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ABSTRACT Bag-of-Visual-Words (BoVW) is still a useful image classification model when there is not
enough data to use Deep Learning. In BoVW model, the practice of reducing the reconstruction errors of
local features can improve the classification accuracy owing to the decrease of information loss. Many
reconstruction-based coding methods are proposed to learn a visual dictionary and encode local features
via minimizing the reconstruction errors of local features with constraints. Besides this, the accuracy can
also be improved by learning the category-specific dictionaries and then encoding features based on these
dictionaries. By considering the two practices together, we propose a simple category-specific dictionary
learning method tailored for reconstruction-based feature coding. Our method can be used as a universal
one to improve the classification accuracies of many reconstruction-based coding methods, which is the
highlight of our method. Concretely, a universal dictionary is learned by employing a reconstruction-based
coding method and then refined for each category to obtain the category-specific dictionary of this category.
When encoding a feature by a category-specific dictionary, the visual words for encoding it are decided in
advance by the indices, which correspond to the non-zero elements of its coding vector obtained with the
universal dictionary. The effectiveness of our method is validated by observing whether there is an accuracy
improvement after applying our method. Our results on Scene-15, Caltech-101, and UIUC-Sports datasets
show that the accuracies of four representative coding methods are improved by about 0.3% to 2.7%, which
experimentally demonstrates the universality and effectiveness of our method.

INDEX TERMS Image classification, bag-of-visual-words, dictionary learning, reconstruction, category-
specific.

I. INTRODUCTION
In decades, many methods for image classification have
been presented in the field of computer vision. The chal-
lenges such as the change in viewpoint, illumination, partial
occlusion, clutter, inter and intra-category visual diversity,
make image classification a difficult task. Until now, there
are two representative image classification models, i.e.,
Bag-of-Visual-Words (BoVW) and convolutional neural net-
work (CNN), which have achieved many encouraging results
in the past ten years.

BoVW model divides the process of converting an image
to a vector into five stages [1]. In the beginning, image
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patches are extracted from training images in a dense or
random manner. Then, image patches are described as fea-
ture descriptors (local features) via statistical analysis over
pixels of image patches. Scale-invariant feature transform
(SIFT) [2] is widely used to describe image patches as
128-dimensional vectors. Next, a visual dictionary is learned
using local features from training images by a learning
algorithm such as K -means [3] or sparse coding [4]. After
this, local features are encoded as coding vectors by the
learned dictionary. In the end, all coding vectors are pooled
together to form an image representation vector by maximum
pooling or average pooling [5]. CNN [6] is a deep neural
network of exploiting image space structure. It consists of
convolutional layers, pooling layers, non-linear activations,
and fully connected layers. Convolutional layers capture the
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existence of various patterns, which are detected by different
convolutional kernels. Pooling layers preserve the maximum
saliencies in local regions by downsampling the convolu-
tional layers. Fully connected layers are generally appended
at the end, which simply represents a multi-layer perceptron.
Non-linear activation functions are necessary to learn a com-
plex function. A predominant difference between BoVW and
CNN is that BoVW works with hand-crafted features such
as SIFT and Histogram of Oriented Gradient (HOG), while
CNN can extract automatically image features after training
on a significant amount of data.

In recent years, CNN has achieved many superior results
on some challenging image datasets such as ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [7].
However, when there is not enough training data, CNN shows
a poor performance due to over-fitting [8]. To solve this,
an effective method is to modify a CNN already trained on
another large dataset, known as transfer learning [9]. The first
layers of a pre-learned CNN are used as a mid-level feature
extractor, and the last layers are modified to fit a certain target
task. When training the modified CNN, only the weights of
the modified layers are updated, while the weights of other
layers are fixed. Some methods [10]–[12] based on transfer
learning have reported obvious improvement over BoVWand
achieved significant results in medical image classification.

Despite the significant effectiveness of transfer learning,
its success depends on a pre-learned CNN. A pre-learned
CNN requires a huge amount of data and time for training.
It is worth noting that, the choice of the source dataset used
for pre-learning a CNN and the number of the images in the
target dataset influence the classification result [13]. If there
is a large visual difference between the source dataset and the
target dataset, negative transfer is likely to happen, resulting
in poor performance. In addition, the number of the param-
eters of CNN is large for some popular CNNs, leading to
considerable memory space consumption, such as 520MB
for VGG-16 [14]. At the same time, BoVW model is a plug-
n-playmethod that can be usedwithout any prior initialization
or very time-consuming training [15]. Hence, BoVW model
might work well when dealing with some classification tasks
that only provide a small amount of training data. Moreover,
BoVW model has evolved in an understandable way in the
past 15 years or so. By analyzing the target classification
task, it is feasible to make use of human knowledge obtained
to improve BoVW model from the aspects of feature extrac-
tion, feature description, dictionary learning, feature coding,
and feature pooling. In view of this, for some simple tasks,
BoVW model is probably capable of attaining satisfactory
results. Besides, BoVW model can also be used jointly with
CNN to acquire higher classification accuracies especially
when training data are lacking, as done in a very recent
research [16]. In consequence, we advocate the conventional
yet effective BoVW model in this article.

In BoVW model, the practice of reducing the recon-
struction errors of local features can improve classification
accuracy owing to the decrease of information loss.

To this end, reconstruction-based coding methods are pro-
posed to reconstruct local features via resolving a least-square
optimization problem with constraints. Besides, at the train-
ing stage, the reconstruction-based coding method also learns
a visual dictionary using local features extracted from training
images. Nowadays, a number of reconstruction-based coding
methods have been proposed, such as sparse coding [4],
locality-constraint linear coding (LLC) [17], laplacian sparse
coding (LSC) [18] and so on. The main difference among
various reconstruction-based methods lies in the constraint.
Except for this practice, another effective way of improving
classification accuracy is to learn the category-specific visual
dictionaries and then encoding features by the learned dic-
tionaries. Various category-specific dictionary learningmeth-
ods [19]–[22] have been presented in the last decade.

