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ABSTRACT The development of advanced metering infrastructure (AMI) in smart grid (SG) had enabled
consumers to participate in demand-side management (DSM) using the price-based demand response (DR)
programs offered by the distribution companies (DISCO). This way, not only the consumers minimize
their electricity bills and discomfort, but also the DISCOs can handle peak power demand and reduce the
carbon (CO2) emissions in a controlled manner. Building an optimization framework that will minimize
cost, peak demand, waiting time, and CO2 emission is not only a challenging task but also a concern of
DSM. Most analyses are based on cost and peak-to-average ratio (PAR) minimization, but the effectiveness
of the DSM framework is equally determined by user comfort and CO2 emission. Considering only one
objective (cost) or two objectives (cost and PAR) is not sufficient. Thus, for DSM framework to achieve
these four relatively independent objectives at the same time, minimized cost, PAR, CO2 emission, and
user discomfort, an energy management controller (EMC) based on our proposed algorithm hybrid bacterial
foraging and particle swarm optimization (HBFPSO) is employed that return optimal power usage schedule
for consumers. A novel DSM framework consists of four units: (i) DISCO, (ii) multi-layer perceptron
(MLP) based forecast engine, (iii) AMI, and (iv) demand-side energy management modules is successfully
developed in this work. To validate the proposed model, extensive simulations are conducted and results are
comparedwith the benchmarkmodels like genetic algorithm (GA), bacterial foraging optimization algorithm
(BFOA), binary particle swarm optimization (BPSO), and a hybrid combination of genetic and binary particle
swarm optimization (GBPSO) in terms of electricity cost, PAR, user comfort, and CO2 emissions. The
simulation results demonstrate effectiveness of our proposed model to outperform all the benchmark models
in optimizing the consumer and DISCO objectives. The proposed scheme has reduced electricity cost, user
discomfort, PAR, and CO2 emission for the residential sector by 15.14%, 4.6%, 61.6%, and 52.86% in
scenario 1, 62.60%, 4.56%, 60.77%, and 27.77% in scenario 2, and 26.03%, 4.54%, 63.78%, and 23.02%
in scenario 3, as compared to without an EMC. Similarly, for commercial sector the proposed HBFPSO
algorithm reduces electricity cost, user discomfort, PAR, and CO2 emission by 11.31%, 5.5%, 60.9%, and
38.18% in scenario 1, 64.9%, 5.56%, 44.08%, and 58.8% in scenario 2, 15.31%, 5.26%, 78.22%, and 15.58%
in scenario 3. Likewise, the proposed algorithm also has superior performance for the industrial sector for
all the three scenarios.

INDEX TERMS Smart grids, advanced metering infrastructure, demand side management, energy man-
agement controller, price-based demand response program, heuristic algorithms, multi-layer perceptron,
forecasting, carbon reduction.
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NOMENCLATURE
N Total number of homes
m Total number of appliances
A Set of appliances
τ Time interval for each appliance
T Total time interval
Api Set of portable interruptible appliances
Apni Set of portable un-interruptible appliances
Ac Set of consistent appliances
λ Power rating
ρ (τ ) Price signal
ε Total power usage per day for each category

of load
σ τ Cost per hour
ς total Cost per day
γ Total load consumed
NE Power usage for each appliances
Ne Number of elimination steps
Nr Number of reproduction steps
Nc Number of chemotaxis steps
Ns Number of swimming steps
Np Number of population steps
Ci Step size
vmax Upper velocity limit in BPSO
vmin lower velocity limit in BPSO
Pc Probability of crossover
wi Initial weight constant
AMI Advance metering infrastructure
BPSO Binary particle swarm optimization
BFOA Bacterial foraging optimization algorithm
CPP Critical peak pricing
CO2 Carbon emission
DR Demand response
DSM Demand side management
EMC Energy management controller
GA Genetic algorithm
gbest Global best
HGBPSO Hybrid of GA and BPSO algorithm
HBFPSO Hybrid of BFOA and BPSO algorithm
HEMS Home energy management system
HESS Hybrid electrical storage systems
ICTs Information and communication technologies
IBR Inclined block rate
NILM Non-intrusive load monitoring
PAR Peak to average ratio
Pbest Personal best
RTP Real time pricing
SG Smart grid
ToU Time of use
WLAN Wireless local-area network
Pm Probability of mutation
wf Finial weight constant

I. INTRODUCTION
The world’s growing demand for energy has put its natural
resources under immense strain. Fossil fuels meet the bulk

of our energy needs, resulting in the emission of green-
house gases that are adversely affecting our environment
and driving climate change. To offset the effects of climate
change, the world needs to limit and reduce the emission
of greenhouse gases. This can be accomplished by moving
towards renewable sources of energy, and a smart grid (SG)
that can help in the efficient management of existing energy
resources. The SG creates a customer service platform by
incorporating information and communication technologies
into the electric power grid [1]. Moreover, the incorporation
of new technologies like advanced metering infrastructure
(AMI) into the SG, enables two-way communication between
the smart meter and the utility, which can help to reduce both
power consumption and energy costs [2].

The SG enables consumers to schedule their power usage,
thereby granting them greater control over their power expen-
diture by allowing them to reduce their power peak-to-
average ratio (PAR), based on real-time pricing (RTP), with
an inclined block rate (IBR). Several schemes have been
proposed for scheduling domestic power consumption [3].
In [4], an energy management framework is proposed for
smart energy storage and scheduling schemes for appliances,
which allows consumers to save on electricity costs in two
ways. First, it enables them to schedule their power con-
sumption during off-peak hours when prices are low. Second,
during peak hours, when prices are high, consumers can
meet their power requirements through their energy storage
devices. Despite its obvious advantages, the resulting system
is complex. For instance, in [5], the authors proposed a strat-
egy to reduce electricity costs by scheduling power usage
for both interruptible and uninterruptible loads; but, power
demand may create peaks when the electricity price is low.
In [6], both electrical and thermal appliances are considered
to study the effect of seasonal variations on electricity costs
without PAR. In [7], optimal load scheduling is achieved by
dynamically scheduling a consumer’s load. However, peak
load requirements may emerge in an incentive-based system.

Several researchers have explored demand-side manage-
ment (DSM), for instance, in [8], a household equipped
with smart appliances, a storage unit, electric vehicles, and
photo-voltaic micro-generation is considered. The house-
hold’s energy resources are managed in such a way to max-
imize self-consumption and minimize consumption from the
utility. In [9], the authors reduce the cost of electricity, con-
sumer discomfort, and peak energy consumption by propos-
ing a genetic binary particle swarm optimization (GBPSO)
algorithm under a dynamic pricing model. The GBPSO per-
formance is evaluated by comparing it with two heuristic
optimization techniques, i.e., genetic algorithm (GA), and
binary particle swarm optimization (BPSO) in terms of res-
idential load management. In [10], a real-time price-based
demand response (DR) program is proposed for residential
load management using stochastic and robust optimization
techniques, which are formulated as mixed-integer linear
programming problems. In [11], the authors proposed bidi-
rectional communication between the consumer and the grid
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along with an opportunistic scheduling scheme based on an
optimal stopping rule using multiple knapsacks for DSM of
smart appliances. It resulted in a model with low complexity
and shifted load from on-peak to off-peak hours. In [12],
an incentive-based DR strategy is presented, which is very
effective in reducing customers’ peak loads and electric-
ity costs. Moreover, weighted particle swarm optimization
(PSO) is used to demonstrate the efficiency of the pro-
posed strategy as a practical tool for peak load shaving in
the home energy management system (HEMS). Before load
scheduling, electrical consumption forecasting is manda-
tory for efficient energy management to minimize PAR and
the total cost of electricity [13]–[15]. Because scheduling
with inaccurate load results in high PAR that overloads
the power grid and creates threats to power system stabil-
ity or cause blackouts in the worst case. Several approaches
have been proposed to address the optimal in-home power
scheduling problem using techniques such as linear program-
ming [16], [17], PSO techniques [18], and meta-heuristic
methods [19].

Thus, an intelligent integrated model is developed, which
employs EMC-based on our proposed hybrid bacterial for-
aging and particle swarm optimization (HBFPSO) algorithm
for efficient DSM of residential, commercial, and industrial
service areas under price-based DR programs in the SG to
overcome limitations in the existing literature. The DSM in
this study aims to reduce electricity bills, curtail the PAR, and
minimize carbon (CO2) emissions while ensuring consumer
comfort. The main contributions and highlights of this paper
are as follows:
• The forecast engine module based on MLP and AMI
module both are coupled with the demand-side energy
management module to forecast the demand side
load and offered price of the DR program. The pur-
pose is to perform efficient demand-side management
via scheduling energy usage profile of demand-side
load under the forecasted offered price of the DR
program.

• A price-based DR program is introduced that broadcasts
three pricing signals, i.e., day-ahead pricing scheme
(DA), time of use pricing scheme (ToU), and crit-
ical peak pricing scheme (CPP), to the consumers
to participate in the DSM to realize peak clipping,
valley filling, and demand curve smoothing via load
shifting.

• A heuristic algorithm-based environment is introduced
to schedule the operation of the demand-side load of
three service areas, i.e., residential, commercial, and
industrial.

• Different load categories are introduced for the appli-
ances used in residential, commercial, and industrial ser-
vice areas to ensure implementation of the DSM under
price-based DR programs.

• An objective function is mathematically formulated,
which is subject to practical energy consumption con-
straints to perform DSM via scheduling in order to

ensure energy and cost savings, alleviate PAR, reduce
CO2 emissions, and improve user comfort.

