of the prediction results are considered, and this
method achieves better prediction.

Based on the above analysis, a novel combined model,
based on CEEMDAN, PE, GRU neural network, RBFNN
and IBA is proposed in this study for wind speed forecast-
ing. First, CEEMDAN is used to decompose non-stationary
wind speed time series into different IMF components with
corresponding frequencies. Next, PE was applied to analyze
the complexity of each IMF component, and recombine the
IMFs with similar entropy values. To solve the issues of
over-decomposition and computational burden [36], [37].
Then, inspired by integrated learning technology, a cluster of
GRUs with diverse hidden layers and neurons are applied to
capture the unsteady characteristics and implicit information
of each recombination sequence. In order to overcome the
shortcomings of the traditional combination model linear
representation, the predictions of GRUs are aggregated into
a nonlinear-learning regression top-layer to give the final
ensemble prediction of each recombinant sub-series in this
article. The nonlinear learning top layer used in this article is
composed of RBFNN, and the improved bat algorithm (IBA)
is introduced to optimize the center vector, base width and
weight of RBF neural network by which to overcome the
problem of easy convergence to local optimum. Finally,
the prediction results of the nonlinear-learning top layer of
each recombination sequence are superimposed to obtain the
final wind speed prediction value. To validate the accuracy of
the proposed combined model, 15-min and 1-h wind speed
data from the wind farm in Zhangjiakou, China, are used as
cases. The results of experiments and discussions show that
the proposed combined model can achieve a better forecast-
ing performance and stability compared to other models.

The rest of the paper is organized in the following way.
The related basic theory of nonlinear-learning ensemble of
deep learning time series prediction for wind speed fore-
casting, CEEMDAN and PE are introduced in Section 2.
In Section 3 BA and IBA are described. Section 4 presents
the main structure of the proposed combined model. Then,
in Section 5, two case studies are demonstrated, in which the
prediction results of the proposed model and other involved
models are evaluated. Finally, the conclusions are presented
in Section 6.

II. RELATED METHODOLOGY
A. CEEMDAN
When EMD technology was proposed by Huang et al.
in 1998 [16]. EMD can adaptively decompose the origi-
nal signal into IMF components with different frequencies.
EEMD is an improved method based on EMD, which mainly
adds different white Gaussian noises to the original sequence
multiple times, then separately performs EMD decomposi-
tion, and finally obtain the final result by the average of
the obtained IMF components, avoiding the phenomenon of
mode-mixing [38], [39]. However, in practice, the white noise
added by the EEMDmethod does not be canceled completely

after a number of averaging. On the basis of EEMD,
CEEMDAN obtains the IMF by adding adaptive white noise
and calculating the unique margin signal to overcome the
EEMD deficiency, so that the reconstructed signal is almost
identical to the original.

Let s(n) be the wind speed time series, vi(n) be the
white Gaussian noise sequence added by the i-th experiment,
and the i-th decomposition wind speed time series can be
expressed as si(n) = s(n) + vi(n). The definitions of Ek (.)
and are the Kth modal components produced by EMD and
CEEMDAN, respectively. The specific steps of the CEEM-
DAN algorithm are as follows:

(1) Like the EEMD method, CEEMDAN performs I-time
decomposition for wind speed time series s(n) + vi(n). The
first modal component is calculated by the EMD method:

IMF1(n) =
1
I

I∑
i=1

IMF i1(n) = IMF1(n) (1)

(2) Calculate the first residual sequence:

r1(n) = s(n)− IMF1(n) (2)

(3) Decompose (r1(n)) + ε1E1
(
vi(n)

)
. for i(1, 2, . . . I )

times Calculate the second modal component:

IMF2(n) =
1
I

I∑
i=1

E1 (r1(n))+ ε1E1
(
vi(n)

)
(3)

(4) Similarly, calculate the kth residue sequence in the
remaining phase. Then, according to step (3), the (k +1)th
modal component is obtained:

rk (n) = rk−1(n)− IMFk (n) (4)

IMFk+1(n) =
1
I

I∑
i=1

E1 (rk (n))+ εkEk
(
vi(n)

)
(5)

(5) When the residual sequence cannot be decomposed,
that is, the maximum number of extremum points of the
residual signal is no more than two, the algorithm terminates.
At this point, k modal components are obtained, and the final
result of the residual sequence is:

R(n) = s(n)−
K∑
k=1

IMFk (6)

The original wind speed time series s(n) can be expressed
as: s(n) =

∑K
k=1 IMFk + R(n).