By considering the above two practices together, we pro-
pose a simple category-specific dictionary learning method
tailored for reconstruction-based feature coding in this article.
We aim to reduce the reconstruction errors of local fea-
tures from positive samples and increase the errors of fea-
tures from negative samples via encoding based on category-
specific dictionaries. Specifically, a universal dictionary is
learned by employing a reconstruction-based coding method
and then refined for each category to obtain the category-
specific dictionary of this category. For each category, its
category-specific dictionary is learned only using the local
features of this category. When encoding a local feature by
a category-specific dictionary, the visual words for encoding
it are decided in advance by the indices, which correspond
to the non-zero elements of its coding vector obtained with
the universal dictionary. Our method can be used as a uni-
versal one to improve the classification accuracies of many
reconstruction-based coding methods theoretically, which is
the highlight of our method. In this article, we apply our
method on four representative coding methods, i.e., sparse
coding, approximated LLC (aLLC) [17], LLC, and LSC. The
effectiveness of ourmethod is validated by observingwhether
there is an accuracy improvement after applying our method.
We also investigate the computation time spent by ourmethod
to evaluate the practicability of our method. Besides, our
method is carefully compared to a common method. By com-
parison, we observe that they have different performance
characteristics according to the mixability of spatial distri-
butions even if they follow very similar ideas of learning
category-specific dictionaries, which is not yet illustrated
in the existing works to our knowledge. The experiments
are conducted on three small datasets, i.e., Scene-15 [3],
Caltech-101 [23] and UIUC-Sports [24]. Our results show
that the classification accuracies of the four coding methods
are improved by about 0.3% to 2.7%, and the computation
time spent by our method is acceptable. This phenomenon
implies that our method is capable of improving the clas-
sification accuracies of many reconstruction-based coding
methods with added yet acceptable computation time.

The remainder of this article is organized as follows:
the proceeding section is about the related works.
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Section III illustrates our work in detail. Experimental eval-
uation and analysis are reported in Section IV, and the
conclusion is drawn in Section V.

II. RELATED WORKS
Many works have focused on dictionary learning in the past
ten years. An early method calculates the clustering centers
using local features from training images by K -means and
takes each clustering center as a visual word [3]. To reduce the
quantization errors of local features, the reconstruction-based
coding method is proposed to learn a visual dictionary
using local features from training images via resolving a
least-square optimization problem with constraints. Different
constraints result in different dictionaries. Sparse coding adds
a l1-norm constraint on the coding vectors of local features to
keep their sparsity.Wang et. al [17] added a locality constraint
to project the local features into their local coordinate sys-
tems. Gao et. al [18] required spatially close and similar local
features to have similar coding vectors. An extended work
[25] to [18] considered the similarity among local regions
instead of local features. Bengio et. al [26] encouraged that
local features from the images of the same category are
encoded with fixed visual words, by imposing a mixed-norm
regularization.

Some works are devoted to learning category-specific
dictionaries. In [19], the authors used Gaussian Mixture
Model (GMM) to learn a universal dictionary and adapted
it for each category to generate the category-specific dictio-
nary of this category. Kong et al. [20] proposed a category-
specific dictionary learning method named DL-COPAR,
which aims at separating commonality and particularity.
In their method, local features are encoded with the union
of a universal dictionary and all category-specific dictio-
naries. In [21], the authors learned a universal dictionary
and multiple category-specific dictionaries jointly by adding
a discriminative constraint according to Fisher discrimina-
tion criterion. Gao et al. [22] also proposed to learn a uni-
versal dictionary and multiple category-specific dictionaries
for fine-grained classification, by imposing cross-dictionary
incoherent constraint and self-dictionary incoherent terms.
Yang and Xiong [27] employed K -means and K -SVD to
learn a category-specific dictionary for each category using
the local features of this category. Based on the learned
category-specific dictionaries, the authors proposed a kind of
feature named category-sensitive saliency feature and used it
to obtain image representation vectors. This method achieved
comparable or better results in comparison to many advanced
BoVW methods.

In order to preserve the relationship among neighboring
local features, [28] and [29] proposed visual phrase and visual
local graph, respectively. Accordingly, visual phrase dictio-
nary and visual graph dictionary are learned in [28] and [29],
respectively. In [5] and [30], the authors combined spatially
close local features into joint features, and then learned a
dictionary using joint features by sparse coding.

In recent years, Analysis Dictionary Learning (ADL) has
shown excellent performance in image classification tasks,
such as [31] and [32]. It is worth noting that ADL is often
applied to image representation vectors to acquire more dis-
criminative vectors. Therefore, the dictionary obtained by
ADL is not used for encoding local features, which is dif-
ferent from the one in BoVW model.

III. OUR WORK
In this section, we first illustrate our work under the frame-
work of BoVW model. Afterward, the detail on our method
is presented clearly.

A. PROCESS OF IMAGE CLASSIFICATION
In the last decade, BoVWmodel has formed a unified frame-
work consisting of five basic steps [1]. It includes image patch
extraction, image patch description, dictionary learning, fea-
ture coding, and feature pooling. Our work only involves
in dictionary learning and feature coding. Fig. 1 shows the
process of image classification including our work. As shown
in Fig. 1, the input image is classified through the six
stages (a) to (f).

