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ABSTRACT The evaluation of absorption, distribution, metabolism, exclusion, and toxicity (ADMET)
properties plays a key role in a variety of domains including industrial chemicals, agrochemicals, cosmetics,
environmental science, food chemistry, and particularly drug development. Since molecules are often
intrinsically described as molecular graphs, graph neural networks have recently been studied to improve
the prediction of ADMET properties. Among many graph neural networks published in recent years, Graph
Isomorphism Network (GIN) is a relatively recent and very promising one. In this paper, we propose an
enhanced GIN, called MolGIN, via exploiting the bond features and differences influence of the atom
neighbors to end-to-end predict ADMET properties. Based on GIN, MolGIN concatenates the bond feature
together with node feature in the feature aggregator and applies a gate unit to adjust the atomic neighborhood
weights to map the differences in the interaction strength between the central atom and its neighbors, such
that more meaningful structural patterns of molecules can be explored toward better molecular modeling.
Extensive experiments were conducted on seven public datasets to evaluate MolGIN against four baseline
models with benchmark metrics. Experimental results of MolGIN were also compared with state-of-the-art
results published in the last three years on each dataset. Experimental results in terms of RMSE and AUC
show that MolGIN significantly boosts the prediction performance of GIN and markedly outperforms the
baseline models, and achieves comparable or superior performance to state-of-the-art results.

INDEX TERMS ADMET prediction, graph convolutional network, graph isomorphism network, molecular
property, quantitative structure-property relationship.

I. INTRODUCTION
Absorption, distribution, metabolism, exclusion, and toxicity
(ADMET) properties are of great importance in drug devel-
opment and risk assessment of compounds from industrial
chemicals, food additives, pesticides, and environmental pol-
lutants [1]. Good ADMET quality is indispensable for a good
drug. However, a large number of candidate compounds have
the unsuitable quality of ADMET in the process of screening
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drugs, which results in a long period, high cost, high candi-
date attrition rate, and many post-marketing withdrawals of
the drug development. It was reported that the attrition rate
of drug candidates has reached 90% [2] or even more [3],
and the preclinical discovery cost of an FDA-approved drug
and the overall estimated cost of developing a new drug have
been up to 834 million U.S. dollars [4], [5] and 2.6 billion
U.S. dollars in recent years [6], [7], respectively. Therefore,
the early evaluation of ADMET properties is critical in drug
development. The in-silico prediction tools, represented by
quantitative structure-property relationship (QSPR) models,
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can be used to evaluate ADMET properties of candidate drug
compounds and conduct preliminary virtual screening for
drugs. QSPRmodels enable chemists and engineers to screen
and prioritize compounds from vast libraries of molecular
candidates before molecular synthesis or assay, eliminating
compounds that are likely to possess unfavorable ADMET
properties. This thereby greatly saves time and money. QSPR
models, based on machine learning (ML) techniques, are
powerful ways to boost drug screening and discovery in
recent years.

Since QSPR can exploit the intrinsic relationships between
molecular structure and the physicochemical and biochemi-
cal properties of molecules, QSPR models have been widely
developed and applied to the ADMET properties prediction
to provide faster, cost-effective and accurate prediction of
unknown compounds ADMET properties [8], [9]. QSPR has
become the most efficient and popular molecular proper-
ties prediction method due to its automatic, efficient, high-
throughput, large-scale characteristics [10]. In QSPRmodels,
multiple linear regression, neural network, random forest
(RF), support vector machine, and fully connected-based
deep neural network (FDNN, or DNN for short in some liter-
ature) are typically used to map the structure of compounds
represented by hand-crafted features (i.e. fingerprints and
descriptors) to ADMET properties [11]–[15]. In recent years,
deep neural networks, based on their remarkable capability
of learning concrete and sometimes implicit features, have
won the huge success in a variety of fields [16]. In particu-
lar, deep neural network won the Merck molecular activity
challenge in 2012 [17]. These successes have greatly encour-
aged many researchers to develop Deep Learning (DL)-based
QSPR models for predicting the molecular property and
drug ADME properties [11], [12], [14], [18]–[21]. DL-based
QSPR became the most popular in-silico method, for DL can
increase the performance of QSARmodels [12], at least when
sufficient data is available [17], [22].