In order to verify the effectiveness and the advantage of
the CEEMDAN, Fig. 2 shows the decomposition results of
EMD, EEMD and CEEMDAN respectively applied to an
original wind speed series. The original wind speed series is
shown in Fig. 1. And the reconstruction error between the
original wind speed series and the sum of its corresponding
IMFs obtained by EMD, EEMD and CEEMDAN are shown
in Fig. 3. It can be observed from Fig. 2a, the results of
EMD decomposition has severe mode-mixing phenomenon
(IMF3-IMF6 in Fig. 2a). Fig. 3 shows that EEMD method
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FIGURE 1. Original wind speed time series.

has the largest reconstruction error compared to other meth-
ods, it demonstrates the incomplete decomposition of EEMD
algorithm. From Figs. 2 and 3, it can be seen that the CEEM-
DAN method show better decomposition performance and
produces a negligible reconstruction error than other two
methods. Therefore, the CEEMDAN method is adopted in
this study for wind speed time series decomposition.

B. PERMUTATION ENTROPY
PE is a measure of the complexity of time series [37]. It has
the advantages of simple calculation, strong anti-noise ability
and stable calculation value. It possesses high sensitive to
time series changes and good robustness and has been widely
used in various time series. The wind speed data has cer-
tain randomness and non-stationarity, which makes the IMF
component obtained by CEEMDAN decomposition more.
Therefore, in order to reduce the computational scale, this
article uses PE algorithm to carry out IMF reorganization,
the algorithm of PE can be presented as follows:

(1) First, phase space reconstruction is performed on
each IMF sequence {X (i), i = 1, 2, . . . ,N } obtained by

CEEMDAN to obtain a phase space matrix:

Y = [x(j), x(j+ τ ), . . . , x(j+ (m− 1)τ )] (7)

wherem and τ represent the embedding dimension and delay
time, respectively; j = 1, 2, . . . ,N − (m− 1)τ .
(2) Taking each row of the above matrix as a compo-

nent, there are a total of K components, and there is a rela-
tionship K = n − (m − 1)τ . Taking the j-th component
x (i+ (j1 − 1) τ ) = x(i+(j2−1)τ ) as an example, in ascend-
ing order according to the element value:

x (i+ (j1 − 1) τ ) ≤ x (i+ (j2 − 1) τ )

≤ . . . ≤ x (i+ (jm − 1) τ ) (8)

where j1, j2, . . . , jm represents the serial number of the com-
ponent element. If there is, it is x (i+ (j1 − 1) τ ) = x(i+(j2−
1)τ ) sorted according to the size of j1 and j2 values. In sum-
mary, for each row vector of the phase space reconstruction
matrix of any wind speed time series Xi, a set of sequences
S(l) can be obtained.

S(l) = {j1, j2, . . . , jm} (9)

where, l = 1, 2, . . . ,K and there are k ≤ m!, m-dimensional
spaces have a total ofm! differentmapping symbol sequences.

(3) Calculate the probability p1, p2, . . . , pk of occurrence
of each symbol sequence S(l). According to the form of
Shannon entropy, the permutation entropy Hp(m) of the k-th
different symbol sequence of time series X (i) can be defined
as:

Hp(m) = −
k∑
j=1

Pj lnPj (10)

FIGURE 2. Decomposition results of wind speed by EEMD, EEMD and CEEMDAN.
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FIGURE 3. Error of reconstruction using EMD, EEMD and CEEMDAN algorithms for wind speed decomposition.

It can be seen from the above formula that when, Pj =
1/m!,Hp(m) reaches the maximum value ln(m!). For the sake
of convenience, standardize Hp(m).

HPE(m) = HP(m)/ ln(m!) (11)

where, 0 ≤ HPE(m) ≤ 1 The size of the PE value rep-
resents the complexity and randomness of the time series.
The larger the value, the stronger the randomness; on the
contrary, the weaker the randomness. The embedding dimen-
sion m and the delay time τ are two important parameters
of the PE algorithm. Studies have shown that when the
sample size is small, the embedding dimension m is usually
small; the delay time τ has less influence on the permutation
entropy.

Through the above steps, each IMF arrangement entropy
is calculated. According to the closeness of the arrangement
entropy values, the IMF components are combined to obtain
a recombinant subsequence.

C. GATED RECURRENT UNIT
Recurrent Neural Network (RNN) is a special neural network
developed for processing time series data [27]. However,
as the network layer deepens and the number of neurons
increases, RNN often suffers from gradient disappearance
and gradient explosion in actual training, which limits its
application. To solve these problems, LSTM and GRU are
proposed. They are similar in function. However, with the
special gate structure, GRU is superior to LSTM in accuracy
and speed of prediction and is widely used [30].

Fig. 4 shows the structure of GRU. It has two important
gate structures, being r an update gate and z a reset gate. The
following calculation formulas are used in the GRU output
calculations:

(1) Reset Gate:

rt = σ (ωr · [ht−1, xt ]) (12)

FIGURE 4. Structure of a GRU cell.