The first stage (a) is to extract the image patches from the
input image. This process is implemented via sampling local
areas of the image usually in a dense manner, e.g., the dense
patches of 16× 16 pixels with the step of 8 pixels.
Then, the image patches are described as the feature

descriptors (local features) at the second stage (b). Many
methods such as Scale-invariant Feature Transform (SIFT),
Local Binary Pattern (LBP), and HoG, can be used for
describing image patches. For example, SIFT is widely
employed to describe image patches as 128-dimensional
vectors.

Next, we obtain the indices of the visual words for encod-
ing local features at the third stage (c). For each feature,
its indices indicating which visual words are involved in
the coding process are recorded by a 0-1 vector, where the
1 elements correspond to the non-zero coding coefficients of
its coding vector obtained with a universal dictionary. The
universal dictionary is learned using local features from train-
ing images via solving a least-square optimization problem
with constraints (illustrated in Section III(B.2)).

Afterward, at the fourth stage (d), each local feature
is encoded as C coding vectors by C category-specific
dictionaries, respectively (illustrated in Section III(B.4)).
At this stage, the visual words for encoding each feature
are decided in advance by the 1 elements in its 0-1 vector.
The category-specific dictionary of each category is learned
by refining the universal dictionary with the local features
from the training images of this category (illustrated in
Section III(B.3)).

At the next stage (e), the coding vectors are aggregated
into one vector by performing a pooling operation, such as
maximum pooling and average pooling. In many existing
methods, Spatial PyramidMatching (SPM) [3] is widely used
to incorporate the spatial information of the local features
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FIGURE 1. Process of image classification. (a) extracting the image patches from the input image; (b) describing the image patches as the
D-dimensional feature descriptors; (c) for each descriptor, obtaining its 0-1 vector where the 1 elements correspond to the non-zero coding coefficients
of its coding vector (obtained with a universal dictionary consisting of K visual words); (d) for each descriptor, encoding it as C coding vectors by C
category-specific dictionaries; (e) pooling together the coding vectors of each category to form the image representation vector for this category;
(f) classifying the i th (i = 1, . . . ,C) image representation vector for the i th category with the i th Support Vector Machine (SVM); (g) selecting the
category indicated by the maximum as the category of the input image.

from an image into an image representation vector. It parti-
tions the whole image region into the multiple blocks at the
different resolutions levels of 1×1, 2×2 and 4×4. The coding
vectors in each block are pooled together to form a pooling
vector, and then the pooling vectors of all the blocks are
concatenated into one vector, namely, image representation
vector.

At the last stage (f), the image representation vector of
each category is fed into the SVM trained for this category
to obtain the score denoting how the input image belongs
to this category. The category indicated by the maximum
score is taken as the category of the input image. For any
category, its SVM is a one-versus-rest linear SVM, which
is trained on the image representation vectors obtained with
the category-specific dictionary of this category. The training
images of this category are taken as the positive samples
and the training images of other categories are the negative
samples.

B. CATEGORY-SPECIFIC DICTIONARY LEARNING
In theory, classification accuracy can be improved by this
practice, i.e., reducing the reconstruction errors of the local

features extracted from positive samples and increasing the
errors of the local features from negative samples in gen-
eral. The reason is that the images restored from the coding
vectors of positive samples become ‘‘clear’’ (information
loss decreases), while the images restored from the coding
vectors of negative samples become ‘‘blur’’ (information loss
increases). Hence, the difference between positive and nega-
tive samples increases by this practice, which is beneficial to
classification tasks.

To achieve this, we learn its category-specific dictionary
for each category using the local features extracted from the
training images of this category. The category-specific dic-
tionary is obtained by resolving a least-square optimization
problem. In this case, for any category, the visual words
from its category-specific dictionary are specifically learned
to minimize the reconstruction errors of the local features of
this category. As a result, for the category-specific dictionary
of any category, it tends to generate low reconstruction errors
for the local features of this category and high reconstruction
errors for the features of other categories.

Concretely, we first use the local features extracted from
all training images to learn a universal dictionary via
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FIGURE 2. Toy example of category-specific dictionary learning and feature coding. In these square boxes denoting the same 2-dimensional feature
space, the diamonds represent the visual words and the small circles are the local features. Each local feature is encoded only by the nearest word to it,
and its color indicates which word encodes it. (a) for each local feature of each category, obtaining the index (denoted by a kind of color) of the nearest
word to it; (b) refining the universal dictionary for each category using the local features of this category according to their indices. (c) for the local
feature f , obtaining the index of the word from the universal dictionary for encoding it; (d) encoding the feature f with the word from each
category-specific dictionary indicated by its index.

resolving a least-square problem P. Then, the univer-
sal dictionary is refined for each category to obtain the
category-specific dictionary of this category, by resolving
another least-square problem P′ using the local features
of this category. The problem P′ is a non-convex function
including two kinds of variables, i.e., dictionary and coding
coefficients, thus they need to be solved alternatively. When
solving the coding coefficients of a local feature, only the
visual words indicated by its indices are used for encoding
it. The indices of a local feature correspond to the non-zero
coding coefficients of its coding vector, which is obtained by
encoding the feature based on the universal dictionary. After
attaining the category-specific dictionaries of all categories,
a local feature is encoded in the following steps. Given a local
feature f , firstly, it is encoded by the universal dictionary

as a coding vector. Afterward, the indices corresponding to
the non-zero coefficients of its coding vector are recorded,
which indicate which visual words of the universal dictionary
encode f . At last, for each category, only the visual words
from its category-specific dictionary indicated by the indices
of f , are used to encode f to obtain the coding vector for this
category. Fig. 2 illustrates the principle of our method by a
toy example.

