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ABSTRACT In the conventional operation of a wind farm (WF) system, the operation point of each
wind turbine generator (WTG) is determined to capture maximum energy individually using maximum
power point tracking (MPPT) algorithm. However, this operation strategy might not ensure the maximum
output power of WF due to wake effect among WTGs. Therefore, this paper develops a multi-agent-
based cooperative learning strategy among WTGs using deep reinforcement learning to enhance the overall
efficiency ofWF byminimizing the wake effect.WTG agents are learnable units and they interact with others
as an extensive-form game based on a cooperative model to achieve a common goals (i.e. maximum output
power of the WF). In this game, WTG agents carry out their actions sequentially and measure a common
reward which is used to update the knowledge of all agents. During the training process, WTG agents use
different deep neural networks (DNNs) to improve their actions for achieving the higher reward in the long
run by optimizing the weights of DNNs in each learning step. After the training process,WTG agents are able
to determine optimal set-points with different input information to minimize the wake effect and to maximize
the output power of the WF. Moreover, an operation strategy for the entire WF system is proposed to ensure
that the WF always complies with grid-code constraints from transmission system operators, including the
requirement of limited power and reserve power. In order to show the effectiveness of the proposed method,
a comparison between the results using the proposed method and the conventional MPPT method is also
presented in different cases, and the results show that the proposed method can increase the output power of
the WF in the range of 1.99% to 4.11% with different layouts.

INDEX TERMS Cooperativemodel, decentralized operation, double deep Q-learning, grid-code constraints,
multi-agent deep reinforcement learning, optimization, wind farm operation.

NOMENCLATURE
ABBREVIATIONS
DNN Deep neural network
EMS Energy management system
MADRL Multi-agent deep reinforcement learning
MPPT Maximum power point tracking
TSO Transmission system operator
WTG Wind turbine generator
WF Wind farm
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IDENTIFIERS AND SETS
t Time interval identifier
n WTG identifier
T Set of time intervals
N Set of WTGs

CONSTANTS AND VARIABLES
Pn,t Output power of WTGn at t
PMPPTn,t Output power of WTGn with MPPT at t
Praten Rated power of WTGn
vn,t Wind speed at WTGn at t
βn,t Pitch angle of WTGn at t
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λn,t Tip speed ratio of WTGn at t
CP (β, λ) Power coefficient function
CT (β, λ) Thrust coefficient function
PWF,t Total output power of WF system
Dt Power requirement from TSO at t
Plim it
t Limited power from TSO at t
presert Required reserve capacity from TSO

at t
(sk , ak , rk , sk+1) Agent transition with information of

state, action, reward, and next state at
a time step k

Q (s, a) Q-value of a state-action pair (s,a)
L (θ) Loss function with current weights θ
θi, θi−1 Weights of Q-network and

target-network

I. INTRODUCTION
Due to environmental concerns and exhausting fossil fuels,
renewable energy sources such as wind energy, solar energy,
hydro energy, etc. have emerged as a new paradigm to fulfill
the global energy demand. Among the renewable energy
sources, wind energy has attracted significant attention due
to its abundant resources [1]. According to the Global Wind
Energy Council, the total global installed capacity of wind
power was up to 486.8GWby the end of 2016 [2], and a report
in [3] predicts that wind power could account for 19% of the
worldwide production of electricity by 2030.

The high penetration level of wind energy in the power
system has resulted in the development of wind farm (WF)
systems with a huge number of wind turbine generators
(WTGs). Typically, WTGs are operated at maximum power
point tracking (MPPT) to optimize their output power [4].
This operational strategy only maximizes the output power
of several WFs where the WTGs are scattered in a large
area. Due to the far distance among WTGs, the operation
point of WTGs do not affect each other. However, many
WF systems are located in an area with limited space among
WTGs. Therefore, the operation point of the upstreamWTGs
can significantly affect the output power of the downstream
WTGs due to the decrease in wind velocity [5], [6]. The wind
velocity deficit is caused by wake effect in WF, which can
reduce the efficiency of the entire WF system by 10-20% [7].