• In [20]–[22] the electricity cost and peak demand
load ratio are formulated as an optimization problem,
whereas, in this paper in addition to electricity cost and
PAR, CO2 emissions and user-comfort are also formu-
lated and investigated by solving the DSM optimization
problem via scheduling demand-side load of residential,
commercial, and industrial service areas under price-
based DR programs.

• A novel HBFPSO algorithm-based EMC is proposed to
solve the DSM problem by optimally scheduling load
of three service areas like residential, commercial, and
industrial.

• The proposed method is evaluated by comparing its
performance to four benchmark optimization algorithms
like GBPSO, GA, BFOA, and BPSO in terms of five
performance metrics: energy consumption, electricity
cost, PAR, user-comfort, and CO2 emissions.

• Simulation results demonstrate that our proposed algo-
rithm significantly reduces electricity costs, alleviates
PAR, minimizes CO2 emissions, and reduces con-
sumer’s discomfort.

The remaining sections of the manuscript are orga-
nized as follows: Related work is presented in Section II,
whereas Section III elaborates the proposed system model.
Section IV formulates the problem and presents the pro-
posed solution, whereas the simulation results are detailed
in Section VI. Finally, in Section VII, the manuscript is
concluded.

II. RELATED WORK
In the SG, demand-side consumers are encouraged to take
part in DSM via AMI and home area network (HAN), which
has been studied extensively in the existing literature. In [23],
reduction in peak demand, and improvement in the losses and
voltage profile of a power distribution network are achieved
through large scale control of domestic refrigerators without
affecting their quality of service. In [24], the authors propose
load-shift incentives for household DR and analyze the short
and long term effects of exposing customers to hourly spot
market prices and a simple rebate scheme. In [26], the authors
utilized heuristic-based EMC under hybrid generation in
order to reduce electricity costs of households, and conclude
that it is mostly affected by the number of people in the house
and the surface area of the house. Demand response is an
important feature of SG [24], and the authors in [25] also
conclude that DR under a variable pricing scheme makes
wind power more valuable. In [27], the authors conclude
that RTP can be provided to consumers through bidirectional
communication between the consumer and the power grid.
Besides, they proposed an intelligent opportunistic scheme
for scheduling the operation of appliances in off-peak hours
to reduce the electricity costs without affecting consumer
comfort. The authors in [28] proposed a distributed system
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for optimally scheduling power generation units subjected to
environmental constraints, dynamic line rating, wind power
uncertainty, energy storage unit, and a cross-border energy
market. In [29], the authors proposed an economic model for
DR to maximize customer utility under daily consumption
constraints. In [35], a dynamic price-based DR is modelled,
and then optimized for maximizing profits and user comfort
using PSO algorithm. The authors in [36], proposed DSM
strategies that adapt two aspects of the DR program into
account: price-based and incentive-based programs in order
to optimize the energy consumption of consumers. A HEMS
is presented in [37] that use a price-basedDR program for res-
idential consumers and discusses demand-limit and injection-
limit strategies of price-based DR program to improve cus-
tomer satisfaction. Conventional methods for load scheduling
aim either to maximize the consumption payoff or minimize
the consumption cost. Therefore, in [38], a cost-efficiency
based framework is proposed for residential load scheduling
that reflects the user’s consumption behavior and an energy
profile that is in terms of cost-efficiency. The authors in [39],
proposed a power grid integrated with aggregator and electric
vehicles (EV). The load is scheduled under the integrated
framework and also energy trading through EV is performed
using a game-theoretic approach among self-interested cus-
tomers. In [40], a household equipped with smart appliances,
a storage unit, EV, and photovoltaic micro-generation is con-
sidered and resources are scheduled to maximize the use
of self-generated energy and minimize the use of borrowed
energy from the utility. In [41], an energy management model
is proposed to minimize the cost of electricity, consumer dis-
comfort, and peak energy consumption using grey wolf mod-
ified enhanced differential evolution (GWmEDE) algorithm,
which combines the grey wolf optimization (GWO) andmod-
ified enhanced differential evolution (mEDE) algorithms for
optimal energy management. A DSM strategy is proposed
in [42] to mitigate electricity costs and improve consumer
comfort using heuristic algorithms and multiple knapsacks.
In [43], the authors propose bidirectional communication
between the consumer and the grid along with an oppor-
tunistic scheduling scheme based on an optimal stopping
rule for smart appliances resulting in a simpler model and
shifting of the load to off-peak hours [11] in the introduction
section. In [44], an incentive-based demand response strategy
is presented, which is very effective in reducing customers’
peak loads and electricity costs. Moreover, the PSO algorithm
is used to demonstrate the efficiency of the proposed strategy
as a practical tool for peak load shaving in industries [12].
In [45], a system model is proposed using BPSO to minimize
PAR and the total cost of electricity.

In [46], the authors present a model to minimize the elec-
tricity costs and maximize comfort for residential consumers
by optimizing a Taguchi loss function for a price-based DR
programwith AMI. In [47], a systemmodel with a non-sorted
genetic algorithm (NSGA) is proposed to optimize the daily
cost of electricity and user comfort under the RTP price-
based DR program. In [48], a system model is proposed to

maximize a customer’s utility using the ToU tariff. In [49],
a system model is presented for residential load scheduling
that allows customization and configuration of parameters
such as renewable resources and hybrid electrical storage
systems (HESS) and improves cost savings by up to 45%.
In [50], an advanced HEMS is proposed with non-intrusive
load monitoring (NILM) to reduce PAR and improve user
comfort.

In the aforementioned related work, the authors did not
utilize completely the favorable features of the SG like AMI
enabling bi-directional communication and automatic con-
trol. Some authors minimized electricity cost, few focused
on PAR, and some catered both electricity cost and PAR
while some authors worked on only user comfort. How-
ever, the performance parameters under discussion were not
catered by any author simultaneously. Furthermore, multiple
service areas and different pricing signals were not consid-
ered simultaneously in the literature. Thus, in this study,
the four performance parameters like electricity cost, CO2
emission, PAR, and user-comfort are considered simultane-
ously in the context of DSM under price-based DR programs
for multiple service areas.

III. THE PROPOSED SYSTEM MODEL FOR DEMAND-SIDE
MANAGEMENT UNDER PRICE-BASED DR PROGRAMS
In this study, an intelligent model is proposed for efficient
energy management, which is an integrated framework of
four modules like power company module, forecast engine
module, AMI module, and demand-side energy management
module as illustrated in Figure 1. This work is an extension
of our previous conference paper published in [51]. The focus
of the earlier work is only on the DSM of residential service
area while the current work is for the DSM of three service
areas like residential, commercial, and industrial with two
novel frameworks of forecaster andAMI in SG. The proposed
model is a modular framework of four modules connected
in a cascaded manner, where the output of the succeeding
module is the input for the proceeding module as depicted
in Figure 1. Before performing the DSM of three service
areas, it is imperative to identify the factors that influence
DSM. These influencing factors include the energy con-
sumption profile of residential, commercial, and industrial
service areas, available energy generation profile, price-based
DR programs, and weather and environment of the area,
where this model is to be implemented. However, it is not
practical to consider all factors and parameters at the same
time because they complicate the process and also degrade
the model performance. Thus, in this study, price-based DR
programs and energy consumption profiles of residential,
commercial, and industrial service areas are selected from
the pool of factors and parameters essential for DSM. As the
focus of this study is on efficient DSM of residential, com-
mercial, and industrial service areas, therefore, before DSM,
a proper forecast engine is required to accurately forecast
both energy consumption profile of demand-side (residential,
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TABLE 1. A summary of related work in terms of techniques, objectives, features, and limitations in the context of DSM under price-based DR programs
in SG.

commercial, and industrial service areas) and price-based
DR programs offered pricing signals beforehand in order to
ensure efficient DSM. Thus, a multi-layer perceptron (MLP)
based forecast engine receives historical electrical energy

consumption data and historical price-based DR programs
offered pricing signals. The MLP-based forecast engine fore-
cast the energy consumption profile of demand-side and
price-based DR programs offered prices beforehand based
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on the received historical data. The AMI module receives
forecasted energy consumption profile of demand-side and
price-based DR programs offered prices via the CM and
deliver both energy consumption and offered price profiles
to the demand-side energy management module. The HBF-
PSO algorithm-based EMC of demand-side energy manage-
ment module utilized energy consumption and offered price
profiles and perform efficient DSM via load scheduling.
The detail description of the proposed system model is as
follows:

A. MLP-BASED FORECAST ENGINE MODULE
The MLP-based forecast engine in this study is selected due
to its ability to capture the non-linear mapping between input
and output. The proposed forecast engine drive on supervised
learning and history data. Thus, the proposed MLP-based
forecast engine is empowered by training and learning to
forecast demand-side energy consumption profile and price-
based DR programs offered price profile. The dataset used
for the training of MLP-based forecast engine is received
from the power company module and is taken form midwest
independent system operator (MISO) under federal energy
regulatory commission (FERC) [55]. The dataset consists of
historical energy consumption patterns of residential, com-
mercial, and industrial service areas, and a price-based DR
program offered prices like DA, ToU, and CPP during the
period of one year from August 2006 to August 2007. The
dataset is first pre-processed via data cleansing operation in
order to recover missing and defective values by replacing
with an average of the previous days’ values. The clean data
is divided into three sets like training set, testing set, and
validation set. The training data is employed to train theMLP-
based forecast engine, which has three layers layout: input
layer (1), hidden layer (2), and the output layer (1). TheMLP-
based forecast engine is a feed-forward network having a
fully connected layout, where the neurons of the proceeding
layer are connected to the neurons of the succeeding layer
through synaptic weights, as illustrated in Figure 2.