(2) Update Gate:

zt = σ (ωz · [ht−1, xt ]) (13)

h̃t = tanh (ω · [rt · ht−1, xt ]) (14)

ht = (1− zt) · ht−1 + zt · h̃t (15)

(3) Output:

yt = σ (ωo · ht) (16)

Where: ht and ht−1 represent the historical information;
h̃t represents the candidate activation value; xt represents the
current sequence input; σ and tanh represent the activation
function; ωr , ωz, ω, ωo are training parameter matrix.

III. THE NONLINEAR-LEARNING ENSEMBLE OF GRU
TIME SERIES PREDICTION FOR SHORT-TERM WIND
SPEED FORECASTING
To achieve a better wind speed forecasting, in the structure
of nonlinear-learning ensemble learning, the predicted val-
ues of a cluster of GRUs, for each recombination sequence,
are input to a nonlinear-learning regression top-layer to
obtain the final predicted values of each recombination
sequence. Considering the RBF neural network can approxi-
mate any nonlinear function and the convergence rate is fast.
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Thus, RBFNN is introduced as the nonlinear-learning top-
layer. To improve the predictive ability of the nonlinear-
learning regression top-layer, an improved bat algorithm,
called IBA, is proposed to optimize the center vector ci, base
width σi and weight wij of RBF neural network. The basic
concepts of RBFNN and IBA are described below.

A. PRINCIPLE OF RBF NEURAL NETWORK
The RBF neural network is a highly efficient three-layer
neuron feedforward neural network, which can approximate
any nonlinear function and has a fast convergence rate [40].

The RBF neural network consists of an input layer,
an implicit layer, and an output layer, in which the input layer
is used to connect the network to the external environment;
There are many forms of the radial basis function of the
hidden layer. The Gaussian function has the advantages of
radial symmetry, good smoothness and simple expression.
Therefore, Gaussian function is chosen as the radial basis
function to map the input vector from the input space to the
high-dimensional space. The output layer is the linear output
of the hidden unit.

The typical structure of an RBF neural network is shown
in Fig. 5. Where, the input is: x = [x1, x1, . . . , xn]T, the out-
put of the hidden layer is: h = [h1, h2, . . . , hn]T, h1 represents
the output of the i-th neuron in the hidden layer:

hi = exp(
‖x − ci‖2

2σ 2
i

) (17)

where 1 ≤ i ≤ t , σi is the width of the Gaussian function
of the i-th neuron of the hidden layer, ci is the central value
of the t-th neuron Gaussian function of the hidden layer.
w ∈ Rt×n is the output weight matrix of the RBF network,
y = [y1, y2, . . . , ym]T is the output of the RBF network,
yj represents the jth output of the hidden layer:

yj =
m∑
i=1

wijhi (‖x − ci‖) (18)

where 1 ≤ j ≤ m.

FIGURE 5. The structure of RBF neural network.

B. PROPOSED IMPROVED BAT ALGORITHM (IBA)
BA is the most recent nature inspired optimization algorithm
proposed by Professor Yang in 2010 to simulate bat hunting

with ultrasound. It combines the advantages of intelligent
algorithms such as particle swarm and ant colony to achieve
a major breakthrough in convergence rate and optimization
ability. The BA is based on the analysis of bat behavior char-
acteristics, and establishes mathematical models with pulse
frequency f , pulse intensityA, velocity v, and pulse emissivity
BA. The basic steps of the BA are as follows:

(1) Parameter space initialization: Initialize the parameter
space. That of the BA algorithm consists of the number of
iterations iter , the position vector x, the velocity vector v,
the pulse intensity A, the pulse emissivity r , and the pulse
range [fmin, fmax].
(2) Calculate the fitness value of the bat and find the current

optimal solution. And record the location of the optimal
solution bat.

(3) Iterative training: update the frequency fi, speed vi and
position xi of individual bats according to Eq. (19), Eq. (20)
and Eq. (21)

fi = fmin + (fmax − fmin)× βi (19)

vti = vt−1i + (x ti − x
∗)× fi (20)

x ti = x t−1i + vti (21)

where β ∈ [0, 1] is a random vector that satisfies a uniform
distribution, x∗ is the current global optimal solution, and
t is the current number of iterations. In addition, during the
parameter initialization process, A indicates the frequency at
which the i-th bat emits sound waves, fi ∈ [fmin, fmax].

(4) Generate a random number: rand. If the condition
rand > ri is satisfied, according to the Eq. (22), search for the
local new solution near the current global optimal solution

xnew = xold + εAt (22)

where ε is the random number satisfying [−1,1], and At is the
average pulse intensity of all bats.

(5) Generate a random number rand, if the new solution
satisfies the following condition: rand < Ai&f (xi) < f (x∗),
the pulse intensity and pulse transmission frequency can be
updated according to the Eq. (23) and Eq. (24).

