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ABSTRACT Automated recognition of fundamental heart sound segments (FHSS) from Phonocardio-
gram (PCG) is the preliminary step before clinical parameters extraction to detect the presence of abnormality
if any. PCG acquisition systems are usually based on microphones. These microphones apart from cardiac
sounds will also pick up non-cardiac sounds like lung sounds and speech. The recognition of FHSS is
challenging in the presence of non-cardiac events. Deep learning techniques like convolutional neural
network (CNN) and recurrent neural network (RNN) are suitable for automated FHSS. However, it will be
shown that their performance is degraded in the presence of interference like lung sounds, and speech. Hence
in this work, a combination of conventional signal processing technique with deep neural network (DNN) is
proposed to enhance the accuracy of automated FHSS. The conventional signal processing technique is based
on EWT which can adaptively design the filter banks based on the type of interference. For DNN, U-Net is
considered. The method involves the segmentation of PCG using EWT and recognition of FHSS using U-Net
based DNN. Envelope features are extracted from the EWT based reconstructed signal and used for training
the U-Net based DNN to recognize FHSS. To further improve the recognition accuracy of FHSS, delineation
parameters obtained from EWT are incorporated for temporal modeling with the outcomes of U-Net based
DNN. The performance of the proposed method is analyzed using both real-time signals and signals taken
from standard databases like the Physionet database, and Littmann’s lung sound library. Realtime PCG is
acquired using an in-house developed PCG acquisition system. The proposed U-Net based DNN with the
EWT method achieves FHSS recognition accuracy of 91.17% for PCG with lung sound interference and
90.78% for PCG with speech interference. The proposed method significantly improves the accuracy of
FHSS recognition compared to long short term memory (LSTM), and gated recurrent unit (GRU).

INDEX TERMS Recognition, segmentation, fundamental heart sound, lung sound, speech, empirical
wavelet transform (EWT), deep neural network (DNN).

I. INTRODUCTION
The blood flowmechanism in the heart will lead to vibrations
and generates heart sounds. These heart sounds are used
for diagnosis purpose and this technique is known as heart
auscultation. Heart auscultation is a simple technique for
cardiac diagnosis. In the activity of the heart, two important
time intervals are corresponding to ventricular contraction
and expansion known as systolic and diastolic periods respec-
tively. The completion of one systolic and diastolic period
is known as one heart cycle. The anatomy of the heart is
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shown in Figure 1 (a) and the location of the heart along with
other vibration sources such as lungs and epiglottis are shown
in Figure 1 (b). As shown in Figure 1 (a) the tensions gen-
erated on the mitral and tricuspid valves (AV valves) during
the systolic period results in S1 sound. Similarly, the tensions
generated on the aortic and pulmonary valves (semilunar
valves) during the diastolic period results in S2 sound. S1
and S2 are the two heart sounds normally occurs in healthy
adults [3]. For a normal functioning heart, S1 sound is longer
in duration (of 150 milliseconds [3]) and low pitched whereas
S2 sound is shorter in duration (60 milliseconds [3]) and high
pitched [3]. Also, the diastolic period (the time duration from
the S2 start point to next S1 start point) is longer than the
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FIGURE 1. Illustrates (a) Heart anatomy [1] (b) Sources (lungs, epiglottis)
of interference with heart sounds [2].

systolic period (the time duration from the S1 start point to
next S2 start point) in a normal condition of the heart [3].
Phonocardiogram (PCG) is a graphical representation of

various sounds generated due to the cardiac activity of open
and closure of heart valves. The rhythmic vibrations due to
the open and closure of valves result in various heart sounds
in PCG [3] like S1, S2, S3, S4, murmurs, splits, and ejection
clicks, etc. As illustrated in Figure 1 (b), due to the proximity
of the heart to other vital organs like lungs, and epiglot-
tis, the acquired PCG signals are subjected to interference
with non-cardiac vibrations especially from lung sounds and
speech. PCG signal with normal cardiac sounds, abnormal
cardiac sounds, and interference with non-cardiac sounds are
shown in Figure 2. As shown in Figure 2 (i) generally PCG
consists of S1, systole pause (SP), S2, and diastole pause
(DP). As shown in Figure 2 (ii) an abnormal PCG consists of
murmurs in addition with the fundamental S1, and S2 sounds.
S1 and S2 sounds are generally low frequency (ranges 30Hz-
200Hz [3]) signals and murmurs are randomly varying low
amplitude high frequency (ranges up to 1KHz [3]) signal.
Though the cardiac diagnosis by heart sounds is inexpensive,
the identification of heart sounds in PCG is challenging in
the presence of non-cardiac sounds such as lung sounds and
speech. A normal PCG signal with the interference of lung
sounds, and speech are shown in Figure 2 (iii) and Figure 2
(iv) respectively. Recognizing the fundamental heart sound
segments such as S1, systole pause, S2, and diastole pause
have more prominence as they correspond to the systolic and
diastolic activities of the heart. The process of identifying
the above events is considered as recognition of fundamental
heart sound segments (FHSS). From Figure 2 (iii) and Fig-
ure 2 (iv), it can be seen that recognizing the FHSS from PCG
signal corrupted with lung sounds and speech interference is
challenging.