From the viewpoint of feature space, for a local fea-
ture, the visual words indicated by the non-zero elements
in its coding vector (obtained with a universal dictionary),
define a hyperplane it projects onto. Different coding meth-
ods give different projection schemes for the same feature.
When solving the coding coefficients of a feature at the two
stages of refining dictionary and encoding features by any
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TABLE 1. Constraint φ(x) used in the four different reconstruction-based coding methods. x(j ) denotes the j th element in x.

category-specific dictionary, the feature is always projected
onto the ‘‘same’’ hyperplane, which is constructed by the
visual words from a non-universal dictionary indicated by
the non-zero elements in its coding vector (obtained with a
universal dictionary).

In the following, the unified representation of
reconstruction-based coding methods is given in
Section III(B.1). On the basis of the unified representation,
the details on how to learn a universal dictionary are presented
in Section III(B.2). Our category-specific dictionary learning
method is illustrated in Section III(B.3), and the coding
method is explained in Section III(B.4).

1) UNIFIED REPRESENTATION OF
RECONSTRUCTION-BASED CODING METHOD
The core idea of reconstruction-based coding is to recon-
struct a feature with visual words via resolving a least-square
optimization problem with constraints [1]. The unified rep-
resentation of reconstruction-based coding can be generally
written as

argmin
x

G(x) = argmin
x
||f − Bx||22 + λφ(x), (1)

where f = [f1, f2, . . . , fD]T ∈ RD×1 denotes a
D-dimensional local feature, B = [b1, b2, . . . , bK ] ∈ RD×K

denotes the visual dictionary consisting of K visual words,
x = [x1, x2, . . . , xK ] ∈ RK×1 is the coding vector of the local
feature f and λ balances the least-square term ||f −Bx||22 and
the constraint term φ(x). The least-square term ||f − Bx||22
pursues accurate reconstruction, and the constraint term φ(x)
makes the coding vector have a certain characteristic, for
example, similar/different features obtain similar/different
coding vectors [18]. The main difference among various
reconstruction-based coding methods lies in the constraint
term φ(x). Table. 1 lists the constraints of sparse coding [4],
non-negative sparse coding [33], LLC [17] and LSC [18]
as examples, which have different purposes as illustrated in
Section II.

At the stage of dictionary learning, the reconstruction-
based coding method is also used to learn a visual dictio-
nary using the local features extracted from training images.
In this case, the optimization problem includes not only the
variable x but also the variable B. It can be written as

argmin
X,B

G(X,B) = argmin
X,B

||F− BX ||2F + λ
N∑
i=1

φ(xi,B),

(2)

where F = [f 1, f 2, . . . , f N ] ∈ RD×N are the local features
extracted from training images, X = [x1, x2, . . . , xN ] ∈
RK×N . Since the taget function G(X,B) is a non-convex
function, the varibles X and B are solved alternatively.
Specially, the constraint ||bk ||2 <= 1 is required in some
methods such as [17] and [18]. After obtaining the dictio-
nary B, the coding vector x of local feature can be obtained
by resolving formula (1).

2) UNIVERSAL DICTIONARY LEARNING
In our method, we need to learn a universal dictionary at first.
Given a training image set with C categories, we extract a
fixed-size set S of local features from the training images of
each category, and gather all the sets {S1, S2, . . . , SC } into a
set Su for learning a universal dictionary. The set Su is formed
as the matrix Fu. The universal dictionary Bu is learned by
resolving formula (2) with the input Fu.

3) CATEGORY-SPECIFIC DICTIONARY LEARNING
In order to obtain the category-specific dictionaries of all
categories, the universal dictionary Bu is refined for each
category using the local features of this category individually.
There are two necessary steps, i.e., obtaining the indices of
the visual words from Bu for encoding local feature, and
learning the category-specific dictionaries Bc1,B

c
2, . . . ,B

c
C

via resolving a least-square problem.
Clearly, for the sth category, the set Ss of local features is

extracted from the training images of the sth category. For
each feature f s,i in Ss, its coding vector xus,i is calculated by
resolving the formula (1) with the universal dictionary Bu.
The 0-1 vector vs,i recording the indices of the visual words
for encoding f s,i, is obtained by:

vs,i(j) =

{
1, if xus,i(j) 6= 0
0, if xus,i(j) = 0,

(3)

where vs,i(j) is the jth element in vs,i, and xus,i(j) is the jth
coding coefficient in xus,i.

After obtaining the 0-1 vectors of all the local features
in Ss, the category-specific dictionary Bcs of the sth category
is learned by minimizing the below target function, which is
written as:

argmin
Xc
s ,B

c
s

G(Xc
s,B

c
s) = argmin

Xc
s ,B

c
s

||Fs − BcsX
c
s ||

2
F

s.t. ||bcs,k ||2 <= 1, k = 1, 2, . . . ,K ;

(1− vs,i)T xcs,i = 0, i = 1, 2, . . . ,Ns; , (4)
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where Fs is the matrix form of Ss, bcs,k is the kth visual word
in Bcs and Ns is the number of the local features in Ss. The
constraint term (1−vs,i)T xcs,i = 0 ensures that each feature is
encoded only by the words indicated by the 1 elements in its
0-1 vector. The varibles Xc

s and B
c
s are solved alternatively.

The universal dictionary Bu is used to initialize Bcs . When Bcs
is fixed, the coding vector of each feature in Ss can be solved,
respectively. For the ith feature f s,i, its coding vector x

c
s,i can

be obtained by:

argmin
x̃s,i

G(x̃s,i) = argmin
x̃cs,i

||f s,i − B̃
c
s,ix̃

c
s,i||

2
2, (5)

where B̃
c
s,i is a small dictionary consisting of the visual words

from Bcs indicated by the 1 elements in the 0-1 vector of f s,i,
and the element values in x̃cs,i are the values in x

c
s,i indicated

by the 1 elements in its 0-1 vector. When Xc
s is fixed, Bcs

can be solved by a projection gradient descent algorithm.
In the process of solving Xc

s , since the size (e.g., 5) of B̃
c
s,i

is far less than the size (e.g., 1024) of Bcs , solving Xc
s is

fast.
In this step, considering that almost all reconstruction-

based coding methods include the least-square term
||f − Bx||22, we directly minimize this term (resolving the
formula (4)) to learn a dictionary that provides the smallest
lower bound of reconstruction error for Fs under the con-
straint (1 − vs,i)T xcs,i = 0. Although encoding local feature
is performed with constraints (as shown in Table. 1) at the
stage of feature coding, the dictionary obtained by resolving
formula (4) leads to lower reconstruction error comparedwith
the universal dictionary (demonstrated in Section IV(C)).