At+1i = βAti (23)

r ti = r0i [1− exp(−γ t)] (24)

where γ is the pulse transmission frequency enhancement
coefficient, γ > 0 and β are the attenuation coefficients of
the loudness, β ∈ [0, 1].
(6) Evaluate the bat population, and search for the bat

individual with the minimum fitness value.
(7) Determine whether the algorithm termination condition

is met, and if yes, proceed to step (8), otherwise, returns to
step (2) to continue the iterative training.

(8) The algorithm ends, outputting the position vector and
fitness value of the optimal bat individual.

Because BA balances the global and local search process
well, it has a performance advantage over traditional intelli-
gent algorithms. However, as the number of digits in the opti-
mization problem increases, its performance may degrade.
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TABLE 1. Benchmark function for testing of proposed IBA algorithm.

In order to improve that, relevant literature has proposed some
research. Nevertheless, the parameters of these modified BAs
are obtained through trial and error methods, while intro-
ducing cumbersome computational problems. Based on the
Eq. (21), this article introduces the dynamic inertia weight,
increases the speed diversity of BA in the global search and
local search process, and does not increase the excessive
computational burden. The update is shown in Eq. (25):

vt+1i = ωi(t)vti + (x ti − x
∗).fi (25)

where ω(t) is the dynamic inertia weighting factor, and its
value can affect the convergence rates. In order to increase the
diversity of the algorithm in speed, the expression of ωi(t) is:

ωi(t + 1) = ωi(t)+ N (0, 1) (26)

where N (0, 1) is a random variable subject to a normal distri-
bution.

In order to enhance the diversity of the bat position,
the loudness attenuation coefficient in the loudness Eq. (23)
is changed to improve its adaptability.

The loudness attenuation coefficient A, when taken as a
smaller value, will give the algorithm a local search capa-
bility, while the larger value will encourage the algorithm to
search globally. In order to achieve an appropriate balance
between global search and local search, the experiment found
the following dynamic formula:

βnew = (
1
2t
)1/2tβold (27)

C. BENCHMARK FUNCTIONS FOR VALIDATION OF THE
IBA ALGORITHM
As shown in Table 1, four typical benchmark functions,
namely, Sphere, Rosenbrock, Rastrigin and Schaffer are
applied to validate the performance of IBA and BA algorithm.
The test of all benchmark functions was run in MATLAB
R2018b on Windows 10 with a 3.30 GHz Intel Core i5-4590
CPU and 8.00 GB of RAM.

The experiment parameters of IBA and BA are listed
in Table 2. From Table 3, two points can be concluded:

(a) For the four test functions, the maximum, minimum,
and average number of iterations of the IBA are less than that
of BA. This means that IBA has successfully improved the
convergence ability of BA.

TABLE 2. The experiment parameters of BA and IBA.

(b) For the Rastrigin’s function and the Schaffer’s function,
the convergence rates of BA didn’t obtain 1. For these two test
functions, the convergence rate of the IBA is 1. Therefore,
the optimization performance of the IBA algorithm is also
significantly improved compared to BA.

D. CONSTRUCT IBA-RBF ALGORITHM
The RBF neural network has a strong advantage in deal-
ing with complex nonlinear mapping problems. However,
the performance of an RBF neural network is highly depen-
dent on its center vector, base width, and weight. This article
introduces an improved bat algorithm to optimize the center
vector, base width and weight of the RBF neural network to
overcome its problem of easy convergence to local optimum.
The objective function chosen by this article is:

f = (
1
N

∑N

n=1
(yn −

∧
y
n
)2)1/2 (28)

where N is the number of samples, yn is the actual value, and
∧
y
n
is the predicted value at time n.

The flow chart of IBA optimization RBFNN is shown
in Fig. 6.

IV. MAIN STRUCTURE OF PROPOSED COMBINED MODEL
In this section, A novel combined model is proposed,
which takes CEEMDAN-PE technique, a cluster of GRUs
with diverse hidden layers and neurons and IBA optimize
the parameters of RBFNN together. The main process of
is demonstrated in Fig. 7. The detailed processes of the
proposed combined model are as follows:

A. STEP1: DATA PREPROCESSING STRATEGY
Due to the intermittent characteristics and highly noisy
of wind speed series seriously restrict the wind speed
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TABLE 3. Test results of BA and IBA.

FIGURE 6. The flowchart of IBA-RBFNN.

FIGURE 7. The structure of the proposed combined model.

prediction accuracy, the CEEMDAN techniquewas employed
to decompose rawwind speed series into several IMF signals.
Next, PE was employed to calculate the PE values of each

IMF, and then to recombine the IMFs into a new subseries
(PE-IMFs) to solve the problem of over-decomposition and
computational burden.
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FIGURE 8. The original wind speed time series from Zhangjiakou wind farm.