The existing solutions for reducing wake effects in WF
system can be categorized into two types, such as optimal
placement ofWTGs inWF [8], [9], and coordinated operation
of WTGs to reduce aerodynamic losses [10], [11]. The first
solution is realized by optimal design of WF system, while
the second solution is determined by theWF operators during
the operation of WF system. It is obvious that coordinated
operation ofWTGs is necessary after optimizing the layout of
the WF system. The main idea of this coordinated operation
is that the upstream WTGs might slightly reduce the output
power to decrease the wind speed deficit at the downstream
WTGs. Therefore, the downstream WTGs can increase their
output power, and the total output power of WF might be
higher than in the case of operating at conventional MPPT

for all WTGs. In order to achieve this goal, different optimal
operation strategies have been proposed to determine the
optimal set-point for each WTG by tuning its pitch angle and
tip speed ratio [12]–[17].

The authors in [12] have developed a control algorithm for
WTGs to increase the overall efficiency of a row of WTGs.
In [12], a recursive model has been proposed, which is depen-
dent on thrust coefficients ofWTGs, and a centralized control
of the WF determines the same set-point for all WTGs.
Similar to the conventional MPPT, the same set-points for all
WTGs might not ensure the maximum output power of the
WF system. The authors in [13] have presented a technical
report for the TOPFARM project. This report showed optimal
topology design and control of WF system to enhance the
overall efficiency of the WF system by adjusting the pitch
angle as well as the tip speed ratio. However, the detailed
model and result analysis were not presented [14].

The detailed wake model and optimization model have
been presented using different optimization methods, such
as genetic algorithm [14]–[16] and Adam optimization [17].
The authors in [14] and [15] have developed an optimiza-
tion model using genetic algorithm to determine the optimal
operation point (i.e. tip speed ratio and pitch angle) of each
WTG for maximizing the overallWF production. The authors
in [17] have proposed a wake steering control algorithm.
This algorithm aims to maximize the output power of a WF
through yaw misalignment that deflects wakes away from
downstream WTGs.

However, these studies [14]–[17] have focused on devel-
oping a centralized management system. This means that a
centralized energy management system (EMS) gathers all
information in the WF system, carries out optimization, and
sends optimal set-point to each WTG. Therefore, this EMS
requires a two-way communication system [18]. In manyWF
systems with a large number of WTGs, the communication
network for such WF systems will be very complex and
it will significantly increase computational burden on the
centralized EMS [19]. Moreover, according to [20], [21],
utilizing a centralized EMS in a large area, such as WF sys-
tems, results in difficulties in management and maintenance
of the system. Additionally, these studies [14]–[17] have not
considered grid-code constraints from transmission system
operators (TSOs). This can lead to several negative impacts
on the security and stability of the power system [22], [23].
Therefore, an operation strategy for the whole WF system is
required to ensure that the WF system always complies with
all the different requirements from TSO.

In order to address the aforementioned issues, this
study develops a multi-agent deep reinforcement learning
(MADRL)-based operation strategy to enhance the overall
efficiency of the WF system. Instead of using a central-
ized EMS, we develop a multi-agent system that allows
the close WTGs (i.e. WTGs in a cluster) to interact with
each other and select actions by themselves. This helps to
reduce the complexity in the communication network as well
as to reduce the computation burden in the WF system.
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Furthermore, the cooperative model-based operation of
WTGs is also proposed to increase the total output power
of the WF system by minimizing the wake effect. The WTG
agents are learnable units and they interact with each other
in the same environment as an extensive-form game to learn
how to select an optimal action in the long run. Each WTG
agent uses deep reinforcement learning (DRL) to update
the environment information. Therefore, after the learning
process, the WTG agents are able to determine their optimal
set-points to maximize the output power of theWF. Addition-
ally, an operational strategy for the entire WF system is also
proposed, which helps theWF system to comply with various
grid-code constraints from TSO such as the constraints of
limited power and reserve power. Finally, in order to show the
effectiveness of the proposed method, a comparison between
the proposed method and the conventional MPPT approach
is also presented for different cases. The major contributions
of this study are listed as follows.

• A MADRL-based operation strategy is developed to
enhance the overall efficiency of aWF by reducing wake
effects. Using deep neural networks help to determine
the optimal set-points with uncertainty of input informa-
tion without re-optimization.

• A decentralized management system is developed to
reduce both the complexity of the communication net-
work and the computation burden on the system.

• An operational strategy for the entire WF system is also
proposed, which helps the WF system to comply with
various grid-code constraints from TSO, including the
limited power and reserve power constraints.