A. MOTIVATION
Biomedical signals such as Electrocardiogram (ECG), Pho-
toplethysmogram (PPG), and Phonocardiogram (PCG) plays
a key role in the assessment of cardiac-related issues. ECG
provides the electrical activity of the heart, PPG provides
the variations in the blood volume, and PCG provides the

FIGURE 2. Illustrates (i) Normal PCG (SP: Systole pause, DP: Diastole
pause) (ii) Abnormal PCG (iii) PCG with lung sounds (PCG+LS) (iv) PCG
with speech (PCG+S).

mechanical activity of the heart. Each biomedical signal has
its own identity in cardiac diagnosis. However, ECG and
PPG are more susceptible to noise due to the movement of
patient. Hence, the first priority of any medical practitioner
for cardiac diagnosis is to check the heart sounds using
a stethoscope. Heart auscultation is a simple technique to
estimate the heart condition. The demand for wearable and
automated healthcare devices have been increased due to the
availability of low-cost sensors, embedded processors, and
communication modules. With the availability of low cost,
less power consumption, and memory capable embedded
processors the steps towards the design of automated digital
stethoscope have been initiated [4]. Most of the PCG acqui-
sition systems embedded in electronic stethoscopes consists
of electret condenser microphone sensor of the frequency
range 20Hz-20kHz [5], [6] and may also pick up the lower
frequency range signal due to air leakage [7]. Frequency
ranges of lung sound and speech overlap with that of fun-
damental heart sounds, hence eliminating them using sensors
or filters at the acquisition level is not possible. Therefore it is
required to choose an effective signal processing method that
can reconstruct the fundamental heart sounds from the PCG
corrupted with lung sounds, and speech. For the automation
of a digital stethoscope, it is required to develop and test the
robustness of intelligent learning algorithms. To the best of
our knowledge, there is no particular study of recognizing
fundamental heart sound segments from PCG corrupted with
lung sounds and speech. Hence the motivation of this work
is, limitations in PCG acquisition due to microphone sensors
and lacking the study of automated algorithms for recognition
of FHSS from PCG corrupted with lung sounds, and speech.

B. STATE OF THE ART
In [8] different automated techniques for heart sound classi-
fication are summarized. In [9] Mel-frequency cepstral coef-
ficients (MFCC) extracted from realtime recorded PCG and
then obtained the refined features using the K-Means clus-
tering algorithm. The obtained features fed to DNN classifier
for segmentation of S1 and S2 sounds. In [10] four different
envelograms extracted from PCG and fed to DNN. Hidden
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semi Markov model-based temporal modeling is applied to
the output of the DNN for classification of FHSS. In [11]
seven different features extracted from PCG are fed to DNN
for classification of FHSS. In [12] nine different feature selec-
tion algorithms used for choosing the effective features for
classification of S1 and S2 sound. The obtained features are
fed to DNN based stacked autoencoder classifier. In [13] the
S1 and S2 scalograms are classified using DNN. The scalo-
grams are obtained using a continuous wavelet transform.
In [14] adaptive sojourn hidden semiMarkovmodel (HSMM)
based heart sound segmentation is performed. In [15] adap-
tive sojourn hidden semiMarkovmodel (HSMM) based heart
sound segmentation is performed. In [14] Markov switching
autoregressive model used for model the raw heart sounds for
heart sound segmentation. In [16] the features obtained from
variational mode decomposition and Hilbert transformation
are utilized with machine learning methods for identification
of S1 and S2 heart sounds. But in all the existing methods
there is no particular investigation on the performance of
DNN classifiers when PCG corrupted with noises such as
lung sounds, and speech.

In general to eliminate noise, conventional signal pro-
cessing methods involve decomposing the acquired PCG
signal into various time-frequency (TF) components using
transforms like discrete wavelet transform (DWT) [17], [18],
wavelet packet transform (WPT) [19], synchrosqueezing
wavelet transform (SSWT) [20] and empirical wavelet trans-
form (EWT) [21], [22]. Decomposition based techniques
are proposed where PCG signal is decomposed into dif-
ferent modes using nonstationary decomposition techniques
like empirical mode decomposition (EMD) [23], ensemble
empirical mode decomposition (EEMD) [24], and variational
mode decomposition (VMD) [25], [26]. Interference-free
PCG signal is then reconstructed by eliminating the modes or
time-frequency components that correspond to various noises
and artifacts. Most of these works consider PCG signals cor-
rupted with interference like additive white Gaussian noise
(AWGN), baseline wander (BW), and murmurs. Only a few
works in the state of the art have considered PCG corrupted
with lung sounds. In [27] singular spectrum analysis (SSA)
based method is analyzed for localizing heart sounds in res-
piratory signals. Adaptive line enhancement (ALE) method
is presented in [28] for removal of wheeze sounds from PCG.
Temporal feature-based methods are presented in [29], [30]
for reconstructing S1 and S2 sounds. Also non-stationary
signal decomposition techniques like EMD, and EEMD [23],
[24] removed the lung sounds by proper selection of mode.
The ALE based methods require simultaneous recording of
lung sounds and heart sounds and therefore has synchroniza-
tion issues. TF based methods employ fixed filter banks and
hence are not effective to remove lung sounds and speech
which have overlapping frequency content with PCG. The
decomposition-based methods require proper selection of
stopping criteria and also require further statistics to reject
the lung sounds. To the best of our knowledge, there is
no research work on eliminating lung sounds, and speech

interference from PCG signal. Also there is no particular
study on automated recognition of FHSS fromPCG corrupted
with lung sounds, and speech.