B. STEP2: THE NONLINEAR-LEARNING ENSEMBLE OF
DEEP LEARNING TIME SERIES PREDICTION FOR PE-IMFS
Since different signals have different characteristics,
individual model can no longer adapt to all properties of the
PE-IMFs. To this end, a cluster of GRUs with diverse hidden
layers and neurons are employed separately is proposed for
forecasting PE-IMFs with different characteristics.

It should be noted that the network structure of the GRU
cannot be predefined for specific data. In the actual problem,
the parameters are selected through trial and error to make
a trade-off between the learning performance and the com-
plexity of the model. After that, the GRU cluster used in the
integrated learning part of this article consists of five different
GRUs.

Five diverse GRUs are adopted based on trial and error:
GRU1: 1 hidden layer with 20 neurons. GRU2: 1 hidden layer
with 40 neurons. GRU3: 2 hidden layers with 20,40 neurons.
GRU4: 2 hidden layers with 40,60 neurons. GRU5: 2 hidden
layers with 60,60 neurons. Five different GRU networks are
trained as a single predictive model to forecast the PE-IMFs
on train and test dataset. The prediction of five GRUs models
on training set is the input as train-feature into IBA-RBFNN
to learn. The task of IBA-RBF is to learn the nonlinear rela-
tionship of five GRUs predictors, similar to solving multiple
regression problems.

Final, the prediction results of the five GRU models on
the test dataset are input to the well-trained IBA-RBFNN to
obtain the prediction result of the recombinant sub-sequence
PE-IMFs.

C. STEP3: ASSEMBLE FORECASTING RESULT
The combined forecasting result of each PE-IMF is obtained
by step 2. Then, the forecasting results of which are superim-
posed to get the final result.

V. EXPERIMENTS AND ANALYSIS
A. WIND SPEED DATA DESCRIPTION
The Zhangjiakou area has a rich reserve of wind energy
resources, especially in the Bashang area. The Zhangjiakou

Bashang area is a rare wind energy resource gathering
area in China. The city’s wind energy resource reserves in
Zhangjiakou reachmore than 20millionKW (70%of the land
wind resource reserves in Hebei Province).

In this article, two historical short-timewind speed datasets
i.e. dataset A with a 15-min interval, and dataset B with a
1-hour interval are regarded as two illustrative examples to
test the forecasting performance of the proposed combined
model. The wind speed time series is displayed in Fig. 8.
Dataset A: Thewind speed data were sampled at an interval of
fifteen-min from November 21, 2013 to December 10, 2013,
1920 data points in total. Dataset B: Thewind speed data were
sampled at an interval of one-hour from January 22, 2013 to
April 10, 2013, 1920 data points in total. Each dataset is clas-
sified into a training set (the first 1632 values) and a testing
set (the last 288 values). Specifically, the first 816 values of
training set, were applied to train five GRUs models; And
the last 816 values of training set, were applied to train the
nonlinear-learning regression top-layer model. The statistical
information of the above dataset is showed in Table 4. And the
proposed combined model was implemented though mixed
language programming based on Python and MATLAB.
And the GRU Neural Networks was operated by using the
‘‘Keras’’ deep learning package.

TABLE 4. The statistical information of wind speed in two case studies.
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TABLE 5. Four evaluation criteria recombined by PE value of CEEMDAN subsequence.

B. EVALUATION OF FORECASTING PERFORMANCE
Four evaluation criteria are considered to check the forecast
performance of the proposed models [42]. And they are
defined as shown in Table 6.

TABLE 6. Four evaluation criteria.

Here yn and
∧
y
n
represent the actual value and predicted value

at time n, respectively. N is the sample size.

C. DATA DECOMOPOSITION BY CEEMDAN-PE
CEEMDANdecompositionwas performed on thewind speed
time series, and I = 500 groups of white noise signals with a
non-standard deviation of 0.2 were added to obtain IMF com-
ponents. The permutation entropy values of the IMF compo-
nents are calculated, and the results are shown in Table 6.
In order to avoid excessive decomposition and reduce the
calculation scale, the IMF components with similar entropy
values are superimposed to obtain the recombination compo-
nent PE-IMFs, according to the permutation entropy values
shown in Table 5. The recombinant sequences are shown
in Fig. 6 and Fig. 7.

D. CASE STUDY 1: 15-min TIME-SCALE WIND SPEED
FORECASTING
In this case study, the wind speed data of Dataset A is used
to perform 15-min ahead utmost short-term wind speed fore-
casting. The wind speed is displayed in Fig.8.

1) EXPERIMENT 1: COMPARISON WITH MODELS USING
DIFFERENT DATA DECOMPOSITION TECHNIQUES
Experiment I was designed to compare proposed combined
model with three models based on different data decompo-
sition techniques, namely WPD based model, EMD based
model and EEMD basedmodel. Fig. 11 shows the forecasting
performances comparison of proposed combined model and
three models. The comparison results are shown in Table 7.
From the table, the proposed combined model achieves the
best forecasting performance, with the MAE, RMSE, MAPE
and SSE of 0.2778, 0.3294, 2.6169% and 31.2580. Then,
the models from highest to lowest based on the forecasting
accuracy are EEMD based model, EMD based model and
WPD based model with MAPE values of 2.8926%, 3.1513%
and 3.2723%.