II. SYSTEM MODEL
A. CONFIGURATION OF WIND FARM SYSTEM
In this study, a WF system including 15 WTGs is used
to evaluate the proposed operation strategy. The configura-
tion of the WF system is shown in Figure 1. WTGs are
arranged in 5 clusters and the set-point of the WTGs are
determined in a decentralized manner. WTGs in a cluster
can share information about their rewards with each other.
After a training process, each WTG agent is able to select the
optimal decisions by itself to reduce the wake effect in the
WF system and thereby maximizing the output power of the
WF system. In normal operationmode, theWF system always
generates maximum power and injects it into the power sys-
tem. However, TSO may impose several constraints for the
WF system in some specific conditions, which are so-called
grid-code constraints. During these conditions, the required
output power of the WF system and the set-point of WTGs
will be changed to satisfy these constraints from TSO. In the
next section, different grid-code constraints from TSOwill be
presented in detail.

B. INTRODUCTION TO GRID-CODE CONSTRAINTS
In this section, several grid-constraints are introduced in the
operation of theWF system. These constraints are imposed by

FIGURE 1. Configuration of wind farm system and communication among
agents in a cluster.

FIGURE 2. Grid-code constraints for the operation of wind farm.

TSO to ensure that the operation of the WF system does not
affect the stability of the power system as well as to support
the power system in emergency cases [22]–[24]. There are
two grid-code constraints that are often considered in the
operation of WF systems, including the requirements for
limited power and reserve power [23], [24]. Firstly, the output
power of the WF system is bounded by a maximum output
power (i.e. the limited power). This means if the total output
power of WF is less than the limited power, the WF system is
set to generate maximum output power to the power system,
as shown in Figure 2 from t1 to t1’. Conversely, if the total
output power of WF is greater than the limited power, the set-
point of WTGs in the WF system need to reschedule to
ensure that the output power of WF equal to the limit power,
as shown in Figure 2 from t1’ to t2. Secondly, if the WF
system operates in reserve power mode, the set-point of the
WTGs also need to reschedule to maintain a certain reserve
capacity in the WF system, as shown in Figure 2 from t2 to
t3. By using the proposed operation strategy, the WF system
can adjust its output power to satisfy various requirements
from TSO.

C. COOPERATIVE MADRL MODEL-BASED
OPERATION OF WTGs
1) INTRODUCTION TO MULTI-AGENT DEEP
REINFORCEMENT LEARNING
MADRL is a system of agents interacting with each other
in a common environment. Each agent performs an action
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in every time step along with other agents to complete a
given task. Generally, these agents are learnable units that
use a particular learning method (i.e. RL or deep RL). Each
agent can operate independently to maximize its reward (i.e.
competitive model), or agents can also work together to learn
a policy for maximizing a common reward in the long run
(i.e. cooperative model) by interacting within the same envi-
ronment [25]–[27].

In a WF system, the major task for the WTGs is to maxi-
mize the output power of the entire WF system. Therefore,
the reward of a single agent is not much important, WTG
agents need to work cooperatively to generate the maximum
output power of the WF system. Initially, the upstreamWTG
agent performs an action to determine its operation point, then
the next WTG agents will alternately perform their actions.
After that, a common reward will be calculated and this
information is used to update the knowledge of all agents to
maximize the common reward in the long run. This process
is an extensive-form game among agents with a common
goal [27], as shown in Figure 3.

FIGURE 3. Cooperative model-based operation of WTG agents.

Therefore, this study develops a cooperative model-based
operation ofWTG to determine the set-points ofWTGs using
multi-agent deep reinforcement learning in a decentralized
way. This allows the WTG agents to cooperate in the same
environment to maximize the total output power of the WF
system. A reward function is designed in theWF system and a
detailed operation strategy for all WTG agents also presented
in details in the following section.

2) REWARD FUNCTION AND COOPERATIVE MADRL-BASED
OPERATION STRATEGY
a: REWARD FUNCTION
Algorithm 1 presents a reward function for the WTG agents
in a time step. Initial states s of WTG agents are taken as
input data. Each agent then alternately selects and carries
out their actions. After performing this process, each agent
receives a reward and observes a new sate s′. These agents’

Algorithm 1 Reward Function in a Learning Step
input: s = [v, β, λ]
for agent = 1:M do:

measure output power (r) in current state
select action a using ε-greedy policy
carry out action a
update value of (β, λ)
measure output power (r ′) with (β ′, λ′)
observe next state s′ = [v′, β ′, λ′] and Rm = r’-r
update state s = s′

end

Calculate a common reward for all agents: R =
M∑
m=1

Rm

reward information is used to calculate the common reward
and update the knowledge of agents (i.e. Q-tables or DNNs).