In 2015, Duvenaud et al. [23] proposed Convolutional
Networks on Graphs for Learning Molecular Fingerprints,
which bring graph convolutions into the context of DL on
molecules. Since then, Graph Neural Networks (GNNs) and
their applications have become interesting emerging issues
of molecular informatics, increasingly attracting the attention
and research in cheminformatics and bioinformatics [17],
[24]–[27]. GNNs directly utilize a graph-structured represen-
tation of the original molecule as the input data, in which
atoms are represented as nodes and bonds are represented
as edges of a graph [28]. The graph-structured data is pro-
cessed by a series of convolutions or equivalent operations
of convolutions to map the chemical information of the
molecular graph into a distributed multi-dimensional fea-
ture vector. The GNN models often outperform the classical
ML or DNN models with various fingerprints or descrip-
tors [17], [24]. Unlike traditional feature engineering-based
ML models, GNN models are generally less sensitive to the
choice of atomic descriptors [26], [27]. During the past three
years, manyGNNvariants have been developed formolecular

properties prediction and achieved superior performance than
other existingmethods [24], [29], [30]. Furthermore, there are
some interesting works using GNN for ADMET properties
prediction. For example, Feinberg et al. [5] used a type of
graph convolutional networks to model ADMET properties
at Merck; Montanari et al. [31] demonstrated that a multitask
graph convolutional approach for predicting physicochemi-
cal ADMET endpoints appears a highly competitive choice;
Feinberg et al. [32] applied graph convolutions to an explicit
molecular representation, and achieved unprecedented accu-
racy in the prediction of ADMET properties.

Among these variants of the GNN model, Graph
Isomorphism Network (GIN) [33] has the maximum
discriminative/representational power from different graph
structures and quantifies generalization ability, quickly
attracting extensive attention in GNN community. Since the
original paper of Graph Isomorphism Network published by
Xu et al. [33] in 2019, it has now been cited more than
160 times. Many works [33]–[39] have shown that GIN
and GIN-based models significantly outperform other GNN
models in many graph learning tasks, including molecular
modeling and prediction. For example, Capela et al. [34]
compared GIN with graph attention isomorphism network
(GAIN) and gated graph recursive (isomorphism neural net-
work, GGRNet) and their multitasking learning model on
the molecular physicochemical properties prediction, which
results show that GIN achieves the best performance and
the multitasking learning model of each variant of GIN can
achieve higher performance than its single-tasking learn-
ing model. Nguyen et al. [35] developed a model named
GraphDTA for drug-target binding affinity prediction using
GIN, and their experimental results show that this method not
only predicts affinity better than non-deep learning models,
but also outperforms the comparative deep learning models.

Despite the burst of successful excitements of GIN in the
GNN community, as a general-purpose GNNmodel, GIN has
not fully exploited the special information of the molecular
graph, such as bond features, the differences of the inter-
action strength between the central atom and its neighbors.
This special molecular information implies some meaningful
molecular patterns. In this work, we aim to improve GIN
toward better molecular modeling and ADMET properties
prediction via exploiting the special molecular information.
Our major contributions are summarized as follows:

1) We proposed a method called MolGIN to enhance the
molecularmodeling ofGIN by exploiting bond features
and the differences in the interaction strength between
the central atom and its neighbors.

2) We designed a scheme to incorporate the molecular
bond feature into the node information aggregation via
concatenating the feature vectors of the atom neighbors
and the bonds connecting with the atom.

3) We developed a control gate unit in the aggregator to
adjust the neighborhood weights of the atom to map
the differences in the interaction strength between the
central atom and its neighbors.
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4) We conducted extensive performance evaluations of
our method on the classification and regression tasks
of ADMET properties. The results show that incorpo-
rating the information of bond features and differences
in the interaction strength between the central atom
and its neighbors into the molecular modeling of GIN
indeed markedly benefits ADMET properties predic-
tion performance.

II. PRELIMINARIES
Before introducing MolGIN, we briefly introduce Graph
Neural Network and Graph Isomorphism Network, which are
the theoretical basic of MolGIN.