C. CONTRIBUTION
In this paper the combination of a conventional signal
processing method and DNN is proposed for recognizing
FHSS from PCG signal corrupted with lung sounds, and
speech. Empirical wavelet transform is used as conventional
signal processing method for FHSS and U-Net based DNN
is used for recognition of FHSS. The effectiveness of using
EWT for PCG corrupted with additive white Gaussian noise
(AWGN), and murmurs are investigated in [21]. However,
interference like lung sound and speech is not considered in
[21]. In our previous contribution, the effectiveness of EWT
in removing lung sounds for the reconstruction of FHSS is
investigated in [22].

The motivation for using EWT is that it employs adaptive
filter bank which is constructed based on the characteristics
of the processing signal. Also, it provides high frequency
resolution around the frequency ranges of S1 and S2 sound
and hence provides the better reconstruction of the PCG
signal. The main advantage of U-Net based DNN is that low-
level features in the encoder part are concatenated with the
corresponding high-level features in the decoder part which
helps in the recognition of FHSS. The proposed method
involves estimating the frequency ranges of clean PCG, PCG
with lung sound, and PCG with speech. The dominating
frequency ranges of S1 and S2 sounds are then incorporated
into the EWT to construct the adaptive filter bank. The S1
and S2 sounds are reconstructed from the output of the
filter bank. Then smoothed Shannon entropy envelogram is
computed over the reconstructed signal. The smoothed signal
is followed by adaptive thresholding to find the delineation
parameters of S1 and S2 sounds. Four envelogram features
obtained from reconstructed signal is used for training the
U-Net based DNN and delineation parameters are utilized
for temporal modeling. The performance of the proposed
method is analyzed using both real-time signals and signals
taken from standard databases like the Physionet database,
and Littmann’s lung sound library. Real-time PCG is acquired
using in-house developed PCG acquisition system.

The rest of the paper is organized as follows: In section II,
materials are presented. The proposed method is presented
in section III. Results and discussion presented in section IV
followed by the conclusion.

II. MATERIALS
In this paper, EWT andU-Net basedDNN is used for effective
recognition of FHSS. Brief description of the EWT andU-Net
based DNN are presented in this section and the detailed
description can be found in [31], [32].

A. BRIEF OVERVIEW OF EWT
EWT initially proposed in [31] has been applied to
various fields including seismic data analysis [33],
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electroencephalogram seizure detection (EEG) [34], power
quality analysis [35], and PCG [21], [22]. EWT is similar to
classical wavelet transform except that the scaling function
(φ1(ω)), and empirical wavelet function (ψn(ω)) are adaptive
in nature. That is the scaling function and empirical wavelet
function are adaptively chosen according to the frequency
content of the processed signal x(t).
EWT decomposes the processed signal x(t) into N modes.

The detailed EWT coefficients for the nth(n = 1, 2, . . . ,N )
mode is obtained as [31],

Dn(t) =
∫
x(τ )ψn(τ − t)dτ = IFT (X (ω)× ψn(ω)) (1)

whereψn(ω) is the adaptive empirical wavelet which depends
on the frequency content of x(t).
The approximation coefficient is obtained by [31],

Io(t) =
∫
x(τ )φ1(τ − t)dτ = IFT (X (ω)× φ1(ω)) (2)

where φ1(ω) is the adaptive scaling function which depends
on the frequency content of x(t).

The adaptive ψn(ω) and φ1(ω) are given by [31],

ψn(ω)

=



1, if (1+ γ )�i 6 |ω| 6 (1− γ )�i+1

cos(
π

2
β(γ,�i+1)),

if (1− γ )�i+1 6 |ω| 6 (1+ γ )�i+1

sin(
π

2
β(γ,�i)), if (1− γ )�i 6 |ω| 6 (1+ γ )�i

0, otherwise

(3)

and

φ1(ω)

=


1, if |ω| 6 (1− γ )�1

cos(
π

2
β(γ,�1)), if (1−γ )�1 6 |ω| 6 (1+γ )�1

0, otherwise

(4)

where γ is overlap parameter, and β is given by [31],

β(γ, ω) =


0, if (γ, ω) 6 0
1, if (γ, ω) > 1
β(γ, ω)+ β(1− (γ, ω)), if (γ, ω) ∈ [0, 1]

(5)

�i is the boundary parameter given by [31],

�i =
ωi + ωi+1

2
for 1 6 i 6 N − 1 (6)

where ωi, ωi+1 are dominant frequencies present in x(t).
The reconstructed signal is given by [31],

x̂(t) = I0(t) ? φ1(t)+
N∑
n=1

Dn(t) ? ψn(t)

= IFT (I0(ω)φ1(ω)+
N∑
n=1

Dn(ω)ψn(ω)) (7)

FIGURE 3. Illustrates the 1D variant of U-Net based DNN.

The application of EWT to a processed signal x(t) involves
proper choosing of the boundaries�i, overlap parameter, and
the number of modes.