4) FEATURE CODING
At the stage of feature coding, the universal dictionary Bu

and all the category-specific dictionaries Bc1,B
c
2, . . . ,B

c
C are

used jointly to encode local features. Given a local feature f i,
firstly, its coding vector xui is calculated by resolving the
formula (1) with the universal dictionary Bu, and then its
0-1 vector vi is obtained by the formula (3). Next, we use
the category-specific dictionary of each category to encode
the local feature. For the sth category, its coding vector
xci,s for this category is attained by resolving the follow-
ing formula with the category-specific dictionary Bcs of this
category.

argmin
x̃i,s

P(x̃i,s) = argmin
x̃i,s
||f i − B̃

c
i,sx̃i,s||

2
2 + λφ(x̃i,s), (6)

where B̃
c
i,s is a small dictionary consisting of the visual words

from Bcs indicated by the 1 elements in vi, and the element
values in x̃i,s are the values in xci,s indicated by the 1 elements
in vi. Providing there are C categories, C coding vectors will
be generated for each local feature. In comparison to the
computational time spent on encoding by the universal dic-
tionary Bu, the time spent on encoding by category-specific
dictionary Bc is much less owing to the small dictionary B̃c

constructed from Bc (demonstrated in Section IV(F)).

IV. EXPERIMENTS
A. DATASETS
In our experiments, three small datasets are used to evaluate
the classification performance of our proposed method.
Scene-15: Scene-15 dataset consists of 15 scene categories.

There are 4492 images in total. The number of images per
category varies from 260 to 440. We consider 100 train-
ing images per category. The remaining images are used as
testing images.
Caltech-101: Caltech-101 dataset is a challenging

object recognition dataset, which contains 9,144 images
in 101 object categories and one background category. The
number of images per category ranges from 31 to 800.
We choose randomly 30 training images from each category
to form the training set, and up to 30 testing images from each
category to form the testing set.
UIUC-Sports: It consists of 8 sport event categories. There

are 1579 images in total, and each category has from 137 to
250 images. 70 and 60 images from each category are used
for training and testing, respectively.

B. IMPLEMENTATION DETAILS
In this article, we apply our proposed method on four rep-
resentative coding methods, i.e., sparse coding, aLLC, LLC
and LSC. For aLLC, the visual words for encoding a local
feature are the K -nearest words to it in feature space, which
are decided by calculating the Enclidean distance between the
feature and each word. Therefore, the indices of the words
for encoding a feature are the indices of its K -nearest visual
words from universal dictionary. For LLC, when encoding
a feature f by any category-specific dictionary, the distance
||f − bi||2 (as shown in Table. 1) needs to be recalculated.
We only need to compute the distances from the feature to
the words from category-specific dictionary indicated by the
indices of f . For LSC, before encoding feature by the sth
category-specific dictionary (s = 1, 2, . . . ,C), the coding
vector of each template feature (introduced in [18]) needs to
be updated by the sth category-specific dictionary under the
constraint (1 − vm)T xm,s = 0,m = 1, 2, . . . ,M , where xm,s
is the coding vector of themth template feature calculated for
the sth category andM is the number of template features. All
the updated coding vectors {x1,s, . . . , xM ,s} are employed to
replace the vectors {x1, . . . , xM } used in this term

∑
m ||x −

xm||2Wm (as shown in Table. 1) when encoding feature by the
sth category-specific dictionary.

For images from all the datasets, we extract the dense
patches of 16× 16 pixels. The step between two neighboring
patches is set to 8 pixels for Scenes-15 and UIUC-Sports,
6 pixels for Caltech-101. Each patch is described as a SIFT
descriptor (128-dimensional vector). The dictionary size is
set to 1024 for Scene-15 and UIUC-Sports, and 2048 for
Caltech-101. For aLLC, K -means is employed to learn a
universal dictionary. As suggested in [17], the number of the
visual words to encode a local feature is set to 5. SPM is
applied to incorporate spatial information of local features
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into image representation vectors. For all the datasets, a one-
versus-rest linear SVM for each category is trained. All the
experiments are conducted on a 64-bit Windows 10 with Intel
Core i5-4590 at 3.30 GHz ∗ 4 on 16GB RAM.
In order to more accurately evaluate whether the classi-

fication accuracy is improved after applying our method,
the following setups are taken. For each dataset, we randomly
split it 6 times to obtain 6 training sets and 6 testing sets,
and conduct experiment 6 times on these training sets and
testing sets for each experimental setup. The average of the
classification accuracies of 6 experiments is reported in this
article. The accuracies obtained with universal dictionaries
(like done in [4], [17], [18]), are treated as baselines for
comparison.