A. GRAPH NEURAL NETWORK
Graph neural network (GNN) is a special neural network
architecture with the same essence as a convolutional neural
network, but it is mainly used for processing and learning very
irregular and unstructured graph data [40]. GNNs aim to learn
the representation of each node in the graph, and hierarchi-
cally extract features of the nodes or graphs, and then use the
final features for application modeling by a sub-model, such
as multi-layer perceptron (MLP). GNNs leverage the graph
structure and iteratively update the node representation from
the node neighborhoods in a fashion of convolutional opera-
tion or equivalent to obtain the final feature representation
of the nodes or the graph [40]. To explore the deeper and
more extensive information of the node’s receiving domain,
multiple graphical convolution (or equivalent) layers are usu-
ally stacked together to update the node representation. In the
simplest form, GNNs can update the node representation
according to the following formula [41], [42]:

hl+1i = f (A) =


1
|Ni|

ψ
(∑

j∈Ni h
l
jW

l
)
, l > 0

Ai, l = 0
(1)

where hl+1i denotes the hidden state of the i-th node in the
(l + 1)-th layer; h0i = Ai; ψ is a nonlinear transformation;
Ni is the nodes connected to the i-th node on the graph;
|Ni| is the degree of the i-th node;W l is a learnable parameter
representing the weight matrix of the l-th layer; Ai is the
attribute matrix of the i-th node.

B. GRAPH ISOMORPHISM NETWORK
Graph Isomorphism Network (GIN) [33] is one of
the most potential GNN variations, and its discrimina-
tive/representational power is equal to the power of the
Weisfeiler-Lehman (WL) graph isomorphism test [43], [44].
GIN replaces (1) with the following formula [33], [45]:

hl+1i = MLPl

(1+ εl)hli +
∑
j∈Ni

hlj

 , (2)

where h0i = Ai, εl is a learnable parameter, MLP is a Multi-
layer Perceptron. The (2) shows that: 1) GIN replaces the

mean aggregator over nodes of the traditional GNN with a
sum aggregator; 2) GIN adds an MLP after aggregating node
features from the nodes’ neighborhoods; and 3) in GIN, each
neighbor contributes equally to the update of the central node.
Furthermore, GIN concatenates the information of the nodes’
representation across all layers of the model for the final
representation according to the following formula:

hG = CONCAT

 L∑
v∈G,k=0

hkv

 , (3)

where v,G are the node and graph, respectively. CONCAT (·)
denotes concatenate function.

It has been demonstrated theoretically and experimentally
that GIN has more discriminative or representational power
of graph structures than previous GNN models [33].

III. METHODOLOGY
A. MOLECULAR GRAPH AND ADMET
PROPERTIES PREDICTION
Formally, a molecular graph G = (V ,E) is defined by a
set of vertices V and a set of edges E = {(v, u)|v, u ∈ V },
corresponding the structure of the molecule, in which V
refers to the set of atoms of the molecule and E refers to
chemical bonds connecting the atoms. The neighbor of atom
v is defined as Nv = {v ∈ V |(v, u) ∈ P}. P denotes a set of
atoms pair connected by bonds.

ADMET properties prediction can be regarded as a binary
classification or regression problem of molecular graphs in
machine learning, which is formalized as follows: given a
set of molecular graphs G = {G1, · · · ,Gn} and their label
set Y = {y1, · · · , ym}, each molecular graph has an attribute
vector of atoms, a, a ∈ A, and an attribute vector of bonds,
z, z ∈ Z , respectively. Then the representation learning func-
tion θ (·) learns a representation vector hG = θ (A,Z ) that can
help to predict the labels. Finally, the labeling function ϑ(·)
assigns the label of the entire molecular graph y = ϑ(hG).

B. OUR ENHANCED GIN
The original work of GIN [33] focused on build-
ing a universal graph neural network with the same
discriminative/representational power as the Weisfeiler-
Lehman (WL) graph isomorphism test to represent the graph
structure. Many researchers have used GIN to solve problems
related to small molecules and have achieved good perfor-
mance, however, GIN still has shortcomings in presenting
small molecules. GIN neglects two important pieces of infor-
mation and characteristics of small molecules: bond features
and differences influence of neighbors, which imply local
structures and some important patterns of molecular property.
To tackle this problem, we enhanced the representational
power of GIN on molecular graphs through two schemes:
bond feature concatenation and neighborhood weight adjust-
ment using a gate unit. This enhanced GIN called MolGIN
that will be detailed in the following subsections.
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1) EXPLOITING BOND FEATURE
We exploit the bond feature to mine local patterns of small
molecules when aggregating node features from its neighbor-
hoods. Let Ev be the set of bonds connected to atoms in Nv. zv
denotes the feature vector of Ev, which can be simply defined
as below.