B. U-NET BASED DEEP NEURAL NETWORK
Two-dimensional U-Net based DNN is a powerful segmen-
tation model for various biomedical image segmentation
[32]–[36]. In a [10] 1D variant of U-Net based DNN is used
for the segmentation of FHSS. U-Net based DNN consists
of an encoder-decoder structure with a bottleneck layer as
shown in Figure 3. For the convenience of representation,
a group of convolution layers are kept in a block and named
it as mass block. Each convolution layer (shown as red and
black colored vertical rectangle bars) consists of 1D convolu-
tions of input with filters of different dimensions. The number
of channels for each convolution layer is indicated on the
top of the rectangle bars in Figure 3. To restrict in getting
higher values of activations, batch normalization (BN) is
used. ResNet blocks are used in U-Net based DNN to get the
smoother surface of the loss landscape and hence it is easy to
perform optimization. The output of each convolution layer is
followed by a rectified linear unit (ReLU) activation function
which helps in eliminating the negative values. In U-Net
based DNN after every mass block, max-pooling operation is
performed. Max-pooling will reduce the dimensions of input
by a factor of 2 from one mass block to next lower mass block
and hence helps in the compact representation of the input.
Encoder and decoder parts are connected by the bottleneck
layer which contains most of the information of input. To get
more efficiency with the model in recognition of input events,
skip connections are established by adding the final layer of
each mass block in the encoder part with the decoder part
as shown in Figure 3. Basically, skip connections in U-Net
based DNN are supplying the additional information to the
network. Now at the output part, it is required to maintain
the same input dimension. This is done with upsampling by a
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FIGURE 4. Illustrates the block diagram of the proposed method.

factor of 2. Upsampling layer contains transpose convolution
followed by ReLU activation. The advantage of the U-Net
based DNN is low-level features in the encoder path are
concatenated with corresponding high-level features in the
decoder path and hence increase the efficiency of recognition
of events in the input signal.

III. PROPOSED METHODOLOGY
The block diagram of the proposed method is shown
in Figure 4. It consists of EWT based reconstruction, detec-
tion of delineation parameters, and U-Net based recognition
of FHSS. In the following subsections, the role of individ-
ual blocks to attain the objective of recognizing FHSS is
explained in detail.

A. PCG ACQUISITION
The experimental setup for real-time recording is shown
in Figure 5. A microphone is placed into one of the ear-tips
of the stethoscope to get the electrical signal. The obtained
electrical signal is passed through a high-pass filter (with
cut-off frequency of 1Hz) to remove the DC component.
The filtered signal is amplified (with the gain of 101) up to
acceptable level using a non-inverting amplifier. The ampli-
fied signal is essentially PCG. The PCG signal acquisition
without speech disturbance is shown in Figure 5 (a) and the
PCG signal corrupted with speech is shown in Figure 5 (b).
The obtained PCG signal is connected to the analog input pins
of Arduino Uno. The analog to digital converter (ADC) of
ATmega 328 micro-controller with 10 bit resolution, 16 MHz
clock speed, 32 KB flash memory, 2 KB static random
access memory (SRAM), and 1 KB electrically erasable
programmable read-only memory (EEPROM) is used for
digitizing the analog PCG signal. The digitized PCG signal
is given to a computer system and saved the data in a text
file using Arduino Uno software. In the pre-processing step,
amplitude of the acquired signal is normalized.

1) EWT BASED DECOMPOSITION AND RECONSTRUCTION
OF S1 AND S2 SOUNDS
As mentioned earlier, applying EWT to PCG signal Pc[n]
requires proper selection of the number of modes, frequency
boundaries (�i), and overlap parameter (γ ). In order to do
that the spectrum of Pc[n] (with various interference) is
estimated using fast Fourier transform (FFT) and is denoted

FIGURE 5. Illustrates the experimental setup of the PCG acquisition.
(a) PCG acquisition without speech interference. (b) PCG acquisition with
speech interference.

FIGURE 6. Illustrates the estimated frequency spectrum for PCG with lung
sound and decomposition using EWT. (a) Detected boundaries on the
average and smoothed spectrum of PCG corrupted with lung sounds.
(b). (i) PCG with lung sounds. (ii) Reconstructed PCG using EWT.

as P[ω]. The local maxima in the spectrum P[ω] are found
based on amplitude thresholding suggested in [31]. Let
m = (mi)i=1,2,...,N denote set of local maxima and ω =
(ωi)i=1,2,...,N denote their corresponding frequency locations.
The frequency spectrum is then segmented into N seg-
ments whose boundaries are denoted as 3i = [�i−1, �i],
where 3i is computed using (6). Thus the spectrum P(ω)
is segmented into N modes whose boundaries are [0, �1],
[�1, �2],. . . ,[�m−1,

Fs
2 ]. In each of these segments ψn(ω)

and scaling function φ1(ω) are computed using (3) and (4)
respectively. The value of γ is chosen by γ = minn(

ωn+1−ωn
ωn+1+ωn

)
as suggested in [31].

An example of segmenting the averaged and smoothed
spectrum of a PCG signal corrupted with lung sounds is
shown in Figure 6 (a) The dashed vertical lines correspond
to the boundaries (�i). Similarly spectrum segmentation for
PCG signal corrupted with speech is shown in Figure 7 (a).
From the figures, it can be seen that the length of each seg-
ment is adaptive and hence the filter bank constructed using
scaling function (φ1) and empirical wavelet function (ψn) are
also adaptive. For reconstructing the S1 and S2 sounds from
the EWT decomposed PCG signal, it is necessary to have
knowledge about the frequency ranges of fundamental heart
sounds (FHS), murmurs, and various interference. In this
work, the average smoothed spectrum for clean PCG, PCG
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FIGURE 7. Illustrates the estimated frequency spectrum for PCG with
speech and decomposition using EWT. (a) Detected boundaries on the
average and smoothed spectrum of PCG corrupted with speech and
(b). (i) PCG with speech. (ii) Reconstructed PCG using EWT.