b: COOPERATIVE MADRL-BASED MODEL
According to the discussion in the previous section, in order
to maximize the capacity of the entire WF system, WTG
agents need to cooperate in an extensive-form game in a
decentralized way. In this study, double deep Q-learning is
used for each WTG agent, which helps the agents are able
to learn from its experience and improve their actions with
experience replay. The detailed learning process is presented
in Algorithm 2. Firstly, replay memory size, mini-batch size,
and the weights of DNNs for each agent are initialized.
Each WTG agent determines the current state information
including wind speed (v), pitch angle (β), and tip speed ratio
(λ), then performs an action and observes a reward and new
state. All transitions (sk , ak , rk , sk+1) are stored in the replay
memory for experience replay. In each training step, a mini-
batch is randomly drawn from the replay memory and is
used to train the Q-network to minimize the mean squared
error. The weights of target-network are replaced with the
parameters of Q-network after each constant time steps C.
After completing the learning process with a large number of
episodes,WTG agents are able to select optimal actions using
its DNN and maximize the common reward of the whole
system (i.e. maximum total output of WF system).

D. DETAILED OPERATION STRATEGY FOR WF
Figure 4 shows the proposed operation strategy for WF in
detail. Initially, input data such as wind speed, initial value
of pitch angle, tip speed ratio, and so on are gathered at each
WTG. This information is used for WTG agents during the
training process. In each training step, an upstream agent (i.e.
WTG1) determines an initial state based on the input data and
selects an action using epsilon-greedy policy and DNNs. The
agent then carries out the selected action, obtain a reward,
and a new state. Similarly, the same process is performed by
all agents (WTG2 to WTGn) and then a common reward is
calculated, as shown in Algorithm 1. This common reward
is used to update the weights of DNNs of all WTGs in
each training step. The WTG agents cooperate to maximize
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Algorithm 2 Cooperative MADRL-Based Operation
Strategy
initialize replay memory D and mini-batch size
initialize Q-network and target-network with random
weights (θ, θ ′)
for episode = 1, E do:

for k = 1,K do:
initialize initial state sm = [vm, βm, λm]
for m = 1,M do:

select an action at sm,k using ε-greedy policy
carry out am,k , achieve rm,k and next state
sm,k+1
update state sm = sm,k+1

end

store transition
(
Sm,k , am,k ,

M∑
m=1

rm,k , Sm,k+1

)
in D

sample random mini-batch of transitions
(sj, aj, rj, sj+1) from D
estimate target yj:

yj =


rj if terminal state
rj+γQ

(
sj+1, argmaxa(Q(sj+1, a; θ )); θ

′
)

otherwise

update θ using gradient descent to minimize loss
(yj − Q(sj, aj; θ ))2

reset θ ′ = θ after C steps
end

end

the common reward for the operation of WF during a large
number of episodes, as shown in Algorithm 2 in detail.

After completing the training process, each WTG agent
can determine its optimal set-point using DNNs with optimal
parameters. During the operation time, WTG agents also
update the information about its operation mode from TSO
(i.e. grid-code constraints). If the WF system is operated in
normal mode, all WTGs generate maximum output power,
which is determined by the training process. By contrast,
if there is any grid-code constraint from TSO, the set-point
of WTGs are determined using equations (18) and (20) for
limited power and reserve power modes, respectively.

E. MATHEMATICAL MODEL
Firstly, a brief background of RL including Q-learning and
deep Q learning is presented in this section. Secondly,
the mathematical model for WTGs and theWF system is also
presented in detail considering wake effect in the operation of
theWF system. Finally, the set-point ofWTGs are determined
to fulfill the power requirement from TSO in the different
operation modes of the WF system.

1) BACKGROUND OF REINFORCEMENT LEARNING
Recently, reinforcement learning (RL) has been widely
applied in power system and smart girds [28], [29]. A RL
agent is modeled to carry out sequential decision-making by
interacting with a particular environment. The environment

FIGURE 4. Proposed operation strategy for the wind farm system.

is typically stated in the form of a Markov decision process
(MDP), which is defined by a tuple (S, A, Pa(s,s’), Ra(s,s’),
γ ), where S is a set of agent states, A is a set of actions of the
agent, Pa(s,s’) is transition probability from s ∈ S to s′ ∈ S
under action a ∈ A, R is immediate reward by transition s to
s′ with action a, and γ ∈ [0, 1] is discount factor for trade-off
between immediate rewards and future rewards. The purpose
of solving the MDP is to find a policy π that maps the state
space S to a distribution over the action space A to maximize
the discounted accumulated reward.