zv = ϕ

 ∑
euv∈Ev

Fuv

 , (4)

where ϕ is a real-valued function, simplified to a linear trans-
form in this work. Fuv refers to the feature vector of the bond
euv connecting with the atoms u and v. We concatenate zv to
the neighbors’ feature vector of the central atom hv on each
layer of the GIN aggregator. Then (2) can be replaced by the
formulation as below,

hl+1i = MLPl

(1+ εl)hli +
∑
j∈Ni

(
hlj ⊕ z

l
j

) , (5)

where ⊕ denotes the concatenation. And (3) can be replaced
by the formulation as below,

hG = CONCAT

 L∑
v∈G,l=0

(
hlv ⊕ z

l
v

) , (6)

As a result, the proposed method can aggregate the infor-
mation of the atom neighbors with the bonds and encode the
local structure patterns into hidden vectors.

2) LEARNING NEIGHBORHOOD WEIGHTS
In GIN, all neighbors make an equal contribution to the
update of the central node, which leads to neglecting the
differences in influence strength between the central node and
its different neighbors. To address this problem, inspired by
the gate unit theme in LSTM [46], we introduce a control gate
unit to adjust the contribution of neighbors in updating the
central node feature. Concretely, the neighbors’ feature vector
hv is multiplied by the control gate activation, and calculated
by the Sigmoid function ψ in the range [0,1]. Hence, (5) can
be redefined as follows:

hl+1i =MLP
l

(1+εl)hli +∑
j∈Ni

(
ψ
(
hljW

l
+bl

)
� hlj⊕z

l
j

), (7)

where� is the element-wise multiplication,W l and bl are the
weight matrix and bias of the l-th layer, respectively. In this
way, ψ (·) is acted as a learnable controller of neighborhood
weights, which can learn the weight matrix to tune different
influence strengths between the central node and its neigh-
bors during the training phase.

3) MOLECULAR GRAPH EMBEDDING ALGORITHM
Alg.1 outlines the general molecular graph embedding
process of MolGIN based on the aforementioned theory.
In Alg.1, G(V ,E) is the molecular graph to be embedded;

Algorithm 1 An Enhanced Graph Isomorphism Network for
Molecular Modeling (MolGIN)
Require: the molecular graph G(V ,E); the input atomic

vector ai,∀i ∈ V ; the input bond vectors zi,∀z ∈ E ; the
learning depth of the aggregator L.

1: for each atom i in V do
2: zi←

∑
j∈Ni zij;

3: h0i ← ai ⊕ zi;
4: end for
5: for (l = 1; l ≤ L; l ++) do
6: for each atom i in V do
7: jTempt ←

∑
j∈Ni (ψ(h

l−1
j W l−1

+ bl−1)� hl−1j ⊕

zl−1j );

8: hli ← MLPl−1
(
(1+ εl−1)hl−1i + jTempt

)
;

9: end for
10: end for
11: hG← CONCAT (

∑L
i∈V , l=0(h

l
i ⊕ z

l
i));

12: Output hG.

Ni refers to the neighborhood node (atom) set; L refers to
the learning depth (number of layers) of the aggregator, i.e.
‘‘search depths’’; ai denotes the feature vector of the i-th atom
inG; zij denotes the feature vector of the bond connecting the
i-th atom and the j-th atom; hG denotes the molecular graph-
level embedding representation. The loop shown at lines 1-4
is to initialize the representation (hidden state) of each node
hi, i ∈ V . The loop shown at lines 5-10 is to aggregates
and update the representation (hidden state) of each node
hi iteratively. Line 11 is to sum the node‘s representation
in each layer of the aggregator for each node and concate-
nate them to produce the molecular graph-level embedding
representation hG.

FIGURE 1. The pipeline of MolGIN-based ADMET properties prediction.

C. ADMET PROPERTIES PREDICTION USING MolGIN
Fig. 1 illustrates the pipeline of ADMETproperties prediction
using MolGIN. It can be summarized as four phases: data
preprocessing, model construction, model training, and pre-
diction. Since the prediction phase is the same as the standard
machine learning, only the first three phases will be detailed
in the subsequent sections.

1) DATA PREPROCESSING
In this work, dataset preprocessing mainly includes attributes
calculation of each atom and bond, and initial featurization
using one-hot encoding.