FIGURE 8. Illustrates the spectrum of heart sounds with different
spectrum plotting methods such as (1) FFT, (2) PERIODOGRAM, (3)
PWELCH, (4) PYULEAR, (5) PMUSIC, (6) PEIG for (a) clean PCG, (b) PCG
with speech, (c) PCG with murmur, (d) PCG with lung sounds, (e) Only
speech, (f) Only lung sounds.

with speech, PCG with murmurs, PCG with lung sound,
is computed using different estimation techniques like peri-
odogram,Welch, Yule-Walker,MUSIC, and Eigenvector. The
spectrum analysis was carried out using both real-time signals
and signals taken from the standard database and the results
summarized in Figure 8.

The dominant frequency ranges of FHS, murmurs and
other interference are obtained using energy-based threshold-
ing (10% and 20%) and is reported in Table 1. From Table 1 it
can be seen that FHS has frequencies around 10Hz-70Hz.
It should be noted that the spectrum in Figure 6 (a) and
Figure 7 (a) is the smoothed spectrum used for illustrating
the adaptive filter bank. In practice, the spectrum will be non-
smoothed (computed using FFT) andwill havemultiple peaks
in the frequency range of interest (i.e 10-70Hz). Many of
these peaks will correspond to interference like lung sounds,
speech, andmurmurs. However, reconstruction from the filter
bank using peaks which has amplitude more than 50% of

TABLE 1. Estimated frequency ranges of clean PCG and PCG with
different interference.

FIGURE 9. Illustrates the effective reconstruction of S1 and S2 heart
sounds from PCG corrupted with different lung sounds. (a1)-(a8) PCG
corrupted with different lung sounds. (b1)-(b8) EWT based reconstructed
PCG with only S1 and S2 heart sounds.

the maximum is considered. This will eliminate interference
whose frequency ranges overlap with the FHS. To reconstruct
the FHS from EWT decomposition, only the modes whose
frequencies are in the range of 10Hz-70Hz are considered.
This is because the adaptive filter bank offers high resolution
around the frequency of interest (S1 and S2 sounds). The set
of modes whose frequency are in the range of 10Hz-70Hz is
denoted as S = (S1, S2, . . . , Sp)(where P < N ). Thus the
reconstructed S1 and S2 sounds are given by,

x̂(t) = IFT (I0(ω)φ1(ω)+
∑
i ∈ S

Di(ω)ψi(ω)) (8)

The reconstructed heart sound for PCG corruptedwith lung
sounds and speech is shown in Figure 6 (b) and Figure 7
(b) respectively. An example of efficiency in the reconstruc-
tion of FHS from PCG corrupted with different lung sounds
using EWT is shown in Figure 12.

2) DETECTION OF DELINEATION PARAMETERS
The reconstructed S1 and S2 heart sound signal P̂S1,S2[n]
is subjected to a non-linear amplitude transformation to
emphasize the informative amplitude content present in the
signal. In this work, Shannon entropy is considered for non-
linear transformation. Shannon entropy is chosen because
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FIGURE 10. Illustrates the detection of S1 and S2 sounds from PCG with
interference of lung sound, and speech using EWT decomposition
method. (a1)-(a2) PCG corrupted with lung sound, and speech. (b1)-(b2)
The reconstructed PCG using EWT for PCG with lung sound, and
speech. (c1)-(c2) Shannon entropy envelograms. (d1)-(d2) Smoothed
Shannon entropy envelograms. (e1)-(e2) Gating envelopes over FHS.
(f1)-(f2) Fundamental heart sound detection using EWT for PCG corrupted
with lung sound, and speech.

it enhances the informative low amplitude segments of the
heart sound and is shown in Figure 10 (c1)-(c2) for PCG
corruptedwith lung sound, and speech respectively. Since this
feature will also enhance the low amplitude noise, P̂S1,S2[n]
is subjected to a fixed threshold to suppress the noise. The
threshold signal P̂th[n] is given as,

P̂th[n] =

{
P̂S1,S2[n], if P̂S1,S2[n] > γth

0, otherwise
(9)

The value of γth is chosen as 0.1 by considering the S1 and
S2 amplitude levels. The Shannon entropy envelope (SEE) is
computed as

PSh[n] = −[|P̂th[n]|].log(|P̂th[n]|) (10)

The smoothen Shannon entropy envelope (SSEE) P̂Sh[n]
is obtained by smoothening PSh[n] using a zero phase for-
ward and reverse filter (for filtering, a rectangular window of
length 50 ms with an overlap of 1 ms is used) and is shown
in Figure 10 (d1)-(d2) for PCG corrupted with lung sound,
and speech respectively. Then the gated signal is computed
as follows:

P̂g[n] =

{
1, if P̂Sh[n] > γsh

0, otherwise
(11)

where γsh is chosen as the mean value of P̂Sh[n].
The gated signal computed from the SSEE is shown in Fig-

ure 10 (e1)-(e2) for PCG corrupted with lung sound, and
speech respectively. In order to emphasize the large slope
between consecutive points of the gating signal, it is subjected
to a first-order derivative filter. The filtered signal is given by,

P̂der [n] = P̂g[n]− P̂g[n− 1] (12)

The filtered signal P̂der [n] consists of alternative posi-
tive and negative impulses. Now the time instants of these

impulses are projected onto the resultant PCG signal. The
resultant PCG signal is obtained by multiplying the P̂S1,S2[n]
with the gated signal P̂g[n]. The projected time instants
(shown in red circles) are shown in Figure 10 (f1)-(f2) for
PCG corrupted with lung sounds and speech respectively.
These time instants are known as delineation parameters of
fundamental heart sound segments. To recognize the FHSS
(whether the segments belong to S1, systole pause, S2, and
diastole pause), U-Net based DNN is used and presented in
the next subsection.

3) RECOGNITION OF FHSS USING U-NET BASED DNN
In this work 1D variant of U-Net based DNN is used with
the motivation from [10]. Traditional U-Net based DNN is
modified by using ResNet blocks and batch normalization as
discussed earlier. From the state of the art, it is observed that
the auto-correlation envelope, Hilbert envelope, homomor-
phic envelogram, and power spectral density (PSD) envelope
are effective in localizing the segments of the heart sounds.
Hence from the EWT based reconstructed signal these four
envelograms are computed and used as four channels for
training the U-Net. An input matrix ‘F’ of batch size 64 with
4 channels is created and applied to train the U-Net based
DNN. As shown in Figure 3 various convolutional layers are
used with filters of different dimensions. For the convolution
process, a stride (τ ) length of 8 is chosen from the state
of the art and the input of the convolutional layers zero-
padded to maintain output as the same size that of input.
To update the filters, categorical cross-entropy is used as
the loss function. Adam optimizer with differential learning
rate is used for training the model. The upper and lower
bounds used in differential learning rates are calculated using
learning rate scheduler. As shown in Figure 3 and discussed
earlier, U-Net based DNN constructed by mass blocks, max
pooling, bottleneck layer, skip connections, and upsampling
layers is effective in representation of the input EWT based
reconstructed PCG signal. To enhance the recognition accu-
racy rate of FHSS, temporal modeling has been performed on
the output of the U-Net with delineation parameters obtained
from the SEE technique. As shown in Figure 3 the output
sequences (shown in the block as

{
0, 1, 2, 3

}
) are the various

states of the PCG signal which represents S1, systole pause
(SP), S2, and diastole pause (DP).

IV. RESULTS AND DISCUSSION
The performance analysis of the proposed method is carried
out on MATLAB 2014b, and Google colaboratory’s open
source platform (K80 GPU, 12GBRAM).MATLAB used for
features extraction and Python (using PyTorch library) used
for modeling U-Net based DNN to recognize FHSS.

A. DATABASE
To the best of our knowledge, there is no particular
database available for PCG corrupted with lung sounds, and
speech. Hence for PCG corrupted with lung sounds database,
Littmann’s lung sound library is used [41] and synthetically
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added to Physionet dataset [42]. For creating the database
of real-time PCG, 74 voluntarily participated male adults
of age group ranging between 17 − 38 years old subjects
were recorded. An in-house developed PCG acquisition sys-
tem is used for real-time PCG recordings with and with-
out speech. The recordings are collected from subject in
sitting position with 30 seconds of duration. For recording
real-time PCG with speech, subjects were asked to speak a
few words while recording their PCG. Also, their speech is
simultaneously recorded using audacity software and syn-
thetically added with Physionet database. Hence the list of
PCG databases used for several experiments are the Phys-
ionet (PH), PH with lung sounds (PH+LS), PH with speech
(PH+S), real-time (RT), RT with lung sounds (RT+LS), and
RT with speech (RT+S).

To analyze various aspects of the proposed method, three
experiments are considered. In the first experiment, the ratio-
nale for choosing the EWT for decomposition is explained in
terms of quality parameters and computational complexity.
In the second experiment, the robustness of the proposed
EWT based method in segmenting S1 and S2 sounds from
PCG corrupted with lung sounds, and speech is reported.
In the third experiment, the performance of the proposed
method for recognition of FHSS is presented.

1) EXPERIMENT I
The quality parameters such as root mean square error
(RMSE), maximum absolute error (ME), and signal to noise
ratio (SNR) of EWT based reconstructed PCG from PCG
interfere with lung sounds, and speech is obtained by,

RMSE =
M∑
n=1

(
√
(Pc[n]− P̂S1,S2[n])2) (13)

ME = maxMn=1(|Pc[n]− P̂S1,S2[n]|) (14)

SNR = 10log10(

∑M
n=1(Pc[n]− µo)

2∑M
n=1(Pc[n]− P̂S1,S2[n])2

) (15)

where µo is the mean of clean PCG Pc[n], and M indicates
the number of subjects.