A popular value-based RL method, so-called Q-learning
has been widely applied for optimal operation and control
of smart grids or microgrids. This method is to determine
an estimate of the Q-value function Q(s,a). Whenever the
agent carries out a transition (s, a, s’, r), the Q-value for the
state-action pair (s,a) is updated, as expressed in equation (1).

Q (s, a)← Q (s, a)+ α.
[
r + γ.max

a′
Q
(
s′, a′

)
− Q (s, a)

]
s← s′ (1)

In Q-learning, all Q-values for state-action pairs are stored
in a Q-table, which results in a significant increase in size
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of Q-table to solve problems with a huge state space or
action space [30]–[32]. To address this issue, deep Q-learning
(DQL) have been introduced using deep neural networks
(DNNs) as function approximators. These networks are used
to map input state information to Q-values for all state-action
pairs [31]–[33]. In DQL, the weights of DNNs are trained
after each step using a mini-batch with size J that is randomly
drawn from a replay memory. The objective of this training
process is to minimize loss function L(θi), as given in equa-
tion (2).

L (θi) =
1
J

J∑
j=1

(
yj − Q

(
sj, aj; θi

))2 (2)

yj =

{
rj if dj = True
rj + γ ·maxa′ Q

(
s′, a′; θi−1

)
otherwise

(3)

It can be observed from equations (2) and (3) that target yj
and Q(s,a) are estimated separately by target-network (θi−1)
and Q-network (θi). The weights of the target-network is
replaced by the weights of Q-network every C iterations.

2) WIND TURBINE AND WAKE EFFECT
In this section, the model for WTG and wake effect in the
operation ofWFwill be presented in detail. The output power
of each WTG is determined by equation (4).

Pn,t=


0 vn,t<vcut−in or vn,t>vcut−out
1
2
Cp (β, λ) ρπR2v3n,t vcut−in≤vn,t<vrate

Praten vrate ≤ vn,t ≤ vcut−out
∀ n ∈ N , t ∈ T (4)

It can be seen from equation (4) that the output power of
each WTG Pn,t mainly depends on wind speed vn,t , and the
power coefficient CP. In order to increase its output power,
each WTG needs to adjust its operation point to maximize
the value ofCP. The value ofCP with different values of pitch
angle (β), and tip speed ratio (λ) is shown in Figure 5 for the
NREL 5MW referenceWTG [34]. It can be observed that the
maximum value ofCP = 0.487 at β = 0, and λ = 7.6.WTGs
are generally operated at MPPT with the optimal value of CP
and the total output power of theWF system is determined by
equation (5).

Pmax
WF,t =

N∑
n=1

PMPPTn,t ∀n ∈ N , t ∈ T (5)

This operation strategy helps to capturemaximumpower in
WF systems with a far distance among WTGs and therefore,
the operation of WTGs do not affect each other. However,
due to limited availability of land, WTGs are placed closer
to reduce the size of the WF system. Therefore, the operation
of downstreamWTGs are highly affected by the operation of
upstream WTGs due to wake effect.

The wake effect results in a decrease in wind speed at the
downstreamWTGs. To analyze the effects of wake effect, two

FIGURE 5. Power coefficient (CP) of the NREL 5 MW WTG with different
values of pitch angle (β), and tip speed ratio (λ).

WTGs are assumed to be placed at a distance d and are oper-
ated at MPPT. This means that WTGs are adjusted to maxi-
mize their output power, as shown in equations (6) and (7).

P1 =
1
2
Cmax
p ρπR2v30 (6)

Cmax
p = Cp (β = 0, λ = 0.76) = 0.487 (7)

v2 = v0 ·

(
1
2
+

1
2

√
1− 2CT (β1, λ1) ·

(
D0

Dwd

))
(8)

Dwd = D0 + 2k · d (9)

k =

{
0.075 onshore wind farm
0.05 offshore wind farm

(10)

The wind speed at WTG2 is calculated using equations
(8)-(10) [14], [34] considering wake effect, where D0 is the
diameter of the rotor, d is the distance between two WTGs,
k is the entrainment constant, k = 0.075 for onshore WF
and k = 0.05 for offshore WF, CT (β, λ) is thrust coefficient.
In the operation of WF, the value of CT directly affects the
velocity at the downstream WTGs, as shown in equation (8).
The relationship between CT , β, and λ is shown in detail
in Figure 6 [34]. It can be observed that the decrease in wind
speed at the downstreamWTG is proportional to the value of
CT . Therefore, in order to reduce the wind speed deficit, it is
necessary to reduce the value of CT by adjusting the value of
β and λ.