The MLP-based forecast engine takes z(t) input vector
from historical dataset and map the input vector z(t) to the
output vector F(t). The output of the MLP-based forecast
engine is as follows:

F(t) =
n∑
i=1

Wif (yi)+
m∑
j=1

βjzj, (1)

where,

f (yi) =
1

1+ exp(−yi)
(2)

The output vector F(t) represents day-ahead forecasted
results of energy consumption profile of demand side and
price-based DR programs offered price profile,Wi represents
weight factor from input node towards output nodes, βj repre-
sents linear weight form input node towards output nodes, zj
denotes input elements, and yi is the input for hidden nodes.

The MLP-based forecast engine is trained with sigmoidal
activation function and Levenberg–Marquardt optimization
algorithm. The yi is calculated as follows:

yi =
3∑
j=1

wijzj + bi, (3)

where, wij is the weight from input neurons towards hidden
layer, and bi represents the value bias that added at hidden
layer. The learning process iterates for a number of epoches
to train the MLP-based forecast engine. The learning process
stop in two ways either when algorithm stopping criterion
meet or maximum number of iteration reached. The error
function returned after learning process is give as follows:

E =
1
N

N∑
k=1

(Ak − Fk)2, (4)

where Fk is the forecasted value (energy consumption profile
of demand-side and price-based DR programs offered price
profile) result and Ak is the actual value of (energy consump-
tion profile of demand-side and price-based DR programs
offered price profile) at k th pattern forN number of employed
data samples. The forecasted energy consumption profile
of residential, commercial, and industrial service areas and
price-based DR programs offered price profile is fed as an
input to the AMI module.

B. ADVANCED METERING INFRASTRUCTURE MODULE
The AMI framework is an integrated framework of a data
concentrator, a communication module (CM), and meter data
management system (MDMS) as depicted in Figure 1. The
AMI framework has two CMs; the first one on the con-
sumer side and the other one on the power company side
as illustrated in Figure 1. The smart meters are capable of
delivering collected and recorded energy consumption data
to the AMI framework via the CM. The energy consumption
data is received by DC and fed to the MDMS. The MDMS
analyzes the received energy consumption data and extracts
useful information from the data. The extracted favorable
information is delivered to the DISCO via the CM. The
detailed and useful information provided by AMI in real-
time empowers the DISCO to measure the electricity bill,
support better power outage detection, address power grid
deficiencies, and improve management and maintenance of
assets. The DISCO provides price-based DR programs to
AMI to encourage consumers’ participation in price-based
DR programs for DSM via scheduling their energy usage
pattern in order to reduce electricity, PAR, and other envi-
ronmental impacts like carbon emission, etc. The DISCO
also can turn ON and OFF household appliances in con-
sumer premises to optimize energy consumption. Thus,
the AMI acts as a bi-directional communicator between
DISCO and consumers and deliver information to and from
DISCO and consumers, respectively. This study focuses on
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FIGURE 1. Schematic diagram of the proposed intelligent system model with a forecaster and advanced
metering infrastructure frameworks for DSM in smart grid.

FIGURE 2. MLP-based forecast engine for demand side load forecasting and price-based DR program forecasting.

FIGURE 3. Advanced metering infrastructure framework connected with power company and consumers.

the DSM under price-based DR programs via load schedul-
ing of residential, commercial, and industrial service areas.
Therefore, in this case, the DISCO would not control

demand-side load remotely but deliver forecasted price-based
DR programs to the consumers via AMI to actively partici-
pate in DSM.
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C. DEMAND-SIDE ENERGY MANAGEMENT MODULE
The demand-side energy management module comprises
smart meter, energy management controller (EMC), appli-
ances of residential, commercial, and industrial service
areas, in-door display (IDD), and remote control unit lap-
top or mobile as illustrated in Figure 1. The smart meter act
as an in-door gateway and its vital role is to collect energy
consumption data and deliver collected data to AMI and
received information from DISCO via AMI to EMC. The
smart meter can also communicate with IDD via HAN to
enable consumers to view their energy usage. The EMC acts
as central neurons in this study and is based on our proposed
HBFPSO algorithm in order to perform efficient DSM under
price-based DR programs via load scheduling of three service
areas. The HBPSO algorithm-based EMC takes forecasted
price-based DR programs, forecasted energy consumption
pattern, available energy, as well as the residential, commer-
cial, and industrial sector appliance parameters (power rating,
operation time interval, status, priority) as inputs to solve
DSM optimization problem. The DSM under price-based DR
programs can be monitored and controlled for modification
either by IDD device or by remote control units like mobile
phones or tablets via the internet. The demand-side energy
management architecture is depicted in Figure 4. The detailed
description of the load of each service area that HBFPSO-
based EMC would schedule is discussed in the succeeding
subsection.

The load that HBFPSO-based EMC would schedule is
categorized as follows:

1) LOAD CATEGORIZATION
As illustrated in Fig. 4, we consider three service areas or sec-
tors on the demand side, i.e., residential, commercial, and
industrial, where each sector has N number of loads.

a: RESIDENTIAL SECTOR
The residential sector’s load is further categorized into the
following three types based on the flexibility either in
time or power:

1) Portable Interruptible Load,
2) Portable Un-interruptible Load,
3) Consistent Load

Table 2 shows the detailed description of load classification
corresponding to appliances. Let Ar = Api ∪ Apni ∪ Ac
represent a set of residential sector appliances, where Arpi,
Arpni, and Arc represent portable interruptible, portable un-
interruptible and consistent appliances type, respectively.
The time horizon in which these appliances operate is 24h
time horizon, defined as T = τ1, τ2, τ3 . . . . . . . . . τ24.

b: PORTABLE INTERRUPTIBLE LOAD
The portable interruptible load includes appliances like the
cooking range, personal computers, water pump, microwave
oven, and electric iron. We assume that their operation can be
interrupted and they can be scheduled to operate at any time.

Let Arpi be the set of portable interruptible appliances and a
r
pi

∈ Arpi represent each appliance in the set with λ
r
pi as its power

rating. The total energy consumption per day for the portable
interruptible load εrpi can be given by (5).

εrpi =
∑

apir∈Arpi

[
T∑
τ=1

λrpi × α(τ )

]
(5)

The total cost of electricity consumed by the portable inter-
ruptible for residential appliances over the time period T can
be obtained using (6).

ς total
r

pi =

∑
apir∈Arpi

[
T∑
τ=1

λrpi × ρ(τ )× α(τ )

]
, (6)

Here, ρ(τ ) represents the price signal, whereas, α(τ ) ∈
[0, 1] represents the state of an appliance, i.e., ON or OFF.
Similarly, the cost of electricity consumed per hour by the
interruptible residential appliancee is given in (7).

σ τ
r

pi =
∑

apir∈Arpi

(
λrpi × ρ(τ )× α(τ )

)
∀τ = 1 : T (7)

In order to minimize the total cost of electricity consumed,
we minimize the cost per hour electricity consumed as given
in (7).

c: PORTABLE UN-INTERRUPTIBLE LOAD
The portable un-interruptible load includes appliances like
washing machines and blenders. In such type of load,
we assume that cannot be interrupted during operation but can
be operated at any time. Let Apni be the set of un-interruptible
appliances, and let apni ∈ Apni represent each appliance in the
set. Let λrpni be the power rating of each appliance. The total
energy consumption εrpni for the portable un-interruptible load
over a time period T is given by (8).

εrpni =
∑

apnir∈Arpni

[
T∑
τ=1

λrpni × α(τ )

]
(8)

The total cost of operating the portable un-interruptible resi-
dential load for an entire day is given by (9).

ς total
r

pni =
∑

apnir∈Arpni

[
T∑
τ=1

λrpni × ρ(τ )× α(τ )

]
(9)

whereas the hourly cost of operating these residential appli-
ances is given by (10).

σ τ
r

pni =
∑

apnir∈Arpni

(
λrpni × ρ(τ )× α(τ )

)
∀τ = 1 : T (10)
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FIGURE 4. Architecture of demand side energy management module with EMC employed for residential, commercial,
and industrial service areas.

d: CONSISTENT LOAD
Appliances such as refrigerator, water dispenser, and fans etc.
are categorized as consistent load as they are required to
operate almost all the time. Let Ac be the set of appliances
of the consistent load category, and let ac ∈ Ac represent
individual appliance in this set with power rating λc. Then,
the daily energy consumption εrc for this set of appliances is
given by (11).

εc
r
=

∑
acr∈Acr

[
T∑
τ=1

λrc × α(τ )

]
(11)

The cost of operating the consistent residential load over a
time period T is given by (12).

ς total
r

c =

∑
acr∈Acr

[
T∑
τ=1

λc
r
× ρ(τ )× α(τ )

]
, (12)

whereas, the cost per hour for operating the consistent resi-
dential load can be calculated using (13).

σ τ
r

c =
∑

acr∈Acr

(
λc

r
× ρ(τ )× α(τ )

)
∀τ = 1 : T (13)

The total load for the residential sector is represented by γR,
and can be calculated over a time period T using (14).

γR = ε
r
pi + ε

r
pni + εc

r , (14)

The HBFPSO algorithm-based EMC (see Algorithm 3) per-
form DSM for residential service area under price-based DR

TABLE 2. Description of appliances for residential sector.

program via load scheduling and the returned optimal energy
consumption schedule for each appliances in each time inter-
val is given in (15).