TABLE 7. Forecasting performance comparison table of combined model
and models using different data decomposition techniques in case
study 1.

2) EXPERIMENT 2: COMPARISON WITH MODELS USING
SAME DATA DECOMPOSITION TECHNIQUE
In order to verify the forecasting performance of the pro-
posed combined model, compare it with five models only
based on CEEMDAN-PE, namely CEEMDAN-PE-GRU,
CEEMDAN-PE-LSTM, CEEMDAN-PE-SVR, CEEMDAN-
PE-BP and CEEMDAN-PE-RBF. Fig. 12 visualizes the fore-
casting results and residual errors of the proposed combined
model and other models onDataset A. The forecasting perfor-
mance of a combined model and the comparison with other
models are listed in Table 8. Fig. 13 visualizes the comparison
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FIGURE 9. Recombination results for the dataset A decomposed using CEEMDAN-PE.

FIGURE 10. Recombination results for the dataset B decomposed using CEEMDAN-PE.

TABLE 8. Forecasting performance comparison table of combined model
and models using same data decomposition technique in case study 1.

of forecasting performance. The lowestMAE, RMSE,MAPE
and SSE values among all comparison models are marked
in bold. Clearly, the proposed combined model shows the
highest accuracy.

Moreover, from the analysis of Figs. 12 and 13, a com-
parison of the forecasting results indicates that the proposed
combined model has the best accuracy and stability when

compared with other models, shows apparently a better curve
fitting of the actual wind speed time series and smaller resid-
ual errors. Meanwhile, it can be clearly seen that compared
with the CEEMDAN-PE-GRU, the ensemble of GRUs has
improved the forecasting performance of single GRU.

3) EXPERIMENT 3: COMPARISON WITH MODELS USING
DIFFERENT NONLINEAR-LEARNING TOP-LAYER
In experiment 3, in order to analysis the impacts of the
nonlinear-learning top-layer on prediction performance, three
forecasting models of different nonlinear-learning top-layers
are used for comparison with the proposed combined
model, namely CEEMDAN-PE-GRU-SVR (using SVR
model as nonlinear-learning top-layer), CEEMDAN-PE-
GRU-BP (using BP model as nonlinear-learning top-layer)
and CEEMDAN-PE-MeanGRU (the ensemble learning is an
average forecasting result). Fig. 14 shows the forecasting
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FIGURE 11. Forecasting results of combined model and models employing diverse data decomposition techniques in case study 1.

performances comparison of proposed combined model and
three models. The forecasting results of each model are
shown in Table 9. From Fig. 14 and Table 9. It can be
seen that the proposed combined model can achieve better
forecasting performance, which indicates the superiority of
nonlinear-learning top-layer composed by IBA-RBF model.

TABLE 9. Forecasting performance comparison table of combined model
and models using different ensemble learning top-layer in case study 1.

E. CASE STUDY 2: 1-H TIME-SCALE WIND SPEED
FORECASTING
As described above, the proposed combinedmodel has shown
its superiority in 15-min time-scale wind speed forecasting.
In order to investigate the potential of the model in 1-h
time-scale wind speed forecasting, in case study 2 three
experiments are designed to validate the accuracy of the
proposed combined model.

1) EXPERIMENT 1: COMPARISON WITH MODELS USING
DIFFERENT DATA DECOMPOSITION TECHNIQUES
Experiment I was designed to compare proposed combined
model with three models using different data decomposition

techniques, namely WPD based model, EMD based model
and EEMD based model. Fig. 15 shows the forecasting
performances comparison of proposed combined model and
three models. The comparison results are shown in Table 10.

From Table 10 and Fig. 15, the proposed combined model
achieves the best forecasting performance, with the MAE,
RMSE, MAPE and SSE of 0.4453, 0.5876, 4.7875% and
96.9548. Then, the models from highest to lowest based on
the forecasting accuracy are EEMDbasedmodel, EMDbased
model andWPDbasedmodel withMAPE values of 4.9072%,
5.2324 % and 5.4861%.

TABLE 10. Forecasting performance comparison table of combined
model and models using different data decomposition techniques in case
study 2.

2) EXPERIMENT 2: COMPARISON WITH MODELS USING
SAME DATA DECOMPOSITION TECHNIQUE
Experiment 2 shows a comparison between the pro-
posed combined model and five models only based on
CEEMDAN-PE, namelyCEEMDAN-PE-GRU,CEEMDAN-
PE-LSTM, CEEMDAN-PE-SVR, CEEMDAN-PE-BP and
CEEMDAN-PE-RBF. The specific forecasting results are
listed in Table 11. Fig. 16 provide the bar graph of prediction
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FIGURE 12. Forecasting results of combined model and models using same data decomposition technique in case study 1.