P2 =
1
2
Cmax
p ρπR2v32 (11)

PWTGsoutput =
1
2
Cmax
p ρπR2

(
v30 + v

3
2

)
(12)

The output power of the downstreamWTG and total output
power of WTGs are presented in equations (11) and (12)
respectively. It can be seen that the operation of each WTGs
at MPPT cannot guarantee the maximum output power of the
WF system. This is because there does not exist a pair of (β,
λ) to maximize the value ofCP and minimize the value ofCT .
Therefore, it is possible to find an optimal pair of (β, λ) for
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FIGURE 6. Thrust coefficient (CT) of the NREL 5 MW WTG with different
values of pitch angle (β), and tip speed ratio (λ).

each WTG to maximize the output power of the whole WF
system, and these set-points may differ from MPPT. In this
paper, a cooperative model will be developed to find these
values using MADRL-based operation strategy. Objective
function and different operation constraints are expressed in
equations (13)-(15).

Max

{
PWFt =

N∑
n=1

PWTGn,t

}
(13)

βmin
n ≤ βn,t ≤ β

max
n ∀n ∈ N , t ∈ T (14)

λmin
n ≤ λn,t ≤ λ

max
n ∀n ∈ N , t ∈ T (15)

3) SET-POINT OF WTGs WITH GRID-CODE CONSTRAINTS
In normal operation mode, WF is required to generate the
maximum output power and injects into the power sys-
tem. However, the required power from TSO might change
depending on the operation conditions of the power system,
as discussed in section II. B. There are two common grid-code
constraints for the operation of WF system, including limited
power and reserve power modes [22]–[24]. In limited power
mode, the required power is determined by equation (16).
It can be seen that the amount of output power of aWF system
will always be bounded by a constant value of limited power.
Besides, if WF operates in reserve power mode, the amount
of output power is determined based on the required reserve
capacity, as given in equation (17).

Dt =


N∑
n=1

Pmax
n,t if

N∑
n=1

Pmax
n,t < Plimit

t

Plimit
t otherwise

∀t ∈ T (16)

Dt =
(
1− presert

)
.

N∑
n=1

Pmax
n,t ∀t ∈ T (17)

After determining the required output power for the WF
system, the set-point of WTGs are also determined to fulfill

the required power from TSO in different operation modes.
In limited power mode, if the amount of power limit is
greater than the maximum output power of the WF sys-
tem, the set-point of WTGs is set to generate the maximum
power. By contrast, if the limit power output is less than
the maximum output power of WF, the set-point of WTGs
need to reduce to balance the required power from TSO and
the amount of power reduction for each WTG is calculated
based on the amount of mismatch power and the number
of WTGs, as shown in equations (18) and (19). In reserve
power mode, the set-point of WTGs are determined simply
by maintaining the same proportion of reserve capacity for
each WTGs, as given in equation (20).

Pn,t =


Pmax
n,t if

N∑
n=1

Pmax
n,t ≤ P

limit
t

Pmax
n,t −

DPt
NWTGs

otherwise

∀n∈N , t ∈T

(18)

DPt =

(
N∑
n=1

Pmax
n,t − P

limit
t

)
∀t ∈ T (19)

Pn,t =Pmax
n,t ·

(
1− presert

)
∀n ∈ N , t ∈ T (20)

III. NUMERICAL RESULTS
In this section, the training process is presented in detail
to determine the optimal set-point of WTGs in a decentral-
ized manner. Moreover, several grid-code constraints also are
applied to the operation of the WF system.

A. INPUT DATA
In this study, a testWF system consisting of 15WTGs divided
into 5 clusters is used to evaluate the proposed method,
as shown in Figure 1. The detailed parameters for a WTG
are as follows [34].

• Rated power: 5 MW
• Rotor diameter (D0): 63m
• Rho (ρ): 1.2231kg/m3

• Distance between two consecutive WTGs (d): 5D0 =

315m
• vcut−in = 3m/s and vcut−out = 25m/s

B. TRAINING PROCESS AND OPTIMAL RESULTS
The MADRL-based model was trained with 10000 episodes.
The learning rate α = 0.1, discount factor γ = 0.999. The
initial value of pich angle β and tip speed ratio λ is 10.0 and
5.0, respectively. The wind speed at the upstream WTG is
assumed at 12m/s.