Nr r =

 γR
τ1
api γR

τ1
apni γR

τ1
c

γR
τ2
api γR

τ2
apni γR

τ2
c

γR
τ3
api γR

τ3
apni γR

τ3
c

 (15)
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2) COMMERCIAL SECTOR
According to the consumers operating behavior the commer-
cial sector load is divided into the following two categories:

1) Portable Un-interruptible
2) Consistent load

Examples of appliances belonging to these categories along
with their power ratings are given in Table 3. Let Ac =
Apni ∪ Ac represent a set of appliances, where Acpni and A

c
c

represent the portable un-interruptible and consistent appli-
ances, respectively. This categorization is based on commeri-
cal consumers requirement over a 24h time horizon, complete
horizon is defined as T = τ1, τ2, τ3 . . . . . . . . . τ24.

a: PORTABLE UN-INTERRUPTIBLE LOAD
The portable un-interruptible load includes appliances like
washing machines, cooking ranges, microwave ovens, and
blenders. The appliances of this catagory is assumed not to
be interrupted during operation but can be operated at any
time. Let Acpni be the set of un-interruptible appliances and let
acpni ∈ Acpni represent an appliance in this set with a power
rating λcpni. The total daily energy consumption εcpni for this
set of appliances can be calculated using (16).

εcpni =
∑

apnic∈Acpni

[
T∑
τ=1

λcpni × α(τ )

]
(16)

The daily cost of operating these commercial appliances is
given by (17),

ς total
c

pni =
∑

apnic∈Acpni

[
T∑
τ=1

λcpni × ρ(τ )× α(τ )

]
, (17)

whereas the hourly cost of operating these commercial appli-
ances can be determined using (18),

σ τ
c

pni =
∑

apnic∈Acpni

(
λcpni × ρ(τ )× α(τ )

)
∀τ = 1 : T (18)

b: CONSISTENT LOAD
Appliances such as freezers, chillers, water dispensers, secu-
rity systems, and fans etc. are categorized as consistent load
appliances since they are required to operate almost all the
time. Let Acc denote the set of consistent load appliances and
let acc ∈ A

c
c represent an individual appliance in this set with a

power rating of λcc. Then, the total daily energy consumption,
εcc , for this set of appliances can be calculated using (19).

εc
c
=

∑
acc∈Acc

[
T∑
τ=1

λcc × α(τ )

]
(19)

The cost of operating these commercial appliances over a
time period T can be calculated using (20),

ς total
c

c =

∑
acc∈Acc

[
T∑
τ=1

λc
c
× ρ(τ )× α(τ )

]
, (20)

whereas, the hourly cost of operating these commercial appli-
ances can be determined using (21).

σ τ
c

c =
∑

acc∈Acc

(
λc

c
× ρ(τ )× α(τ )

)
∀τ = 1 : T (21)

The total load for the commercial sector, γC , over a time

TABLE 3. Description and categorization of appliances for the
commercial sector.

period T can be calculated using (22).

γC = ε
c
pni + εc

c, (22)

The HBFPSO algorithm-based EMC (see Algorithm 3) per-
formDSM for commercial service area under price-based DR
program via load scheduling and the returned optimal energy
consumption schedule for each individual appliances in each
time interval is given in (23):

Nc =

 γC
τ1
apni γC

τ1
c

γC
τ2
apni γC

τ2
c

γC
τ3
apni γC

τ3
c

 (23)

3) INDUSTRIAL SECTOR
The industrial sector’s load is divided into the following two
categories:

1) Portable interruptible
2) Consistent load

Examples of appliances belonging to these categories along
with their power ratings are given in Table 4. Let Ai =
Api∪Ac represent a set of appliances, where Aipi and A

i
c denote

appliances of portable interruptible and consistent load types,
respectively. The categorization of these appliances is based
upon industrial power requirement over a 24h time horizon
T = τ1, τ2, τ3 . . . . . . . . . τ24.
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a: PORTABLE INTERRUPTIBLE LOAD
The portable interruptible load includes appliances like the
water dispensers, kettles, lights, and vacuum cleaners. It is
assumed that their operation can be interrupted and they can
be scheduled to operate at any time. Let Aipi be the set of
portable interruptible appliances and aipi ∈ A

i
pi represent each

appliance in the set with λipi as its power rating. The total
energy consumption per day for the portable interruptible
load εipi can be given by (24).

εipi =
∑

a
pii∈Aipi

[
T∑
τ=1

λipi × α(τ )

]
(24)

The total daily cost of electricity for all the portable inter-
ruptible industrial appliances over a time period T is given
by (25),

ς total
i

pi =

∑
a
pii∈Aipi

[
T∑
τ=1

λipi × ρ(τ )× α(τ )

]
, (25)

where, ρ(τ ) represents the price signal and α(τ ) ∈= [0, 1]
denotes the state of an appliance, i.e., ON or OFF. Similarly,
the hourly cost of electricity for interruptible industrial appli-
ances is given by (26), which can be minimized in order to
reduce the total costs.

σ τ
i

pi =
∑

a
pii∈Aipi

(
λipi × ρ(τ )× α(τ )

)
∀τ = 1 : T (26)

b: CONSISTENT LOAD
Appliances such as motors, welding machines, and arc fur-
naces are categorized as consistent load appliances since they
are required to operate almost all the time. Let Aic denote the
set of consistent load appliances and let aic ∈ Aic represent
an individual appliance in this set with a power rating of λic.
Then, the total daily energy consumption, εic, for this set of
appliances can be calculated using (27).

εc =
∑
aci∈Aci

[
T∑
τ=1

λic × α(τ )

]
(27)

The cost of operating these industrial appliances over a time
period T can be calculated using (28),

ς total
i

c =

∑
aci∈Aci

[
T∑
τ=1

λc
i
× ρ(τ )× α(τ )

]
, (28)

whereas, the hourly cost of operating these industrial appli-
ances can be determined using (29).

σ τ
i

c =
∑
aci∈Aci

(
λc

i
× ρ(τ )× α(τ )

)
∀τ = 1 : T (29)

Let γ iI denote the total load of the industrial sector over a
time period T , then it can be determined using (30) as follows:

γI = ε
i
pi + εc

i, (30)

TABLE 4. Description and categorization of appliances in the industrial
sector along with their power ratings.

The HBFPSO algorithm-based EMC (see Algorithm 3) per-
form DSM for industrial sector under price-based DR pro-
gram via load scheduling and the returned optimal energy
consumption schedule for each individual appliances in each
time interval is given by (31),

Ni =

 γI
τ1
api γI

τ1
c

γI
τ2
api γI

τ2
c

γI
τ3
api γI

τ3
c

 (31)

4) ENERGY COST AND UNIT PRICE
The total energy cost can be calculated by first determining
the unit price using a pricing scheme such as DA, CPP, and
ToU. In this study, however, we use dynamic prices repre-
sented by the signal, ρ(τ ), which varies for each time interval
τ ∈ T . For each time interval τ , first the value of price signal,
i.e., ρ(τ ) is determined and then it is multiplied with the total
energy consumed during that period of time to calculate the
cost of electricity for that interval. Equation (32) gives the
relation for calculating the hourly cost of all appliances.

σ τtotal =
∑
ai∈An

γ(τ,ai) × ρ (τ) ∀τ = 1 : T (32)

Similarly, the daily energy cost can be calculated if we sum up
the value of 32 for all the appliances over all the time intervals
in T as given in (33).

ςtotal =

T∑
τ=1

∑
ai∈An

(γ(τ,ai) × ρ(τ ))

 (33)

IV. PROBLEM FORMULATION AND THE PROPOSED
SOLUTION
The primary objective of most DSM strategies is to minimize
consumers’ electricity costs by minimizing the PAR, which is
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generally done by shifting load from peak to off-peak hours.
In this paper, we propose a HBFPSO algorithm EMC that
participate in DSMunder price-basedDR programs. This par-
ticipation not only reduces the PAR, consumers’ electricity
costs, but also ensures users’ comfort while minimizing their
carbon footprint.

A. PROBLEM FORMULATION
We proposed HBFPSO algorithm-based EMC for DSM of
three service areas under price-based DR programs that aims
to achieve the following objectives: reduction in a consumer’s
electricity costs, alleviation of the PAR, maximization of
consumer’s comfort, and reduction of a consumer’s carbon
footprint. The HBFPSO algorithm-based EMC achieve these
objectives by scheduling demand side load. Through schedul-
ing the HBFPSO algorithm-based EMC shifts the load form
on-peak hours to off-peak hours while preserving consumers
comfort. The objective function that we seek to minimize
is mathematically modeled as minimization problem and
defined in (34) as:

min

 T∑
τ=1

∑
ai∈An

(γ(τ,ai) × ρ(τ ))

+ CO2 + Delay+ PAR


(34)

where,

PAR =
maxτ∈T (γτ )
1
T

∑T
τ=1 γτ

6 Emax (35)

COPerhour2 = (Avg/price(Perhour)) ∗ 1.37 ∗ 30 (36)

Delay = (sum(abs(tA1− tA2)))/sum(tA2) (37)

where,COPerhour2 represents carbon emissions, and (36) gives
the hourly CO2 emissions during the peak load hours when
the diesel generators are turned-on to meet the additional
load. The Delay denotes the waiting time that each appliance
face before to start operation, and PAR is the peak to average
ratio. The equation (35) is a ratio of peak load and average
load, which enable us to identify whether the load in peak
hour is high or low and (36) represents the amount of carbon
footprint emitting when using electricity per hour. In (37)
tA1 represents operation time-slots before scheduling and tA2
represents operation time-slots of an appliance after schedul-
ing. The objective function is subjected to the following
constraints. The constraint in (35) specifies that the average
energy consumption is always less than Emax .