C. RECONSTRUCTION ERROR
In this section, we investigate on Scenes-15 whether the
reconstruction errors of local features are reduced after apply-
ing our method. To achieve this, ten thousand local features
are randomly extracted from the images of each category,
respectively, and two reconstruction errors are calculated for
each feature. For a feature f i from the sth category, its two
errors ||f i−B

uxi||2 and ||f i−B
c
sxi,s||2, are computed, where

xi is obtained by resolving the formula (1) with Bu, and
xi,s is obtained by resolving the formula (6) with the small
dictionary B̃

c
i,s, which is built from Bcs in terms of the indices

of f i.
For each kind of reconstruction error, the average of the

errors of all the local features is computed and reported
in Table. 2. As shown, the average errors of the four coding
methods all decrease after applying our method. Among
these coding methods, aLLC achieves the largest error drop
since the universal dictionary used by aLLC is generated by
K -means instead of minimizing a target function including
the term ||F− BX ||2F .

TABLE 2. Comparison of reconstruction errors.

We compare the two reconstruction errors of local features
when sparse coding is used as a coding method. Fig. 3

FIGURE 3. Comparison between the two reconstruction errors
of 15000 local features.

shows the errors of 15000 local features (1000 features per
category). Overall, the errors (universal dict.) of most local
features decrease after applying our method. However,
the errors (universal dict.) of about 3000 features increase a
little, and about 600 features have no error drop. In addition,
we also note that, for the local features with high recon-
struction error (universal dict.) (e.g., 0.4 to 0.7), most of the
features have relatively obvious error drop, and only a small
number of features increase a little in reconstruction error.

We further investigate the reconstruction errors obtained
when the local features of each category are encoded by
the category-specific dictionary of every other category,
as shown in Fig. 4. For the local features of the ith category,
we compute their average error eij when they are encoded
by the jth category-specific dictionary, and show the value
max(ei1, ei2, . . . , eiC )− eij at the ith row and the jth column.
As shown, any element at the main diagonal is the brightest
one at the row and the column it locates at. This phenomenon
means that, for any category, its category-specific dictionary
learned by our method tends to generate relatively low errors
for the features of this category and relatively high errors for
the features of other categories.

FIGURE 4. Heatmap of reconstruction errors. The brighter the small
square, the lower the reconstruction error.

D. EFFECTIVENESS VALIDATION
In this section, we evaluate whether classification accuracy
is improved after applying our method. Table. 3 reports the
experimental results. As shown, for all the coding meth-
ods, the category-specific dictionaries learned by our method
result in the better accuracies on the three datasets compared
with the universal dictionaries. Despite that the different cod-
ing methods lead to the different classification accuracies,
the accuracies are all improved a little after applying our
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FIGURE 5. Comparison between the two classification accuracies of each category in Caltech-101.

TABLE 3. Effectiveness validation on Scene-15, Caltech-101, and
UIUC-Sports.

method. This phenomenon demonstrates the universality and
effectiveness of our method. Among these coding methods,
aLLC always acquires the largest gain since it has the largest
reconstruction error drop (as shown in Table. 2).

Based on sparse coding, we further investigate the clas-
sification accuracy of each category in Caltech-101. Fig. 5
reports the two accuracies of each category, which are
obtained with the universal dictionary and the category-
specific dictionaries, respectively. As shown, the accura-
cies of some categories are improved obviously such as
‘‘ant’’ (5.6%) and ‘‘anchor’’ (5.6%), but not all the cat-
egories have an accuracy improvement. Some categories

show an obvious drop such as ‘‘crab’’ (−4.4%) and ‘‘platy-
pus’’ (−6.4%). Overall, the large accuracy improvements are
almost achieved on the categories corresponding to the low
accuracies (e.g. less than 60%). By analyzing the confusion
matrix, we note that the category ‘‘crab’’ becomes more con-
fused with the category ‘‘pizza’’ after applying our method.
Fig. 6 lists some similar images of the two categories. It is
easily found that the images of the category ‘‘crab’’ are sim-
ilar to the ones of the category ‘‘pizza’’ to some extent. Each
of these images has an ellipse shape. This means that they
have some similar local features, which are extracted on the
edges of the ellipses they all have. In this case, the category-
specific dictionary Bccrab refined for the category ‘‘crab’’
also reduces the reconstruction errors of the local features
from the edges of ellipses. In other words, the edges of the
ellipses in the ‘‘pizza’’ images (restored from the coding
vectors obtained with Bccrab), become ‘‘clear’’, while the
interior zones of the ellipses become ‘‘blur’’. Consequently,
the restored ‘‘pizza’’ images become more similar to some
‘‘crab’’ images, reducing the difference between the category
‘‘crab’’ and the category ‘‘pizza’’.

FIGURE 6. Similar images of the category ‘‘crab’’ and the category ‘‘pizza’’.

E. COMPARISON WITH A COMMON METHOD
There is a common method (Com. Method) which follows
a very similar idea to our method. In this method, the local
features from the training images of each category are used
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TABLE 4. Comparison among the Category-Specific Dictionary learned by Com. Method, the Category-Specific Dictionary learned by Our Method, and the
Universal Dictionary.

to learn the category-specific dictionary of this category by
directly solving the formula (2). The accuracies obtained
by the common method on the three datasets are reported
in Table. 4. Besides, the average reconstruction error of local
features is also calculated as done in Section IV(C). LLC and
LSC are not adopted in this section due to the huge computa-
tion time. As shown, the highest accuracy always corresponds
to the lowest error. This means that the practice of reduc-
ing the reconstruction errors of local features is beneficial
to image classification tasks. Besides, the category-specific
dictionary (com. method) results in the best accuracy on
Caltech-101 but performs worse than the category-specific
dictionary (our method) on Scene-15. We also note that,
for Scene-15, although the error (0.387) achieved by the
category-specific dictionary (com. method) is smaller than
the one (0.394) by the universal dictionary, its correspond-
ing accuracy (82.98%) is still lower than the one (83.00%)
achieved by the universal dictionary. This implies that only
reducing reconstruction error not necessarily improves clas-
sification accuracy. The errors reported in Fig. 7 further
supports this conclusion. The highest accuracy of each cat-
egory in Scene-15 does not always correspond to the lowest
reconstruction error.