The value of epsilon during the training process is shown
in Figure 7. This value was reduced by an epsilon decay
to ensure the trade-off between exploitation and exploration
for each agent during the training process. At the end of
the training process, the value of epsilon decreased to the
minimum value and agents mainly select an action based on
its knowledge about the environment (i.e. DNNs with optimal
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FIGURE 7. Value of epsilon during the training process.

parameters). In order to guarantee the acceptable accuracy,
WTGs might be trained during few hours. However, this
training process is off-line training based on different input
data. After training, WTGs can use the optimal DNNs to
estimate the Q-values of possible actions, and then determine
the optimal set-point without re-optimization.

Additionally, the total reward for each agent is shown
in Figure 8. It can be noticed that the total reward (

∑
ri =

r1 + r2 + r3) converges to the optimal value. This is because
agents cooperate to maximize the total reward in the long run.
At the beginning of the training process, agents often choose
randomly actions to explore the environment by setting a high
value of epsilon. After having enough information about the
environment, agents mainly choose actions using their DNN
to increase the total reward during the training process.

FIGURE 8. The total reward and single reward of each WTG agent.

After the training process, agents can use DNNs to select
optimal actions to increase the total output power of the WF
system. In this section, an example is presented to show how
theWTG agents in a cluster select their actions in a given state
using DNN with optimal parameters. The wind speed at the
upstream WTG is 12m/s in this test case. The initial state of
agent1 (WTG1) is [v0, β, λ]= [12.0, 10.0, 5.0]. The Q-values
for all possible state-action pairs are shown in Figure 9. The
best action in this state is the action assigned to the highest Q
value, i.e. decrease the value of β and increase the value of
λ. After performing a series of actions, it is easy to find the
optimal operation point ofWTG1 at βopt = 2 and λopt = 5.2.
Similar to the agent1, Q-values for all possible state-action

pairs of agent2 are shown in Figure 10. At the initial state [v0,

FIGURE 9. Q-values at the initial state [12.0, 10.0, 5.0] of agent 1.

FIGURE 10. Q-values at the initial state [11.4, 10.0, 5.0] of agent 2.

β, λ] = [11.4, 10.0, 5.0], the best action is to decrease the
value of β and increase the value of λ. Finally, the optimal
operation point of WTG2 is determined at βopt = 0 and
λopt = 6.9. In this test case, WTG3 is the last WTG in a
cluster, so thisWTG is set atMPPT (βopt = 0 and λopt = 7.6)
tomaximize its output considering the decrease in wind speed
by WTG1 and WTG2.

C. COMPARION WITH THE CONVENTIONAL METHOD
In this section, in order to show the effectiveness of the
proposed method, the results using the proposed method are
compared to the results using the conventional MPPTmethod
with different scenarios.

1) OUTPUT POWER OF A CLUSTER WITH
DIFFERENT WIND SPEED
To evaluate the proposed method, wind speed at upstream
WTG is varied from vcut−in to vcut−out . The distance between
two consecutive WTGs is 5D0. Figure 11 shows the total
output power of a cluster with three WTGs by using both
the proposed method and conventional method (i.e. MPPT).
It is easy to see that if v0 < 3m/s, WTGs do not generate
power because the wind speed is less than vcut−in and if
v ≥ 14m/s, all WTGs are set to generate the rated output
power. If v ∈ [3, 14), there is a difference in the amount of
output power using the proposedmethod and the conventional
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FIGURE 11. Output power of a cluster with different wind speed at
upstream WTG.

FIGURE 12. Increment of output power using the proposed method.

TABLE 1. Comparison between the proposed method and the
conventional MPPT method with different WF layout.

MPPT method. The difference output power between the two
methods is shown in Figure 12. It can be noticed that when
the wind speed at upstream WTGs increases from 3m/s to
14m/s, the proposed method can generate more power than
the conventional method. In this study, we focused mainly on
developing a MADRL-based optimization model for the WF
system to improve the overall efficiency of the entire system.
Therefore, a simple configuration of a cluster with a row
of three WTGs is considered to test the performance of the
proposed method, and the output power increases by 2.58%,
as shown in Table 1. In the following section, the parameters
that affect the amount of increasing power will be analyzed
in detail.