VOLUME 8, 2020 168347



Y. Peng et al.: Enhanced GIN for Molecular ADMET Properties Prediction

FIGURE 2. The semantic structure illustration of MolGIN. MolGIN mainly consists of one or more
MolGIN convolutional layers, a node representation concatenation layer, some Batch Norm layers,
and a fully connected neural network.

TABLE 1. Features characterizing the atoms and bonds.

Firstly, given a molecular sample, the atoms and bonds
were characterized by a set of attributes, as listed in Table 1.
Then, the attributes of each atom and each bond of the molec-
ular sample were respectively calculated by the open-source
cheminformatics toolkit RDKit.

Next, the attributes of each atom and each bond were
encoded as a = α1⊕α2⊕· · ·⊕αlenA and z = β1⊕β2⊕· · ·⊕
βlenB, where a, lenA and αi denote the general atomic one-hot
vector, the number of atomic attributes, and the i-th attribute
feature of the atom, respectively; z, lenB and βi denote the
general bond one-hot vector, the number of bond attributes,

and the i-th attribute of the bond, respectively. The length ofαi
(or βi) is the number of possible values of αi (or βi). Note that
A = {a1, a2, · · · , ana} and Z = {z1, z2, · · · , znb} were used
as inputs of the aggregator component in our model, where
na, nb, aj(1 ≤ j ≤ na), and zk (1 ≤ k ≤ nb) denote the total
number of atoms, the total number of bonds, the general one-
hot vector of the j-th atom, and the general one-hot vector of
the k-th bond of the molecular sample, respectively.

2) MODEL CONSTRUCTION
We constructed a MolGIN network, as shown in Fig. 2,
to learn a predictor and graph-level embedding that can
be regarded as a task-optimized fingerprint. For simplic-
ity, MolGIN construction mainly includes the following two
steps. Firstly, we build a representation learning function
θ (·) for molecular graphs according to the method given in
section III-B. In this way, MolGIN can learn the graph-level
distributed representation vector h from the attributes of the
atoms and bonds by iteratively aggregating messages and
then performing a cross-level readout operation. We then add
a predictor, i.e. the labeling function ϑ(·), on the top of θ (·) to
produce the prediction result y for the given molecule. In this
work, on the one hand, we use the linear regression layer
formulated in (8) as a predictor for property regression.

y = ϑ(hG) = hwT + b, (8)

where h is the input feature vector of the predictor, wT and b
are the weight vector and bias. On the other hand, we use the
SoftMax layer formulated in (9) as a predictor for property
classification.

Qi = log

(
ehi∑2
k=1 e

hk

)
, i = 1, 2 (9)
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FIGURE 3. A semantic illustration of the multi-task MolGIN framework. FCN denotes the fully
connected neural network. Each task shares the components for the molecular representation learning
to learn more generalized features and has its own FCN for constructing the corresponding predictor of
its target.

FIGURE 4. The training process of MolGIN. A and Z are the atom attribute set and bond attribute set of the given molecular sample in the
dataset, respectively. L and K are the number of the MolGIN convolution layers and the number of the hidden layers of the fully
connected neural network, respectively.

whereQi is the probability that a chemical with feature vector
h belongs to the i-th label (positive or negative in this paper).
hi refers to the i-th element value of the feature vector h.
Recently, some studies have demonstrated that multi-task

learning models may offer improvements over the single-task
learning model for modeling ADMET data sets [31], [32],
[47], [48]. Following these studies, this work also builds a
multi-taskMolGINmodel, as shown in Fig. 3, to demonstrate
fair comparisons with the existing multi-task learning models
on ADMET properties prediction.

3) MODEL TRAINING
Fig. 4 shows the workflow of MolGIN training. Given a
training set {(Xi, yi)|N = |X |, 1 ≤ i ≤ N },where Xi and yi
are respectively the graph independent variables and ground-
truth values of the input data for the i-th molecule in the train-
ing data. Xi = Ai∪Zi, where Ai and Zi are the atoms attribute
set and bonds attribute set of the i-th molecule, respectively.
The MolGIN model is iteratively trained end-to-end until
the preset criterion (e.g. maximum iterations, loss threshold)
is reached. In each iteration, the model first calculates the
sample output of the training set in the feedforward direction
and tunes it by supervised backpropagation to minimize the
loss function L(·). The loss function is defined by Mean
Square Error formulated as (10) for a property regression task
(e.g. logS), or defined by Cross Entropy formulated as (11)
for a property classification task (e.g. Ames).