Emin 6 E 6 Emax (38)

Here, it must be noted that Emax = 1 cannot be achieved
because the peak and average loads cannot be the same. The
value of Emax is carefully selected to meet the constraint in
(38), which specifies the limits for the scheduling interval.

γτ = εpi + εpni + εc (39)

γτ
(
KWg

)
(40)

Similarly, the constraint in (39) guarantees that the power
consumption remains the same before and after scheduling.
The equation (40) ensures that the total energy consumption
must be lower than the capacity of the power grid. Further,
equation (41) ensures that the length of operation of each
appliance is not affected by scheduling.

T∑
τ=1

γτ
unsch
=

T∑
τ=1

γτ
sch (41)

Furthermore, the constraint in (40) ensures that the total
demand load of each group of appliances is less than or equal
to the grid capacity (kW). The proposed HBFPSO-based
EMC tries to minimize objective function subjected to these
constraints for the DSM environment of the SG considering
three service areas.

V. THE PROPOSED AND BENCHMARK ALGORITHMS FOR
DSM OF THREE SERVICE AREAS UNDER PRICE-BASED DR
PROGRAMS
In the literature, various techniques have been proposed to
solve the DSM problem via load scheduling under price-
based DR programs. Since the DSM problem is highly non-
linear, and all linear methods are unable to solve such prob-
lems. Thus, we proposed and employed heuristic algorithms
to solve the DSM problem via load scheduling of three ser-
vice areas under price-based DR programs. Heuristic algo-
rithms use two methods to generate an initial population
such as random initialization and heuristic initialization. The
first method generates the initial population with completely
random solutions. Random solutions are the ones having
large diversity, which leads to generating optimal population.
The second method generates the initial population using
known heuristic for the problem. The known heuristic has
similar solutions and little diversity, which effects the initial
fitness of the population. The heuristic initialization leads to
some good solutions initially and then fills up the rest of the
population with random solutions. Thus, in this study, our
focus is to solve theDSMproblem by optimal load scheduling
under price-based DR programs. Therefore, we conducted
random initialization for the proposed and existing algorithms
to return optimal load scheduling for solving the DSM prob-
lem of three service areas. For more in-depth understanding
interested readers are directed to study [52]. Before present-
ing the proposed algorithm, first, we give a brief description
of some benchmark heuristic algorithms in the subsequent
text.

A. BACTERIAL FORAGING OPTIMIZATION ALGORITHM
The bacterial foraging optimization algorithm (BFOA) is
inspired by the social behavior of bacteria, which swim in
search of nutrients and try to find the best nutrients (solutions)
to maximize their energy. The BFOA involves the following
three phases:

1) Chemotaxis, which simulates the movement of bacte-
ria either through swimming or tumbling. The bacteria
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can swim in a single direction or they can tumble and
change the direction of their movement. The bacteria
alternate between these two types of movements for
their entire lifetime.

2) Reproduction, which simulates the multiplication of
healthy bacteria, and the subsequent replacement of
unhealthy bacteria, i.e., those which yield a poor value
of the objective function with the healthier ones to
maintain a constant population.

3) Elimination-dispersal, which simulates the changes in
the population of bacteria due to abrupt changes in
the environment that can eliminate a fraction of the
bacterial population or disperse it into a new location.

During this phase, an initial population of bacteria is ran-
domly generated, which is then simulated to swim and tumble
around. After each run, the value of the fitness function
is calculated for each bacterium in the population. During
chemotaxis, the step size Ci should be carefully selected as
it affects the algorithm’s ability to converge to an optimal
value, i.e., generally, a smaller value leads to a more optimal
solution at the expense of more computational time. In the
reproduction phase, the healthy bacteria with better values of
the fitness function multiply their number by two and replace
an equal number of the least healthy bacteria to maintain
a constant swarm population. The reproduction phase helps
in accelerating the convergence of the algorithm towards
a local optimum. The elimination-dispersal phase helps in
finding out a globally optimal solution, by eliminating a
given bacterium in the population with the probability Ped
and replacing it with a new bacterium initialized over the
search space. The step by step procedure of this algorithm is
illustrated in flow chart Fig. 5. The parameters used for this
algorithm implementation are listed in Table 5.

TABLE 5. The parameters of the BFOA along with their values used in
simulations.

B. GENETIC ALGORITHM
Genetic algorithm (GA) is another biologically inspired non-
linear optimization technique, which is rooted in the con-
cepts of natural selection of living organisms, i.e., living
organisms with characteristics that are best suited to their
environment will thrive more, compared to those with less
suitable characteristics which ultimately go extinct over

FIGURE 5. The BFOA step by step procedure for the implementation in
DSM environment.

multiple generations. Biologically, the characteristics of liv-
ing organisms are determined by the genes located on their
chromosomes. GA mimics the biological process of transfer
of genetic information from the parent to the offspring, and
the selection of the best offspring to replace less suitable
chromosomes in the population using some fitness function.
Parent chromosomes transfer genetic information to their
offspring using crossover and mutation. In crossover, frac-
tions of two-parent chromosomes mutually transfer genetic
material at randomly selected points, whereas in mutation
certain randomly selected genes on the parent chromosome
undergo a random change as shown in Fig. 6. The mutation
occurs with a certain probability, which is usually very low
and in our case, it is calculated using (42). It starts with
an initial population of chromosomes. Each chromosome
encodes the ‘ON ’ and ‘OFF’ state of all the appliances using
a single bit, i.e., 1 or 0, where 1 represents the ‘ON ’ and 0
represents the ‘OFF’ state of an appliance. The new chromo-
somes that are created aftermutations and crossovers between
the parent chromosomes are tested using a fitness function.
Chromosomes with the optimal fitness function values are
retained in the population, whereas those with poor values are
removed. This process is iterated over multiple generations to
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get the best chromosome population according to the fitness
function. The algorithm terminates if the population of chro-
mosomes has converged, i.e., offspring in the new generation
is not significantly different than the previous. The step by
step procedure of GA to implement for the DSM is depicted
in Fig. 6. Furthermore, the parameters of GA that are used in
simulations are listed in Table 6 along with their values.

pm = 1− pc (42)

The values and description of different parameters used for
the GA are given in Table 6.

TABLE 6. The GA parameters along with their values for DSM in SG.

C. BINARY PARTICLE SWARM OPTIMIZATION ALGORITHM
Binary particle swarm optimization (BPSO) algorithm is
inspired by birds’ flocking in search of food. It is the binary

FIGURE 6. GA procedure for DSM under price-based DR programs.

variant of PSO, and is generally used to solve computa-
tionally hard optimization problems. The BPSO algorithm
is illustrated in Fig 7. In a flock or swarm, each bird has a
certain position and velocity, both of which change according
to neighboring birds in the flock. In the problem under our
consideration, we use the positionmatrix to represent the ON-
OFF status of appliances, whereas the velocity matrix is used
to control the population generation. The velocity function of
each swarm is given by (43).

vi = Vmax × 2(rand(swarm, n)− 0.5) (43)

A fitness function is the objective function used to evaluate
the different operational status vectors of the appliances over
different time intervals in order to determine the status vector
that will minimize the cost of electricity, carbon emission,
user-discomfort, and PAR. The velocity function is updated
using (44),

v[] = v[]+ c1× rand()× (pbest[]− present[])

+ c2× rand()× (gbest[]− present[]), (44)

whereas, (45) is used to update the particle position as fol-
lows:

Present[] = Present[]+ V [] (45)

The velocity function in (43) is real-valued and is converted
into binary using the function in (46).

Sig(j, i) =
1

1+ e−vnew
(46)

The BPSO algorithm, as illustrated in Fig. (7), iterates until it
finds the optimal schedule for powering the appliances. The
parameters and values of the BPSO algorithm used in this
study are given in Table 7.

TABLE 7. The parameters along with their tuned values of the BPSO
algorithm used for DSM.

D. GENETIC BINARY PARTICLE SWARM OPTIMIZATION
ALGORITHM
A hybrid algorithm genetic binary particle swarm optimiza-
tion (GBPSO) is proposed, which combines the features of
BPSO and GA. The GBPSO is illustrated in Fig. 8. It con-
sists of two phases: In the first phase, the BPSO algorithm
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FIGURE 7. Flow chart of the BPSO algorithm for DSM under price-based
DR programs.

is applied, whereas in the second phase the GA operators
of crossover and mutation are applied to the gbest values
obtained in the first phase. The motivation behind developing
a hybrid of GA and BPSO is discussed in detail in [53]. The
interested readers are referred for in-depth understanding.