Here, we report in Fig. 7 the three classification accuracies
of each category in Scene-15 when sparse coding is used
as a coding method. As shown, our method leads to better
results than the common method on the indoor categories
(e.g., PARoffice, bedroom, kitchen, living room, and store),
whose images include a number of similar local features.
This can be explained by that, in our method, when the local
features of a category are encoded by the category-specific
dictionary of this category (or any other category), the visual
words indicated by their indices are specific to decrease
(or increase) their reconstruction error overall. As shown
in Fig. 2, for the representative local feature f of the cat-
egory c2, the lowest error is obtained when it is encoded
by the category-specific dictionary of the category c2.

In contrast, the common method does not have this trait.
Compared with the accuracies obtained with the universal
dictionary, the accuracies obtained by the common method
decrease a little on the categories of ‘‘PARoffice’’, ‘‘indus-
trial’’, ‘‘kitchen’’ and ‘‘store’’. The reason is that the images
of these categories include a large number of similar fea-
tures, thus the dictionaries learned for these categories tend
to reduce the reconstruction errors of these similar features,
as a result, increasing the similarity among these categories
instead. On the other hand, the common method performs
better than our method on some categories such as MITforest
and MITmountain. For anyone of the two categories, it has
an obviously different visual presentation with other cate-
gories. In other words, the spatial distributions of the local
features of the two categories both have a low mixability
with the distributions of the features of other categories.
Based on this observation, we infer that, for the features
from positive samples and the features from negative sam-
ples, if their spatial distributions in feature space have a low
mixability, the dictionary learned by the common method
for positive samples, is better in reducing the reconstruc-
tion errors of the features from positive samples. As shown
in Fig. 8, the category-specific dictionary learned by the
commonmethod gives rise to the lowest reconstruction errors
for the features (denoted by the small triangles) from positive
samples. In contrast, in our method, the index of the visual
words for encoding local feature has no change in the refin-
ing process, as a result, restraining the refined dictionary to
achieve lower error.

We also report in Fig. 9 the three classification accura-
cies of each category in Caltech-101. In comparison to the
universal dictionary, the category-specific dictionary learned
by our method increases the accuracies of 33 categories but
decreases the accuracies of 14 categories, while the dictionary
learned by the common method increases the accuracies
of 45 categories but decreases the accuracies of 26 categories.
Overall, although our method performs more stable than
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FIGURE 7. Comparison of the three classification accuracies of each category in Scene-15. (uni.: universal dictionary, com.: Com. Method, our: our
method, accu.: classification accuracy, err.: reconstruction error).

FIGURE 8. Toy example of a universal dictionary, a category-specific
dictionary (our method), and a category-specific dictionary (Com.
Method). The features denoted by the small triangles represent the ones
extracted from positive samples, and the features denoted by the small
circles indicate the ones extracted from negative samples. The diamonds
represent the visual words. Each local feature is encoded only by the
nearest word to it, and its color indicates which word encodes it.
(a) the universal dictionary learned using all the features; (b) the
category-specific dictionary learned by our method using the features
from positive samples. (c) the category-specific dictionary learned by
Com. Method using the features from positive samples.

the common method, the average classification accuracy
of the common method is higher than our method. This
phenomenon can be explained as follows. For most of the

categories in the object recognition dataset Caltech-101, each
of the images of these categories includes only one object,
as shown in Fig. 10. This means that the spatial distributions
of the local features of these categories in feature space have
relatively low mixability compared with Scene-15. In this
case, the common method can achieve low reconstruction
errors for the features highly relevant to these object cate-
gories. Consequently, the commonmethod performs better on
Caltech-101 than on Scene-15. Nevertheless, some categories
have a considerable accuracy drop after applying the common
method, as shown in Fig. 10. We find by analyzing that,
these categories have a large intra-category visual diversity
(e.g., mayfly), or a large change in viewpoint (e.g., water
lily), or only a small number of key features highly relevant
to object category (e.g., strawberry). This means that, for
anyone of these categories, the dictionary learned using the
features from training images, is not capable enough of reduc-
ing the errors of the features from testing images, as a result,
the images (restored from coding vectors) of this category
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FIGURE 9. Comparison of the three classification accuracies of each category in Caltech-101.

FIGURE 10. Example images from Caltech-101. (uni.: universal dictionary, com.: Com. Method, our: our method, accu.: classification accuracy)

and other categories all become more ‘‘blur’’, i.e., increasing
the similarity of this category with others.

By the above analysis, it can be concluded that, despite
that our method and the common method follow the very

similar ideas of learning category-specific dictionary, they
have different performance characteristics according to the
mixability of the two spatial distributions of the features
from positive samples and the features from negative samples.
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FIGURE 11. Comparison on the computation time spent on dictionary learning and feature coding. Fig. 11(a) compares the time used
for learning a universal dictionary and the time used for refining the universal dictionary. Fig. 11(b) reports the average time spent on
encoding the features from an image by a universal dictionary (resolving the formula (1)), and by a category-specific dictionary
(resolving the formula (6)). Fig. 11(c) lists the time spent on learning a universal dictionary, learning the category-specific dictionaries
of all the categories by our method, and learning the category-specific dictionaries of all the categories by Com. Method. Fig. 11(d)
reports the average time consumed on encoding the features from an image by the universal dictionary, by all the category-specific
dictionaries learned by our method, and by all the category-specific dictionaries learned by Com. Method.

By and large, ourmethod can perform better than the common
method when the mixability is high, and the common method
can be good when the mixability is low.