L(τ ) =
1
n

n∑
i=1

(yi − (ŷi|Xi; τ ))2

σ 2 , (10)

L(τ ) =
n∑
i=1

yi · log(Pi(ŷi|Xi; τ )), (11)

where τ denotes the parameter set in MolGIN, n denotes the
mini-batch size, ŷi denotes the predicted value of the i-th
training sample.

For the multi-task learning MolGIN model (MT-MolGIN),
we use the weighted sum of the losses in the backpropagation
during the training process. The weighted sum of losses for
MT-MolGIN is defined as

Lsum(τ ) =
1
M

n∑
i=1

ciLi(τ ), (12)

where, M and ci are the number of tasks and the weights
for the individual losses; Li(τ ) is the individual loss of each
task-specific layer, which is defined by (10) for the property
regression task or (11) for the property classification task.

IV. EXPERIMENTS AND RESULTS
A. BENCHMARK DATASETS
Seven public datasets are used in this work. The brief descrip-
tions of these datasets are listed below:
• LogD7.4 dataset: This is a benchmark dataset for
lipophilicity prediction. It contains experimental results
of octanol-water partition coefficients of 4200 com-
pounds at physiological pH (LogD7.4), which were
curated from ChEMBL database [34].

• LogS dataset: In this work, the LogS dataset is a solubil-
ity dataset collected from [19], known as ESOL. It con-
tains 1128 compounds with the logarithm of aqueous
solubility value in mols per liter.

• LD50 dataset: This is a dataset about the oral 50%
lethal dose in rats, usually used to evaluate the acute
oral toxicity of compounds. It contains experimental
values of 7413 chemicals that kill 50% of the treated rats
immediately or in a short time, after single or multiple
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doses administration within 24 hours. The LD50 values
are relatively difficult to predict accurately due to the
large difference between the maximum and minimum
value [49].

• PPB dataset: Plasma protein binding (PPB) has a strong
influence on the drug pharmacodynamic behavior and
its oral bioavailability, which is necessary to predict and
assay at the early stage of drug development. The PPB
dataset in this work contains 1830 compounds collected
from [50].

• Pgp inhibitors dataset: P-glycoprotein plays a vital role
in pharmacokinetic processes such as absorption, dis-
tribution, metabolism, and excretion. The Pgp-inhibitor
dataset in this work contains 1275 compounds that were
collected from [51].

• Ames dataset: This Ames dataset contains the Ames
testing experiment mutagenicity data of 7619 com-
pounds collected from the previous work [52], and is
widely used to develop good in-silico models for com-
pounds mutagenicity prediction instead of Ames testing.

• Tox21 dataset: This Tox21 dataset is used in the
Tox21 Data Challenge launched by the United States
agencies (NIH, EPA and FDA) [53]. It is a benchmark
toxicity prediction database that comprises 12 differ-
ent cellular assays values of 8458 compounds corre-
sponding to 12 different targets [19]. Twelves different
cellular assays correspond to 12 classification tasks,
although there are some missing values in each cellular
assay [10], [19].

The statistical information of these datasets is shown
in Table 2.

TABLE 2. Statistics of the ADMET properties datasets.

B. EXPERIMENTAL SETUP
1) PERFORMANCE EVALUATION METHOD
To evaluate the model performance, following the previous
works [19], [51], [54], we used the root mean squared error
(RMSE) for regression tasks and area under the receiver-
operating characteristic curve (AUC) for classification tasks.
Note that RMSE and AUC are the most used benchmark
metrics for evaluatingmolecular properties predictionmodels

in recent year. Higher AUC is better for classification tasks,
while lower RMSE is better for regression tasks.

To verify the advantage of the proposed method, we first
evaluated MolGINs (i.e. single- and multi-task MolGIN
models, denote by ST-MolGIN and MT-MolGIN, respec-
tively.) against 4 baseline comparative models. Two of
these baseline models were descriptor/fingerprint-based
models and the other two are GNN models. These two
descriptors/fingerprints-based models were fully connected
Deep Neural Network (FDNN) and Random Forest (RF),
which are the most widely used models by major pharma-
ceutical companies [5]. The two GNN baseline models were
GIN detailed in Section II-B and GCN [31]. GCN is the most
used GNN for ADMET properties prediction in recent years.