E. OUR PROPOSED HYBRID BACTERIAL FORAGING AND
PARTICLE SWARM OPTIMIZATION ALGORITHM
First, we proposed the hybrid bacterial foraging and particle
swarm optimization (HBFPSO) algorithm, which applies the
key steps of BFOA and on the optimal result returned from
the BPSO algorithm. The motivation behind this hybrid algo-
rithm development is that BFOA performs best in terms of
electricity cost and carbon footprint due to its strong search
capability while searching for optimal solutions. On the other
hand, the BPSO algorithm outperforms in terms of PAR
and delay (waiting time) due to its diverse population han-
dling capability while finding the optimal solutions. Thus,
the key operators of BFOA, i.e., chemotaxis, reproduction,
and elimination-dispersal, are applied to the gbest optimal

FIGURE 8. GBPSO step by step procedure for DSM under price-based DR
programs.

values returned form the BPSO algorithm. The velocity
updating formula of the BPSO algorithm is shown in Algo-
rithm 1. The chemotaxes step of BFOA is conducted as shown
in Algorithm 2. With this hybridization, we obtained our
objectives that are the cost of electricity minimization, PAR
alleviation, and carbon footprint mitigation while preserv-
ing relative user comfort. The purpose is to ensure power
grid reliability and sustainability. For instance, our proposed
algorithm HBFPSO comprises two phases: In the first phase,
this algorithm follows the steps of BPSO algorithm, whereas
in the second phase the steps of BFOA are applied to the
best-returned results. For example if we take pattern of seven
peak hours, the results returned after the completion of BPSO
phase is [0 0 0 1 1 1 1] here six appliances are ON, if this
result is passed to the key steps of BFOA the results returned
is [1 0 0 0 0 0 1] here 4 appliances are in ON status. Thus
our proposed algorithm shifted the appliances from on-peak
hours to off-peak hours. Thus, this behavior is also presented
in Figure 21. The step by step implementation procedure of
the proposed algorithm HBFPSO is illustrated in Fig. 9. The
complete implementation of the proposed model for efficient
DSM of residential, commercial, and industrial service areas
is shown in Algorithm 3.
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Algorithm 1: Binary Particle Swarm Optimization Algo-
rithm: Velocity Updating

begin
Updating velocity
Initialize velocity by using 12
for j = 1 : swarm do

for i = 1 : m do
vnew = w× vold + c1 × rand(1)× (pbest −
xold )+ c2 × rand(1)× (gbest − xold )
if vnew < Vmax && vnew > Vmin then

vnew(i, j) = vnew(i, j)
else

end
if vnew < Vmin then

vnew = Vmin
else

end
if vnew > Vmax then

vnew = Vmax
end

end
end

end
end

end

FIGURE 9. The implementation procedure of the proposed HBFPSO
algorithm for DSM of residential sector, commercial sector, and industrial
sector.

To evaluate the efficacy of the proposed and existing
algorithms test functions like Schaffer function, Weierstrass

Algorithm 2: Bacterial Foraging Optimization Algo-
rithm: Chemotaxis Steps

begin
Chemotaxis
for j = 1: Nc do

for i = 1: Np do
Determine the initial position
θ (i, :) = θ (i, :)+ Ci

1i√
1T
i 1i

for d = 1: (m− 1) do
Compute fitness: J = Fit_function(i)

end
s = 0 while s < Ns do

swimming loop
end
if J (i) = J_last(i) then

evaluating fitness
end
J (i) = J (i) Determine new position θ(i, :)
for d = 1: (m− 1) do

Determine fitness function
Fit_function(i)

end
else

end
s = Ns
Current best state of appliances are recorded

end
end

end

function, and Non-continuous Rastrigin’s function [54] are
employed in simulations, which are listed in the Table 8.

All the aforementioned heuristic algorithms are capable to
produce good solutions in solving non-linear problems where
conventional algorithms normally fail. Although, their imple-
mentation complexity and slow convergence has limited wide
range applicability. In this regard, HBFPSO algorithm is
proposed, which successfully combat the limitations of exist-
ing algorithms like GA, BFOA, BPSO, and GBPSO. The
efficacy of proposed HBFPSO algorithm is tested on three
benchmark test functions, including Schaffer, Weierstrass,
and Non-continuous Rastrigin’s, and the obtained results pre-
sented in Figure 10. The proposed and existing algorithms are
compiled for 20 iterationsmean and standard deviation values
are recorded using Schaffer,Weierstrass, andNon-continuous
Rastrigin’s benchmark functions as listed in Table 9. The
results show that our proposed algorithm is superior as com-
pared to existing algorithms.

VI. SIMULATION RESULTS AND DISCUSSIONS
In this section, we present and discuss the results of our sim-
ulations where we compare the performance of our proposed
algorithm HBFPSO-based EMC with four other heuris-
tic algorithms, i.e., BFOA, GA, BPSO, and GBPSO-based
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TABLE 8. Benchmark test functions for evaluation of the proposed and existing algorithms.

TABLE 9. Results of the proposed and existing algorithms for benchmark functions including schaffer, weierstrass, and non-continuous Rastrigin’s for
20 iterations.

EMCs in terms of cost, PAR, and CO2 emissions while pre-
serving user comfort. We compare the performance of these
algorithms under three different scenarios, where each sce-
nario is characterized by different price-based DR programs
for residential, commercial, and industrial sectors. A load
of demand-side like residential, commercial, and industrial
service areas is taken DISCO MISO under FERC [55].
The MLP-based forecast engine is empowered via training
with historical data to forecast the future load in order to
ensure efficient DSM. The MLP-based forecasted of resi-
dential, commercial, and industrial service areas is depicted
in Fig. 11. We divided this work into three scenarios on
the basis of different price-based DR programs offered by
DISCO. In the first, second, and third scenarios DA, CPP

and ToU price-based DR programs are used, respectively.
The MLP-based forecasted of residential, commercial, and
industrial service areas as depicted in Fig. 11 is utilized
by HBFPSO algorithm-based EMC under each of the three
scenarios to ensure efficient DSM. The detailed discussion is
as follows:

A. SCENARIO 1: MLP-BASED FORECASTING WITH DAY
AHEAD PRICE-BASED DR PROGRAM
In this scenario, we consider the DA price-based DR pro-
gram, which is taken from DISCO MISO under FERC [55].
The MLP-based forecast engine is empowered by supervised
learning to forecast price-based DR program DA offered
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Algorithm 3: The Proposed HBFPSO Algorithm-Based
EMC Employed for DSM of Residential Sector, Com-
mercial Sector, and Industrial Sector via Load Scheduling
Under Forecasted Price-Based DR Programs

Inputs: Net operation time for each category of residential sector, commercial sector, and industrial sector loads,
Power rating, Forecasted offered price, Forecasted demand side load, Time slots for each load, Location for each
load in time slot;
Initialize all parameters Vmax,Vmin, iter,Nr,
Nc,Np,maxgen,maxpop
for horbp= 1:24 do

Initialize velocity by using (43);
for j= 1:swarm do

Update velocity by using (44);
if vnew < Vmax&&vnew > Vmin then

vnew(i, j) = vnew(i, j)
else

end
if vnew < Vmin then

vnew = Vmin
else
if vnew > Vmax then

vnew = Vmax
else

end
end
popnew= X1
BFOA steps follows after new population;
X1= (rand(Np, D))
for j= 1:Np do

for i= 1:D do
if X1(j, i) > X (j, i) then

X1(j, i) = 1
else
X1(j, i) = 0

end
Reproduction loop
for k= 1:Nr do

Chemotaxis loop
for j= 1:Nc do

Take chemotaxis step
for i= 1:Np do

gbest
Elimination dispersial;
For cost
Load= power*gbest
begin

Scenario 1: MLP-based forecasted day-ahead
price-based DR program
Calculate cost using (33);
For PAR
scheduledload= power*gbest
Calculate PAR using (35);
For CO2 emission
Calculate CO2 emission using (36);
For user comfort
Calculate delay or waiting using (37);
end procedure

end
begin

Scenario 2: MLP-based forecasted CPP
price-based DR program
Calculate cost using (33);
For PAR
scheduledload= power*gbest
Calculate PAR using (35);
For CO2 emission
Calculate CO2 emission using (36);
For user comfort
Calculate delay or waiting using (37);
end procedure

end
begin

Scenario 3: MLP-based forecasted ToU
price-based DR program
Calculate cost using (33);
For PAR
scheduledload= power*gbest
Calculate PAR using (35);
For CO2 emission
Calculate CO2 emission using (36);
For user comfort
Calculate delay or waiting using (37);
end procedure

end
end

end
end

end
end

end
end

price, which is shown in Fig. 12. According to the forecasted
DA offered price 1 − 8 and 16 − 21 are the off-peak hours,
9 − 15 are peak hours, whereas 22 − 24 are shoulder peak
hours. The HBFPSO algorithm-based EMC use the fore-
casted demand side load and forecasted DA offered price in
order to shift the load from on-peak hours to off-peak hours

FIGURE 10. Performance evaluation of the proposed and existing
algorithms using benchmark test functions: (a) Schaffer, (b) Weierstrass,
(c) Non-continuous Rastrigin’s.

via load scheduling in order to ensure efficient DSM. The
detail discussion is as follows:

1) DEMAND-SIDE LOAD PROFILES
Figure 13 shows the load profiles for the DA price-based DR
program scenario. The unscheduled case where EMC is not
employed, the energy consumption is high during 5 − 10,
14 − 17 and 18 − 21 hours compared to load scheduling
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FIGURE 11. Day ahead demand side forecasted load with hour resolution
for three service areas using MLP-based forecast engine: (a) Residential
service area, (b) Commercial service area, (c) Industrial service area.

where EMC is employed, which leads to higher energy con-
sumption during peak hours that results in higher PAR and
higher electricity costs. On the contrary, the scheduled energy
consumption of GA, BFOA, BPSO, HBFPSO, and GBPSO-
based EMC for the residential sector is limited to 3.7kWh,
3.3kWh, 2.4kWh, 2kWh, and 2.9kWh, respectively. Whereas,
the scheduled energy consumption of GA, BFOA, BPSO,

FIGURE 12. Day ahead forecasted offered price of DR with hour
resolution using MLP-based forecast engine.