FIGURE 13. The forecasting performance comparison of combined model
and models using same data decomposition technique in case study 1.

residual errors for different forecast methods and visualizes
the comparison of forecasting results. Fig. 17 visualizes the
comparison of forecasting performance.

TABLE 11. Forecasting performance comparison table of combined
model and models using same data decomposition technique in case
study 2.

FromTables 11 and Fig. 16, it can be clearly seen that mod-
els only based on CEEMDAN-PE are far away from true data,
and our proposed combined model performs superior wind
speed forecasting. Next, the models from highest to lowest
based on the forecasting accuracy are CEEMDAN-PE-GRU,
CEEMDAN-PE-LSTM, CEEMDAN-PE-RBF, CEEMDAN-
PE-BP and CEEMDAN-PE-SVR with MAPE values of
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FIGURE 14. Forecasting results of combined model and models employing different nonlinear-learning top-layer in case study 1.

FIGURE 15. Forecasting results of combined model and models employing different nonlinear-learning top-layer in case study 2.

3.5795%, 3.7818%, 4.4607%, 4.6432% and 4.9521%.
Similar to case study 1, compared with the CEEMDAN-PE-
GRU, the ensemble of GRUs has improved the forecasting
performance of single GRU.

3) EXPERIMENT 3: COMPARISON WITH MODELS USING
DIFFERENT NONLINEAR-LEARNING TOP-LAYER
The aim of experiment 3 is to compare the proposed com-
bined model with models using different nonlinear-learning
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FIGURE 16. Forecasting results of combined model and models using same data decomposition technique in case study 2.

top-layer. Similar to case study 1, three forecasting models
of different top-layers are used to analysis of impacts of the
ensemble learning top-layer on prediction performance. The
forecasting results of each model are shown in Table 12.
Fig. 18 shows the forecasting performances comparison of
proposed combined model and other models.

TABLE 12. Forecasting performance comparison table of combined model
and models using different ensemble learning top-layer in case study 1.

It can be observed from Table 12 and Fig.18 that
our proposed combined model performs superior wind
speed forecasting when compared with CEEMDAN-PE-
GRU-SVR, CEEMDAN-PE-GRU-BP and CEEMDAN-PE-
MeanGRU, which is benefited from nonlinear-learning
ensemble top-layer of IBA-RBF.
Remark: Compared with Case Study 1, it can be seen that

when the forecasting time is extended from fifteen minutes
to one hour, influenced by the volatility and abruptness of
wind resources, the forecasting errors of each model also
become correspondingly larger. 1-h time-scale wind speed
forecasting is more complicated and difficult than 15-min
time-scale wind speed forecasting. However, the accuracy
and stability of prediction of the combined model proposed
in this article are still optimal compared to other models.

165626 VOLUME 8, 2020



T. Liang et al.: Combined Model Based on CEEMDAN, Permutation Entropy, GRU Network, and an IBA

FIGURE 17. The forecasting performance comparison of combined model
and models using same data decomposition technique in case study 2.

F. DISCUSSION
1) DIEBOLD-MARIANO (DM) TEST
In order to further assessing and discussing the forecasting
performance of the proposed combined model, the DM test is
conducted to examine the effectiveness of the proposed com-
bined model from a statistical perspective [42]. The specific
steps are presented are as follows:

The null hypothesis is that the predictions of the two mod-
els are no significant differences. In contrast, the alternative
hypothesis is that a significant difference in the forecast-
ing performances of the two models. The null hypothesis
and alternative hypothesis of the DM test are expressed

as follows:

H0 : E[F(e1t )] = E[F(e2t )] (29)

H1 : E[F(e1t )] 6= E[F(e2t )] (30)

where e1t and e
2
t are the forecasting errors between real values

and forecasted values of the proposed combined model and
another compared model, and F represents the loss function
for forecasting errors.

Further, the statistics of DM test can be expressed by:

DM =

∑n
i=1 (F(e

1
t )− F(e

2
t ))/n√

S2/n
S2 (31)

where S2 is the estimated variance of d = F(e1t )− F(e
2
t ).

After obtaining values of the calculated DM and the critical
value Zα/2, if the DM statistic is greater than Zα/2 or less than
−Zα/2, the null hypothesis will be rejected, and it is deemed
that the distinctions between our proposed combined model
and the compared model are evident.