Besides, there are 39 state-of-the-art models published in
the last three years for different ADMET datasets, as listed
in Table 3. These models including single- and multi-task
learning models can be roughly categorized into shallow
machine learning models, deep learning models, and their
hybrid models. To the best of our knowledge, no model has
been demonstrated its performance on all datasets in this
work, each model on only some of these ADMET datasets.
Therefore, we also compared results of our proposed model
with these 39 state-of-the-art results on different ADMET
datasets to verify the advantage of our MolGIN.

To obtain unbiased and objective results, 5-fold cross-
validation and external test were used to assess the perfor-
mance comparison between MolGIN and all baseline models
for each dataset. We randomly selected 85% samples for
5-fold cross-validation and then used the remaining samples
as an external test set. Each comparison experiment was run
20 times independently, and its final experiment result was
the average value of 20 runs.

Following the previous work [19], [51], this work used
ECFP4 fingerprints as the input data for FDNN and RF mod-
els, while the input data for GCN, GIN, andMolGINwere the
same as themolecular graphs described in Section III-C1. The
initial feature data of molecular graphs and all ECFP4 finger-
prints in this work were computed by the cheminformatics
toolkit RDKit.

2) HYPERPARAMETER SETTING
For fairness and convenience, in this work, MolGIN and
GIN used the same hyperparameter settings, following the
hyperparameter settings of the previouswork [33], as follows:
the numbers of GNN layers (including the input layer) and
MLP layers were 5 and 2, respectively; Batch normaliza-
tion was applied on each hidden layer; an Adam optimizer
with initial learning rate 0.01 and a learning rate decay with
0.5 every 50 epochs were applied; the number of hidden
units ∈ {16, 32} and the dropout ratio ∈ {0, 0.5} and the
batch size ∈ {32, 128} were tuned for each dataset [33].
The same hyperparameters are used in the multi-task model
MT-MolGIN.

The hyperparameter setting of GCN followed the hyper-
parameter settings of Montanari’s single-task work [31].
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TABLE 3. Summary of state-of-the-art models for different ADMET datasets.
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TABLE 4. Performance comparison between MolGIN and baseline models on regression datasets.

TABLE 5. Performance comparison between MolGIN and baseline models on classification datasets.

The hyperparameter setting in FDNN followed the hyper-
parameter setting of Jan’s single-task work [48]. Due to
the space limitations, hyperparameters details for the GCN
and FDNN are not listed here, see [31] and [48] for more
details, respectively. The hyperparameters in RF are set to
their default values in the Scikit-learn toolkit.

C. RESULTS AND DISCUSSION
We evaluated the effectiveness of our enhanced method for
building the graph neural network to learn molecular rep-
resentations from atoms and bonds data, comparing with
RF, FDNN, GCN, GIN, and 39 state-of-the-arts models (see
in Table 3) on 7 ADMET datasets. Among these models,
there are various shallow machine learning and deep learning
models with different architectures and input data. Some of
them are multi-task models or ensemble models. Note that,
in this work, all comparative state-of-the-art values are cited
from the corresponding original references. The comparison
results are detailed in the following subsections.

1) COMPARISON WITH BASELINE MODELS
In this section, we first compared our MolGIN with the
baseline modes in terms of RMSE on four ADMET regres-
sion datasets. Table 4 shows the comparison results of these
regression tasks.

The comparison results in Table 4 show that, no mat-
ter on 5-fold cross-validation or external test, MolGIN
significantly achieved lower errors than not only the
descriptors/fingerprints-based baseline models but also the
end-to-end learning GNN baseline models on all 4 ADMET
regression tasks. The ESOL and LogD7.4 tasks were the

two most profitable ADMET regression using MolGIN. For
ESOL prediction, the single-task MolGIN improved 40.10%,
33.14%, 39.42%, and 10.06% comparing with RF, FDNN,
GCN, and GIN on the test set, respectively. For LogD7.4 pre-
diction, the single-task MolGIN improved 29.75%, 28.80%,
11.16%, and 10.34% comparing with RF, FDNN, GCN, and
GIN on the test set, respectively. Although LD50 prediction
was the least beneficial among the four ADMET regres-
sion tasks using MolGIN, the single-task MolGIN improved
17.16%, 8.89%, 5.96%, and 2.50% comparing with RF,
FDNN, GCN, and GIN, respectively. Besides, the experi-
mental results in Table 4 show that the multi-task MolGIN
(MT-MolGIN) achieved significant improvement on LogD7.4,
PPB, and LD50 datasets, but decreased a bit on LogS dataset.
This largely may because there are correlations among the
acute oral toxicity, octanol-water distribution coefficient, and
plasma protein binding of chemicals.