The obtained quality parameters of the proposed method
are compared with the EEMD and SSA methods which are
reported in Table 2. From Table 2, it can be observed that
the quality parameters of EWT based reconstructed PCG
is better than the other methods. The rationale behind the
enhancement of S1 and S2 sound in PCG corrupted with lung
sounds, and speech is due to the inherent adaptive filtering
nature of the EWT. As adaptive filter banks act as band pass
filters and boundaries of segments are determined with the
local information, high-frequency resolution can be achieved.
Hence the reconstruction of PCG with FHSS using EWT
results in high SNR, low RMSE, and low ME.

To find the computational complexity of different decom-
position methods, MATLAB simulations are conducted on
Intel(R) Core (TM) i5 3210M CPU@ 2.50 GHz, 4GB RAM
computer. The computational complexity is obtained by

TABLE 2. Quality parameters of various methods.

TABLE 3. Computational complexity of decomposition methods.

averaging the 100 execution processing times of the decom-
position of PCG corrupted with lung sound, and speech. The
computational complexity of the proposed method is com-
pared with the other methods like EEMD, and SSA and the
same is reported in Table 3. From Table 3 it is observed
that the proposed EWT based method is considerably less
complex than the methods like SSA, and EEMD.

2) EXPERIMENT II
The effectiveness of the proposed EWT based method in
segmentation of S1 and S2 heart sounds from the PCG cor-
rupted with lung sounds, and speech is demonstrated using
the benchmark performance metrics like sensitivity (Se),
positive predictivity (Pp), and overall accuracy (OA). The
performance metrics are computed by,

Se = TP/(TP+ FN )× 100% (16)

Pp = TP/(TP+ FP)× 100% (17)

OA = TP/(TP+ FP+ FN )× 100% (18)

where ‘TP’ indicates the true positive, ‘FP’ indicates the false
positive and ‘FN ’ indicates the false negative.

The obtained performance metrics of the proposed EWT
based S1 and S2 heart sound from PCG corrupted with dif-
ferent interference is reported in Table 4. From Table 4 it is
observed that the ‘OA’ for segmentation of realtime record-
ings are slightly higher than the Physionet database. This is
because the Physionet database consist of normal, abnormal,
and a few noisy PCG signals whereas realtime recordings
consists of normal PCG. The proposed EWT based method
is compared with the existing methods in detection of S1 and
S2 sounds like SSA and EEMD. The proposed EWT based
method achieves an average ‘Se’ of 99.36%, average ‘Pp’
of 99.16%, and an average ‘OA’ of 98.53% in the detection of
S1 and S2 heart sounds from PCG corrupted with lung sound,
and speech. The performance metrics of the proposed EWT
based method are significantly improved than the methods
like SSA, and EEMD.
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TABLE 4. Performance metrics of the fundamental heart sound detection
methods.

B. EXPERIMENT III: RECOGNITION OF FHSS
Performance of the proposed U-Net based DNN with EWT
method for recognition of FHSS from PCG corrupted with
lung sounds and speech is analyzed and compared with long
short term memory (LSTM), and gated recurrent unit (GRU)
methods. To conduct the experiments, 792 subjects of Phy-
sionet database, 72 real-time recorded normal heart sounds
with and without speech, 72 real-time recorded speech sig-
nals, 16 Littmann’s lung sounds are considered. 72 speech
signals and 16 lung sounds are for the synthetical addition
to create a database of PCG with speech and PCG with lung
sounds. For the recognition of FHSS using Physionet (PH),
80% of the Physionet database are used for the training and
20% of the Physionet database are used for the classification.
For the recognition of FHSS when PCG interfere with lung
sounds, a database is created in such a way that out of
the 792 heart sounds of Physionet, 350 heart sounds are
picked randomly and synthetically added with 16 different
lung sounds. Remaining 342 heart sounds have remained
the same. The generated database of Physionet with the
interference of lung sounds are also included with the real-
time recorded database of 72 normal heart sounds (without
speech) synthetically added with 16 lung sounds. This new
database is termed as ‘PHN+LS’. For the recognition of
FHSS when PCG interfere with lung sounds, 80% of the
PHN+LS is used for the training and 20% of the PHN+LS is
used for the testing. Similarly, for the recognition of FHSS
when PCG interfere with speech, a database is created in
such a way that out of the 792 heart sounds of Physionet,
350 heart sounds are picked randomly and synthetically
added with 72 real-time recorded speech signals. Remaining
342 heart sounds have remained the same. The generated

TABLE 5. Performance metrics of the FHSS recognition.