The values of the DM test for two time-scales are shown
in Table 13. From the results given in Table 13, it can be
clearly seen that the proposed combined model is a signif-
icant difference from all the other models at a 1% signifi-
cance level. In addition, the smallest value of DM for two
time-scales are separately 2.8906 and 2.9546. Thus, the null
hypothesis could be rejected at a 1% significance level.
Therefore, the proposed combined model significantly out-
performs the other models, and this verifies the effectiveness
of our proposed combined model for wind speed forecasting.

FIGURE 18. Forecasting results of combined model and models employing different nonlinear-learning top-layer in case study 2.
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TABLE 13. The DM test results of different models.

2) COMPUTATIONAL EFFICIENCY: RUN TIME
In order to analysis the computational efficiency of the
proposed combined model. Table 14 presents the average
computation time of the proposed combined model and the
other models with two time-scales wind speed forecasting.
Specifically, the average computation time of the proposed
combined model for two time-scales are separately are sepa-
rately 382.56 and 386.98, which are less than the values from
models using other data decomposition technologies, and
models using different nonlinear-learning top-layer except
the CEEMDAN-PE-MeanGRU model. Moreover, relative to
the models only based on CEEMDAN-PE, the computation
time of the proposed combined model is longer, which is rea-
sonable because it has a better forecasting performance. And
in practical implementation, the time consumed is acceptable.
Moreover, the run time can be further improved by using a
high-performance computer.

TABLE 14. Computation time comparison of the proposed combined
model and other models.

VI. CONCLUSION
Wind energy, as a crucial type of renewable energy,
has aroused widespread interest and research enthusiasm.
However, the intermittent characteristics and highly noisy of
wind speed series increases forecasting difficulty to a great

extent. In addition, due to the scale, geographic location,
climatic conditions and wind turbine models of each wind
farm are different, it is difficult for the wind speed forecasting
strategy of the same centralized control center to achieve
the desired accuracy across different wind farms. Motivated
by recent developments in combined model forecasting,
we developed a novel combined model for wind speed fore-
casting, which can not only achieve precise forecasting, but
also be applicable to various wind farms environments under
the centralized control system. In this article, two wind speed
series collected from the wind farm in Zhangjiakou, China
are adopted as cases to validate the accuracy and stability of
the proposed combined model.

The experimental results demonstrate that the advantages
of our proposed combined model mainly lie in the following
aspects. (1) When comparing between the proposed com-
bined model and models using different data decomposi-
tion techniques. The MAE, RMSE, MAPE and SSE values
of our proposed combined model in two time-scales wind
speed forecasting are all ranked as the best, which indicates
the superiority of the proposed data decomposition tech-
nique. (2) Similarly, compared with models only based on
CEEMDAN-PE in two time-scales wind speed forecasting,
the lowest MAPE values for two time-scales are obtained
from the proposed combined model, with values of 2.6169%
and 4.7875%, which are reduced by 2.3352% and 2.0951%
compared with maximum MAPE values obtained from the
CEEMDAN-PE-SVR, which indicates the proposed com-
bined model has excellent forecasting accuracy relative to
models only based on CEEMDAN-PE. (3) When comparing
between the proposed combined model and models using
different nonlinear-learning top-layer. The proposed model
can achieve better forecasting accuracy and more stable
forecasting performance, which indicates the superiority of
nonlinear-learning top-layer composed by IBA-RBF model.
(4) In two case studies, generalized from all the models
that, the proposed combined model has the best forecasting
performance. In 15-minute ahead wind speed forecasting,
the MAE, RMSE, MAPE and SSE of the proposed combined
model are 0.2778, 0.3294, 2.6169%, 31.2580; compared with
other models, the CEEMDAN-PE-MeanGRU has the sec-
ond best forecasting performance, with the MAE, RMSE,
MAPE and SSE of 0.2932, 0.3506, 2.8621%, 36.0231.
Thus, the proposed combined model has a better perfor-
mance, which MAE, RMSE, MAPE and SSE is separately
5.2524%, 6.0468%, 8.5671% and 13.2279% lower than
the CEEMDAN-PE-MeanGRU model; In 1-h ahead wind
speed forecasting, the MAE, RMSE, MAPE and SSE of
the proposed combined model are 0.4453, 0.5876, 4.7875%,
96.9548; compared with other models, the CEEMDAN-
PE-MeanGRU has the second best forecasting performance,
with the MAE, RMSE, MAPE and SSE of 0.4665, 0.6196,
4.9865%, 101.4685. Thus, the proposed combined model has
a better performance, whichMAE, RMSE,MAPE and SSE is
separately 4.5445%, 5.1646%, 3.9908% and 4.4645% lower
than the CEEMDAN-PE-MeanGRU model. (5) Through the
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DM test and computational efficiency analysis, we confirm
that the proposed combined model has higher forecasting
performance and lower cost in the proposed combinedmodel.

Overall, we can conclude that the proposed com-
bined model successfully enhances the forecasting capacity
for wind speed, and provides a valuable reference the
management of large wind farms.
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