F. COMPUTATION TIME
In this section, the computation time spent on dictionary
learning and feature coding is investigated separately on
Scene-15 when sparse coding is used as a coding method.
The results are shown in Fig. 11.
As shown in Fig. 11(a) and Fig. 11(b), the time spent

on learning a category-specific dictionary is much less than
learning a universal dictionary, and the time spent on encod-
ing feature by a category-specific dictionary is also obviously
less than by a universal dictionary. The reason is that, when
refining a universal dictionary (learning a category-specific
dictionary) and encoding local features, small dictionaries
are constructed according to the indices of features to solve
coding coefficients. However, our method needs to learn
its category-specific dictionary for each category and then
encode features by all the category-specific dictionaries. For
our method, the time spent on dictionary learning is the sum
of the time on universal dictionary learning and the time
on category-specific dictionary learning, the time spent on

encoding the features of an image is the sum of the time on
obtaining the indices of the features and the time on encoding
the features by all the category-specific dictionaries. Hence,
the time consumed by our method on dictionary learning and
feature coding increases a lot, as shown in Fig. 11(c) and
Fig. 11(d). Nonetheless, the time required by our method
is much less than Com. Method. The reason is that, for
Com. Method, the time spent on learning a category-specific
dictionary for each category is almost the time on learn-
ing a universal dictionary, and the time on encoding by a
category-specific dictionary is almost the time on encoding
by a universal dictionary. For our method and the common
method, the time spent on dictionary learning and feature cod-
ing increase linearly as the number of categories increases.

G. ACCURACY COMPARISON WITH OTHER METHODS
In this section, we compare the classification accuracies
achieved by our method and other methods, including the
deep learning methods (e.g., [34], [36], [38], [39]) and
the BoVW methods (e.g., [27], [35]). The results of these
methods are obtained without the help of transfer learning,
i.e., using a pre-learned CNN to extract image features.
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TABLE 5. Classification accuracy on Scene-15.

TABLE 6. Classification accuracy on Caltech-101.

TABLE 7. Classification accuracy on UIUC-Sports.

As shown in Table. 3 and Tables. 5-7, the classification
performance of our method relies on the performance of the
coding method adopted in our method. Our method achieves
the high accuracies on the three datasets when adopting LSC
as a coding method. Compared with other methods, although
the accuracies obtained by our method are not attractive
enough, our method is easy to be combined with a number
of BoVW methods to obtain higher classification accuracy
(illustrated in Section III(H)). We also note that the deep
learning methods do not achieve obvious improvement over
the BoVW methods due to the lack of training data.

H. DISCUSSION
The characteristics of our method are listed as follows:
• Our method can be used as a universal method
to improve the classification accuracies of many
reconstruction-based coding methods with added yet
acceptable computation time. Except for the four coding
methods (i.e., sparse coding, aLLC, LLC, and LSC)

adopted in our work, many coding methods such as
extending LSC [25], nonnegative sparse coding [33],
hierarchical sparse coding [40], local coordinate
coding [44] and so on, can also have an accuracy
improvement by applying our method, theoretically.

• Despite the universality and effectiveness of our method,
there is computation time associated with dictionary
learning and feature coding, as shown in Fig. 11.
However, compared with the common method, the time
required by our method is much less. This trait ensures
the practicability of our method.

• Although the classification accuracies obtained by our
method are not attractive enough in comparison to some
existing methods, our method is easy to be combined
with a number of BoVW methods to achieve higher
classification accuracy. The reason is that it is just a
reinforcement method tailored for reconstruction-based
coding methods, and it only involves in the stages
of dictionary learning and feature coding. Therefore,
In addition to employing more advanced coding meth-
ods, the advanced methods focusing on feature extrac-
tion, feature description, and feature pooling can also
be used jointly to further improve the classification
accuracy. Besides, the works on Analysis Dictionary
Learning (ADL) can also be applied to the image rep-
resentation vectors obtained by our method, resulting in
the more discriminative image representation vectors.

• Some works can benefit from our method owing to the
relatively less computation time consumed on category-
specific dictionary learning. For example, the method
proposed in [27] achieves comparable results to many
advanced BoVW methods, but it suffers from the huge
computation time spent on the category-specific dic-
tionary learning. In this method, the category-specific
dictionary of each category is learned by K -means
or K -SVD using the local features of this category.
Therefore, our method can be used to replace the
category-specific dictionary learning method adopted
in [27], as a result, improving the practicability of [27].
Besides, some methods such as [45] and [46] learn
block-specific dictionaries for the blocks divided by
SPM. For each block, its block-specific dictionary is
learned by applying a reconstruction-based method on
the local features extracted in this block. Similarly,
the time consumed on block-specific dictionary learning
can be reduced by a modified version of our method.
In this version, the universal dictionary is refined for
each block instead of each category.

V. CONCLUSION
In this article, we proposed a category-specific dictionary
learning method tailored for reconstruction-based feature
coding. The category-specific dictionary of each category
was learned by refining a universal dictionary using the local
features of this category. When encoding a local feature by a
category-specific dictionary, the visual words for encoding it
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are decided in advance by the indices, which correspond to
the non-zero elements of its coding vector obtained with the
universal dictionary. Our results on three small datasets show
that the classification accuracies of four representative cod-
ing methods were improved by about 0.3% to 2.7%, which
experimentally demonstrates the universality and effective-
ness of our method. Furthermore, by comparing our method
with a common method, we found that they have different
performance characteristics according to the mixability of
the two spatial distributions of the features from positive
samples and the features from negative samples. By and large,
our method can perform better than the common method
when the mixability is high, and the common method can be
good when the mixability is low. The future works we are
pursuing are: 1) taking into account the discriminability of
local features when refining a universal dictionary, to make
features with high discriminability have low reconstruction
errors; 2) applying the thought of our method to transfer
learning.
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