database of Physionet with interference of speech is also
included with the real-time recorded database of 72 normal
heart sounds with speech. This new database is termed as
‘PHN+S’. For the recognition of FHSS when PCG interfere
with speech, 80% of the PHN+S is used for the training and
20% of the PHN+S is used for the testing. For the cross-
validation, 792 subjects of Physionet are synthetically added
with 16 lung sounds and 72 speech signals are considered for
training and the trained network is tested with 72 subjects of
normal heart sounds recorded with speech are synthetically
added with 16 different lung sounds. The database is termed
as ‘RT+LS+S’. For training the U-net, data is trained from
zero learning, 10 fold cross-validation is performed, and a
window length of 64 is considered. Performance metrics
are computed using (16)-(18) where true positives are the
estimation of S1 (or S2 or SP or DP) is the same as that of
ground truth sequence of S1 (or S2 or SP or DP), all other
estimations are false negatives, and false positives are the
estimation of noisy segments as S1 (or S2 or SP or DP). The
performance metrics are presented in Table 5. From Table 5 it
can be observed that the performance of the U-Net, LSTM,
and GRUmethods for the classification of FHSS is degraded.
To depict the rationale behind the degradation in classifica-
tion accuracy, the effects of interference on four envelogram
are shown in Figure 11. As shown in Figure 11, the features
will not train the network accurately for the classification of
FHSS. Hence, in the proposed method EWT is utilized for the
removal of interference and then the features obtained from
the EWT based reconstructed signal are feed for the training.
From the table 5. it can be observed that the proposed U-Net
based DNN with EWT method achieves significantly better
recognition of FHSS than U-Net based DNN without EWT.
Also, the proposed method outperforms other methods such
as LSTM and GRU. The rationale behind the improvement in
the performance of the proposed method is that the features
do not get affected with noisy PCG as it is processed through
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FIGURE 11. Illustrates the affects of lung sounds and speech on envelograms of PCG (5 Seconds of duration) (a1) PCG (a2) PCG with
lung sounds (a3) PCG with speech. (b1)-(b3) Homomarphic envelograms of (a1)-(a3). (c1)-(c3) Hilbert envelograms of (a1)-(a3).
(d1)-(d3) PSD envelograms of (a1)-(a3). (e1)-(e3) Wavelet envelograms of (a1)-(a3).

FIGURE 12. Illustrates the various reconstructed signals of normal PCG and abnormal PCG corrupted with lung sounds and speech. (a1)
Normal PCG. (a2) Normal PCG corrupted with speech. (a3) Normal PCG corrupted with lung sound. (a4) Abnormal PCG. (a5) Abnormal
PCG corrupted with speech. (a6) Abnormal PCG corrupted with lung sound. (b1)-(b6) EWT based reconstruction of (a1)-(a6). (c1)-(c6)
SSA based reconstruction of (a1)-(a6). (d1)-(d6) EEMD based reconstruction of (a1)-(a6).

effective reconstruction using EWT and also due to the usage
of delineation parameters for temporal modeling.

C. MERITS AND LIMITATIONS
The proposed EWT based DNN for classification of FHSS
has significant merits of effective reconstruction and clas-
sification from the PCG corrupted with lung sounds, and
speech. To demonstrate the effectiveness in reconstruction
using EWT, six different cases are considered and are shown
in Figure 12. As shown in Figure 12, EWT is effective in the
reconstruction of FHS for all the different cases. As shown
in Figure 12, reconstruction of FHS using singular spectrum
analysis (SSA) and ensemble empirical mode decomposi-
tion (EEMD) are not effective for the PCG with the interfer-
ence of lung sounds and speech.

The best example for the benefit of contributed work in
medical practices are with the pandemic COVID 19. Several
articles on COVID 19 are reporting that the virus is mysteri-
ously affecting the lungs. Hence, in this case, we can expect

that the interference of lung sounds as well as coughing
sounds from the subject while examining the heart sounds
using a stethoscope. Hence, if there is an automated system
in digital stethoscope which can eliminate non-cardiac events
and recognize the fundamental heart sounds, it will much ben-
eficial for the medical practitioner to assess the cardiac condi-
tion of the patient. The technical significance of the proposed
method is depicted in Figure 11. The recent advancement
of automated digital stethoscopes are becoming powerful
in assessing the heart condition with Artificial Intelligence
methods. If the interference of the kind overlap with that of
fundamental heart sounds are not removed, then there will
be a reduction in classification accuracy of heart segments
and may lead to more number of false alarms which result in
the wrong identification of systolic and diastolic parts of the
PCG. In smart pacemakers, it is required to give the timing
information of systolic and diastolic periods to generate the
electrical signal if an abnormality in the functionality of heart.
Hence, the proposedmethod is useful to medical practitioners
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in the automatic identification of systolic and diastolic activ-
ities of the heart.

The proposed method combines conventional signal pro-
cessing method with artificial intelligence (AI) based tech-
nique. There is a significant improvement in performance
compared to the usage of onlyAI-based techniques. However,
there is an increase in computational complexity.

V. CONCLUSION
In this work, U-Net based DNN with EWT for recognition of
fundamental heart sound segments from PCG corrupted with
lung sounds, and speech is proposed. In the proposedmethod,
the corrupted PCG signal is decomposed using adaptive filter
banks of EWT. The estimated frequency range of fundamen-
tal heart sounds is incorporated into EWT for the effective
reconstruction of the fundamental heart sounds. Delineation
parameters of FHSS are obtained by using Shannon entropy.
It is observed that the EWT basedmethod offers better perfor-
mance in the segmentation of FHSwhen comparedwith exist-
ing decomposition methods like EEMD and filtering based
techniques like SSA. Four different envelogram features are
extracted from the EWT based reconstructed signal. These
features are used for training the U-Net model for recognition
of FHSS. In the part of the work a new database of PCG with
lung sounds, and real-time PCG with speech is created. For
recording realtime PCG an in-house developed acquisition
system is used. The proposed method achieves 91.17% and
90.78% for recognition of FHSS from PCG corrupted with
lung sounds, and speech respectively. The proposed method
is compared with U-Net based DNN without EWT, LSTM
with and without EWT, and GRU with and without EWT.
The results demonstrate that there is an average improvement
of 3.83% accuracy in recognition of FHSS with the combina-
tion of conventional EWT and deep neural networks.
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