2) OUTPUT POWER OF A CLUSTER WITH DIFFERENT
DISTANCE AMONG WTGs
In this section, the output power of a cluster in theWF system
will be analyzed with different distance between WTGs and
constant wind speed at upstream WTG, i.e. v0 = 12m/s.
Table 1 shows the total output power of a cluster with different

distances between two consecutive WTGs (i.e. 3D0, 5D0,
7D0) using the conventional method (i.e. MPPT) and the
proposed method. It can be noticed that the amount of output
power increases when the distance between the two WTGs
increases. This is because as this distance increases, the wake
effect decreases significantly, and therefore, the wind speed
at downstreamWTGs is not greatly affected by the operation
point of the upstreamWTGs. Additionally, the increase in the
cluster’s output power is 4.11%, 2.58%, 1.99% with different
distances 3D0, 5D0, and 7D0, respectively. This indicates that
the wake effect might be negligible if the distance between
the WTGs is far. Therefore, the proposed method is used
effectively in WFs with short distances between WTGs.

3) ANNUAL ENERGY PRODUCTION OF A CLUSTER WITH
DIFFERENT METHODS
In order to show the effectiveness of the proposed method
more clearly, a comparison of the annual energy produc-
tion (AEP) between the proposed method and the conven-
tional MPPT method is presented in this section. Wind speed
is generally considered to have a certain probability distri-
bution function. In this study, we assume that wind speed
followsWeibull Distribution [35], [36], as shown in Figure 13
with detailed parameters given in Table 2, similar to [36]. The
wind speed data for a year is generated using the wind speed
distribution model in Figure 13, and this information is used
to calculate the AEP. The AEP in a cluster is shown in Table 2
using both the proposed method and the conventional MPPT.
It can be seen that using the proposed method, the AEP can
increase by 989.1MWh.

FIGURE 13. Wind speed distribution model.

TABLE 2. Parameters of Weibull distribution model and AEP.

D. HANDLING VARIOUS GRID-CODE
CONSTRAINS FROM TSO
Generally, WTGs are set to maximize the total output power
of the WF system, which might affect the stability of the
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TABLE 3. Input data of maximum output power in WF.

FIGURE 14. Handling different grid-code constraints from TSO in WF.

power system. Therefore, TSO imposes several grid-code
constraints for the operation of WF. In order to evaluate the
proposed method for handling the grid-code constraints from
TSO, the information about the maximum output power of
WTGs in the WF system is assumed and tabulated in Table 3.

As stated in part II. B, there are two grid-code constraints
for the operation of WF, named limited power and reserve
power modes. In this study, we assume that from t1 to t2,
WF is operated in limited power mode with limited power at
30MW, and from t2 to t3, WF is operated in reserve power
mode with 10% for reserve capacity. The output power of
WF is shown in Figure 14. At t1, the output power of WF is
reduced by 6.9MW to ensure that the output power is always
less than or equal to limited power (30MW). This power
reduction acts as reserve power in WF. At t2, WF should
maintain 10% of the output power for reserve capacity, which
is 3.69MW. At t3, WF operates in normal mode, therefore,
the output power increases to the maximum output power at
36.9MW.

The set-point of WTGs in limited power mode are deter-
mined by equations (18) and (19). Detailed information about
the set-point ofWTGs is presented in Table 4 in limited power
mode from t1 to t2 and the total output power ofWF is 30MW.
In reserve power mode, the set-point of WTGs is determined
by equation (20). Detail information about the set-point of
WTGs are tabulated in Table 5 in reserve power mode from
t2 to t3 and the output power of WF is 33.21MW.

IV. CONCLUSION
In this study, a MADRL-based operation strategy has been
developed to enhance the overall efficiency of WF system

TABLE 4. Detailed set-point of WTGs in limited power mode.

TABLE 5. Detailed set-point of WTGs in reserve power mode.

by reducing wake effects. Additionally, a decentralized man-
agement system is developed to reduce both the complexity
of the communication network and the computation burden
on the system. All WTGs in the same cluster interact with
each other as an extensive-form game based on a coopera-
tive model to achieve a common goal (i.e. maximum output
power of WF). Each WTG agent improves its actions using
a DNN and the weights of DNN are updated after every
learning step. After the training process, the WTGs agents
are able to determine the optimal set-points with different
input information to minimize the wake effect, and thereby
maximizing the output power of WF. Simulation results have
shown that the proposed method can increase the output
power of the tested WF system in the range of 1.99% to
4.11%, under different layouts, in comparison to the conven-
tional MPPT approach. Additionally, an operational strategy
has been proposed for fulfilling the grid-code constraints
from TSO, including the limited power and reserve power
constraints.
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