TABLE 10. Comparison of PAR for residential sector under DA
price-based DR program.

TABLE 11. Comparison of PAR for commercial sector under DA
price-based DR program.

HBFPSO, and GBPSO for the commercial sector is limited to
3.9kWh, 3.6kWh, 2.4kWh, 2.1kWh and 2.5kWh, respectively.
Similarly, for the industrial sector, the scheduled energy con-
sumption of GA, BFOA, BPSO, HBFPSO, and GBPSO is
limited to 11.1kWh, 12.1kWh, 9.5kWh, 9kWh, and 9.3kWh,
respectively. Thus, our proposed HBFPSO algorithm-based
EMC has an optimal load profile as compared to the GA,
BFOA, BPSO, and GBPSO algorithms-based EMC for the
residential, commercial, and industrial sectors, respectively.

Based upon a detailed comparison as listed in Tables 10,
11, and 12; our proposed method gives best performance than
other heuristic algorithm-based EMC algorithms in terms of
PAR for all three sectors considered in this study, i.e., resi-
dential, commercial, and industrial, respectively.

2) COST PROFILES
Figure 14 shows the cost profiles for different algorithms
across different sectors. For the residential sector, the daily

VOLUME 8, 2020 132569



A. Nawaz et al.: Intelligent Integrated Approach for Efficient DSM

FIGURE 13. Comparison daily demand-side energy consumption profiles
of the proposed and existing algorithm under DA price-based DR
program: (a) Residential, (b) Commercial, (c) Industrial.

cost of electricity without load scheduling and load schedul-
ing using BFOA, GA, BPSO, HBFPSO, and GBPSO is $3.9,
$3.7, $3.8, $3.6, $3.3, and $1.54, respectively. Whereas, for
commercial sector the daily cost of electricity without load
scheduling and load scheduling using BFOA, GA, BPSO,
HBFPSO, and GBPSO is $4.588, $4.500, $4.586, $4.320,
$4.096, and $4.299, respectively. Similarly, for the industrial
sector, the daily cost of electricity without load scheduling
and load scheduling using BFOA, GA, BPSO, HBFPSO,

TABLE 12. Comparison of PAR for industrial sector under DA price-based
DR program.

and GBPSO is $13.42, $13.34, $13.32, $12.58, $12.14, and
$12.52, respectively. The percentage decrease in the cost of
electricity achieved by different algorithms for residential,
commercial, and industrial sectors is given in Tables 13,
14, and 15, respectively. Thus, both graphical and numerical
results illustrate that our proposed algorithm HBFPSO-based
EMC outperforms existing algorithms-based EMC in terms
of electricity for all three service areas like residential, com-
mercial, and industrial, respectively.

TABLE 13. Comparison of cost for residential sector under DA
price-based DR program.

TABLE 14. Comparison of cost for commercial sector under DA
price-based DR program.

3) CO2 EMISSIONS
Figure 15 shows the hourly CO2 emissions for residential,
commercial, and industrial sectors. It can be observed that the
proposed HBFPSO algorithm results in the least amount of
CO2 emissions during 19, 12 and 21 hours for the residential
sector. For commercial and industrial sectors, it results in the
least amount of emissions during 10, 16, 19, and 14, 16 hours,
respectively, which are the shoulder peak and peak hours. GA
is the least effective in reducing carbon emissions compared
to the other heuristic algorithms, i.e., BPSO, BFOA and
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FIGURE 14. Hourly cost evaluation for the consumed electricity: (a)
Residential, (b) Commercial, (c) Industrial.

GBPSO, which fair slightly better. HBFPSO reduce carbon
emission approximately 52.86%, 38.18%, and 25.54% for
residential, commercial, and industrial sector, respectively
which is far better than other algorithms. On the other hand
GBPSO shows 64.54% reduction of carbon emission for
industrial sector.

4) DELAY TIME USER COMFORT
Table 16 shows the time delay for each load category,
i.e., portable interruptible, portable un-interruptible, and con-
sistent load appliances in the residential sector.

Whereas, Table 17 shows the time delay for each load
category, i.e., portable un-interruptible and consistent load
appliances in commercial sector. Similarly, Table 18 shows
the time delay for each load category, i.e., portable interrupt-
ible and consistent load appliances in the industrial sector.

TABLE 15. Comparison of cost for industrial sector under DA price-based
DR program.

TABLE 16. Comparison of user comfort in terms of delay time for
residential sector under DA price-based DR program.

TABLE 17. Comparison of user comfort in terms of delay time for
commercial sector under DA price-based DR program.

TABLE 18. Comparison of user comfort in terms of delay time for
industrial sector under DA price-based DR program.
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FIGURE 15. Comparison of CO2 emissions of the proposed and existing
algorithms under DA price-based DR program: (a) Residential ; (b)
Commercial; (c) Industrial.

B. SCENARIO 2: MLP-BASED FORECASTED CPP DR
PROGRAM
In this scenario, we consider the CPO price-based DR pro-
gram, which is taken from DISCO MISO under FERC [55].
The MLP-based forecast engine is empowered by supervised
learning to forecast price-based DR program offered critical
peak price (CPP), which is shown in Fig. 12. According to
the forecasted offered CPP 1 − 8 and 23 − 24 are off-peak
hours, 8 − 14 and 17 − 23 are shoulder peak hours, and

14−17 are peak hours. The HBFPSO algorithm-based EMC
use the forecasted demand side load and forecasted offered
CPP to shift the load from on-peak hours to off-peak hours via
load scheduling in order to ensure efficient DSM. The detail
discussion is as follows:

FIGURE 16. Forecasted offered critical peak price of DR using MLP-based
forecast engine.

1) LOAD PROFILES
Figure 17 shows the load profiles for this scenario. The
scheduled energy consumption of GA, BFOA, BPSO, HBF-
PSO, and GBPSO for the residential sector is limited to
3.5kWh, 3.7kWh, 2.6kWh, 2.4kWh, and 2.5kWh, respectively.
Whereas, the scheduled energy consumption of GA, BFOA,
BPSO, HBFPSO, and GBPSO for the commercial sector is
limited to 4kWh, 3.3kWh, 1.9kWh, 1.65kWh, and 2.3kWh,
respectively. Similarly, for the industrial sector, the scheduled
energy consumption of GA, BFOA, BPSO, HBFPSO, and
GBPSO is limited to 11kWh, 12.2kWh, 10kWh, 5.89kWh, and
5.95kWh, respectively.

Tables 19, 20 and 21 show that compared to the other
heuristic algorithms, the proposed HBFPSO algorithm gives
the best performance of scheduled load in terms of PAR
for all three sectors considered in this study, i.e., residential,
commercial, and industrial, respectively.

TABLE 19. Comparison of PAR for residential sector under CPP DR
program.

2) COST PROFILES
Figure 18 shows the cost profiles for different algorithms
across different sectors. For the residential sector, the daily
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FIGURE 17. Comparison daily demand-side energy consumption profiles
of the proposed and existing algorithm under CPP price-based DR
program: (a) Residential ; (b) Commercial; (c) Industrial.

cost of electricity without load scheduling and load schedul-
ing using BFOA, GA, BPSO, HBFPSO, and GBPSO is $7.5,
$5.56, $6.56, $4.08, $2.8, and $4, respectively. Whereas, for
commercial sector the daily cost of electricity without load
scheduling and load scheduling using BFOA, GA, BPSO,
HBFPSO, and GBPSO is $8, $7.39, $7.74, $4.856, $2.88,
and $4.852, respectively. Similarly, for the industrial sector,
the daily cost of electricity without load scheduling and load
scheduling using BFOA, GA, BPSO, HBFPSO, and GBPSO

TABLE 20. Comparison of PAR for commercial sector under CPP DR
program.

TABLE 21. Comparison of PAR for industrial sector under CPP DR
program.

is $23.55, $19.89, $20.99, $14.17, $8.1, and $14.11, respec-
tively.

The percentage decrease in the cost of electricity achieved
by different algorithms for residential, commercial, and
industrial sectors is given in Tables 22, 23 and 24, respec-
tively.

TABLE 22. Comparison of cost of the proposed and existing algorithms
under CPP DR program for residential sector.

TABLE 23. Comparison of cost of the proposed and existing algorithms
under CPP DR program for commercial sector.

3) CO2 EMISSIONS
Figure 19 shows the hourly CO2 emissions for residential,
commercial, and industrial sectors. It can be observed that the
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FIGURE 18. Comparison of hourly cost of the proposed and existing
algorithms under CPP DR program: (a) Residential, (b) Commercial, (c)
Industrial.

proposed HBFPSO algorithm results in the least amount of
CO2 emissions during 18, 22, and 23 hour for all three sectors.
The GBPSO algorithm is effective in reducing emissions
during peak hours which are approximately 22.77%, 52.43%,
and 78.5% for residential, commercial, and industrial, respec-
tively., whereas BPSO and GA are more effective in 18− 24
hours. The BFOA algorithm is the most effective in 17− 24
hours as compared to the other heuristic algorithms. HBFPSO
shows 20.63% in reduction of carbon emission for residential
sector.

TABLE 24. Comparison of cost of the proposed and existing algorithms
under CPP DR program for industrial sector.

4) DELAY TIME USER COMFORT
Table 25 shows the time delay for each load category,
i.e., portable interruptible, portable un-interruptible, and con-
sistent load appliances in the residential sector.

TABLE 25. Comparison of user comfort in terms of delay time of the
proposed and existing algorithms under CPP DR program for residential
sector.

Whereas, Table 26 shows the time delay for each load
category, i.e., portable un-interruptible and consistent load
appliances in commercial sector. Similarly, Table 27 shows

TABLE 26. Comparison of user comfort in terms of delay time of the
proposed and existing algorithms under CPP DR program for commercial
sector.

the time delay for each load category, i.e., portable interrupt-
ible and consistent load appliances in the industrial sector.

C. SCENARIO 3: MLP-BASED FORECASTED ToU
PRICE-BASED DR PROGRAMS
In this scenario, we consider the ToU price-based DR pro-
gram, which is taken from DISCO MISO under FERC [55].
The MLP-based forecast engine is empowered by supervised
learning to forecast ToU price-based DR program offered
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FIGURE 19. Comparison of CO2 emissions of the proposed and existing
algorithms under CPP DR program: (a) Residential, (b) Commercial, (c)
Industrial.

price, which is shown in Fig. 20. According to the fore-
casted ToU price-based DR program 1 − 8 and 22 − 24
are off-peak hours, 9 − 13 and 17 − 21 are shoulder peak
hours, and 14− 16 are peak hours. The HBFPSO algorithm-
based EMC use the forecasted demand side load and fore-
casted ToU price-based DR program to shift the load from
on-peak hours to off-peak hours via load scheduling in
order to ensure efficient DSM. The detail discussion is as
follows:

TABLE 27. Comparison of user comfort in terms of delay time of the
proposed and existing algorithms under CPP DR program for industrial
sector.

FIGURE 20. Forecasted ToU price-based DR program using MLP-based
forecast engine.

1) LOAD PROFILES
Figure 21 shows the load profiles for this scenario. The
scheduled energy consumption of GA, BFOA, BPSO, HBF-
PSO, and GBPSO for the residential sector is limited to
3.4kWh, 3.6kWh, 2.6kWh, 2.6kWh, and 2.4kWh, respectively.
Whereas, the scheduled energy consumption of GA, BFOA,
BPSO, HBFPSO, and GBPSO for the commercial sector
is limited to 4kWh, 3.9kWh, 2.3kWh, 2kWh, and 2.5kWh,
respectively. Similarly, for the industrial sector, the scheduled
energy consumption of GA, BFOA, BPSO, HBFPSO, and
GBPSO is limited to 11kWh, 12kWh, 9kWh, 5.8kWh, and
5.88kWh, respectively.

Tables 28, 29 and 30 show that compared to the other
heuristic algorithms, the proposed HBFPSO algorithm gives
the best performance of scheduled load in terms of PAR for
all three sectors considered in this study.

2) COST PROFILES
Figure 22 shows the cost profiles for different algorithms
across different sectors. For the residential sector, the daily
cost of electricity without load scheduling and load schedul-
ing using BFOA, GA, BPSO, HBFPSO, and GBPSO is
$8.7, $7.7, $8.2, $7.1, $5, and $6, respectively. Whereas, for
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FIGURE 21. Comparison of demand-side energy consumption profiles of
the proposed and existing algorithms under ToU price-based DR program:
(a) Residential, (b) Commercial, (c) Industrial.

commercial sector the daily cost of electricity without load
scheduling and load scheduling using BFOA, GA, BPSO,
HBFPSO, and GBPSO is $9.6, $9, $9.5, $8.5, $8.2, and $8.4,
respectively. Similarly, for the industrial sector, the daily cost
of electricity without load scheduling and load scheduling
using BFOA, GA, BPSO, HBFPSO, and GBPSO is $28.1,
$26.7, $27.2, $24.9, $24.4, and $24.8, respectively.

The percentage decrease in the cost of electricity achieved
by different algorithms for residential, commercial, and

TABLE 28. Comparison of PAR of the proposed and existing algorithms
under ToU price-based DR program for residential sector.

TABLE 29. Comparison of PAR of the proposed and existing algorithms
under ToU price-based DR program for commercial sector.

TABLE 30. Comparison of PAR of the proposed and existing algorithms
under ToU price-based DR program for industrial sector.

industrial sectors is given in Tables 31, 32 and 33, respec-
tively.

TABLE 31. Comparison of cost of the proposed and existing algorithms
under ToU price-based DR program for residential sector.

3) CO2 EMISSIONS
Figure 23 shows the hourly CO2 emissions for residential,
commercial, and industrial sectors. It can be observed that all
the algorithms show similar results in reducing CO2 emis-
sions. Our proposed HBFPSO shows better result in term of
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FIGURE 22. Comparison of hourly cost of the proposed and existing
algorithms under ToU price-based DR program: (a) Residential, (b)
Commercia, and (c) Industrial.

reduction of CO2 emission. It reduce 23.02%, 15.58%, and
6.297% for residential, commercial, and industrial sectors,
respectively. While GBPSO and BPSO recuce carbon emis-
sion 69.86% and 67.23% for industrial sector respectively.

4) DELAY TIME USER COMFORT
Table 34 shows the time delay for each load category,
i.e., portable interruptible, portable un-interruptible, and con-
sistent load appliances in residential sector.

TABLE 32. Comparison of cost of the proposed and existing algorithms
under ToU price-based DR program for commercial sector.

TABLE 33. Comparison of cost of the proposed and existing algorithms
under ToU price-based DR program for industrial sector.

TABLE 34. Comparison of user comfort in terms of delay time of the
proposed and existing algorithms under ToU price-based DR program.

Whereas, Table 35 shows the time delay for each load
category, i.e., portable un-interruptible and consistent load
appliances in commercial sector. Similarly, Table 36 shows

TABLE 35. Comparison of user comfort in terms of delay time of the
proposed and existing algorithms under ToU price-based DR program for
commercial sector.

the time delay for each load category, i.e., portable inter-
ruptible and consistent load appliances in the industrial
sector.
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FIGURE 23. Comparison of CO2 emissions of the proposed and existing
algorithms under ToU price-based DR program: (a) Residential, (b)
Commercial, (c) Industrial.

VII. CONCLUSION
The increasing power demand due to population growth,
industrialization, and economic development had augmented
DISCO’s stress. To meet this unfettered rise in electricity
demand, an intelligent framework through optimization and
artificial intelligence is introduced that employs HBFPSO
algorithm-based EMC for efficient DSM under forecasted
price-based DR programs. The HBFPSO algorithm-based
EMC schedule the operation of appliances under three differ-

TABLE 36. Comparison of user comfort in terms of delay time of the
proposed and existing algorithms under ToU price-based DR program for
industrial sector.

ent price-based DR programs: DA, CPP, and ToU, aiming to
minimize electricity cost, PAR, user discomfort, and carbon
emissions. The proposed methodology is evaluated for three
demand-side sectors under three price-based DR programs
such as DA, CPP, and ToU. However, it has the potential to
be applied for DSM of transportation and agriculture sectors
with other price-based DR programs like RTP, IBR, and
CPR, or even other incentive-based DR programs. Using the
proposed intelligent DSM framework, the DISCO can solve
the lack of electricity during on-peak hours either by shifting
the loads in time, increase the loads or even fill up the valley
when electricity production is predominately increasing over
the consumption. The proposed framework is validated by
comparing it to five benchmark heuristic algorithms-based
frameworks like GA, BFOA, BPSO, and GBPSO in terms of
four performance metrics, i.e., cost of electricity, curtailment
of PAR, reduction in users’ discomfort, and mitigation of
carbon emissions.The proposed scheme has reduced electric-
ity cost, user discomfort, PAR, and CO2 emission for the
residential sector by 15.14%, 4.6%, 61.6%, and 52.86% in
scenario 1, 62.60%, 4.56%, 60.77%, and 27.77% in scenario
2, and 26.03%, 4.54%, 63.78%, and 23.02% in scenario 3,
as compared to without an EMC. Similarly, for commercial
sector the proposed HBFPSO algorithm reduces electricity
cost, user discomfort, PAR, and CO2 emission by 11.31%,
5.5%, 60.9%, and 38.18% in scenario 1, 64.9%, 5.56%,
44.08%, and 58.8% in scenario 2, 15.31%, 5.26%, 78.22%,
and 15.58% in scenario 3. Likewise, the proposed algorithm
also has superior performance for the industrial sector for all
the three scenarios. In future, this work can be extended into
diverse directions, which are elaborated as follows:

1) The DSM via scheduling can be performed through the
coordination among different sectors in the presence of
power grid, renewable energy, energy storage systems,
and electric vehicles by embedding sensors and the
internet of things (IoT) modules on each participant.
The EMC could bemade intelligent and smart by incor-
porating sensing, communication, and the IoT modules
on the traditional EMC to handle such a coordinated
environment. Furthermore, for this coordinated envi-
ronment, net metering is required where consumers
would become prosumers. The prosumers can generate
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renewable energy and store it into the energy storage
systems and electric vehicles that have storage bat-
teries. The prosumers store their generated energy in
storage systems, sell to the other consumers, and back
to the power grid to ensure reliable, stable, sustainable,
and economical power grid operation. The prosumers
enabled with intelligent and smart EMC and net meter-
ing features can actively participate in regulated energy
markets with price-based DR programs and incentive-
based DR to facilitate both the power grid and con-
sumers.

2) This work can be extended to fog and cloud-based
DSM employing various DR programs to achieve the
desired balance between demand and supply.

3) This work can also be extended by engaging some
advanced, intelligent, and loads that have time as well
as power flexibility for efficient energy management.
Such types of loads will provide more opportunities for
EMC to engage them in DSM to provide economical
and sustainable solutions.
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