Then, we compared MolGIN to the baseline models in
terms of AUC on three ADMET datasets of classification.
Table 5 shows the comparison results of these classification
tasks, in which we can observe that, like on ADMET regres-
sion tasks, MolGIN significantly outperforms not only RF
and FDNN models but also the GCN and GIN models on all
classification tasks in this work.

Among these ADMET classification tasks, the mutagenic-
ity predictions by MolGIN totally benefited the most com-
paring with the baseline models. The single-task MolGIN
improved 2.57%, 17.09%, 8.13%, and 2.18% comparing
with RF, FDNN, GCN, and GIN on the test set of the
Ames dataset, respectively. Although Pgp-inhibitor predic-
tion was the least beneficial among all 7 ADMET tasks using
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MolGIN, the single-task MolGIN improved 1.97%, 4.14%,
3.79%, and 2.99% comparing with RF, FDNN, GCN, and
GIN. Formulti-task learning,MolGIN significantly benefited
from multi-task learning on the Tox21 dataset, since there
may be intrinsic relationships among the 12 subtasks in the
Tox21 dataset as reported in [53]. In contrast, MT-MolGIN
did not significantly improve on the Pgp-inhibitor dataset,
even slightly declined on the Ames dataset than ST-MolGIN.
This largely may because there is no strong correlation
between the Pgp-inhibitor and Ames datasets. However,
the multi-task models obtained a small improvement on the
Pgp-inhibitor dataset, which may be because the multi-task
data fusion properly added noise into the small Pgp-inhibitor
dataset, thereby enhancing the robustness of the models.

Notably, the proposed MolGIN (single task) improved sig-
nificantly when directly comparing with GCN on all ADMET
datasets, by 2.65% to 39.42% in external tests and by 2.30%
to 39.44% in 5-fold cross-validation, as shown in Table 6.
This indicates that MolGIN’s molecular modeling capabili-
ties are much better than that of GCN, though GCN was the
most commonly used GNN inmolecular modeling for the last
three years.

TABLE 6. Direct comparison with GCN and MolGIN (single-task).

More importantly, MolGIN (single-task) does achieve
better performance in direct comparison with GIN on
all ADMET datasets, improving by 2.23% to 10.34% on
external tests and by 1.44% to 11.41% on 5-fold cross-
validation, as shown in Table 7. This shows that MolGIN
has better molecular modeling capabilities than that of
GIN, for MolGIN exploits the bond characteristics and
the strength information of different atom-atom interactions
based on GIN.

In conclusion, MolGIN significantly outperforms all base-
line models on all ADMET datasets in this work, including
the recent outstanding GNN models: GCN and GIN. This
demonstrates the effectiveness and advantage of MolGIN.

In addition to RMSE and AUC, which are the most widely
used evaluation metrics in molecular property prediction,
we also used accuracy (ACC) for classification datasets and
square correlation coefficients (R2) for regression datasets to
evaluate the performance of the proposed model and base-
line models. Figs. 5 and 6 show the ACC and R2 scores in
external tests of the comparative models on the classification

TABLE 7. Direct comparison with GIN and MolGIN (single-task).

FIGURE 5. Comparison ACC results in external tests of different models
on the classification datasets.

FIGURE 6. Comparison R2 results in external tests of different models on
the regression datasets.

and regression datasets. Comparison results in Figs. 5 and 6
show that MolGIN outperformed all baseline models on
5/7 datasets, although it achieved lower R2 score than RF on
LogD7.4 and LogS datasets. Moreover, MolGIN is the only
one in the comparative models that satisfied R2 > 0.6 on
all four regression datasets. The evaluation of R2 > 0.6 was
suggested as a strict criterion for a practical regression-like
QSAR/QSPR model [50], [70].

2) COMPARISON WITH STATE-OF-THE-ART RESULTS
In this section, we compare MolGIN with state-of-the-art
models including a variety of shallow machine learning
models and deep-learning models on the test sets of the
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FIGURE 7. Comparison results of different methods on the LogD7.4 dataset. The MoleculeNet-best and
ADMETLab-best represent the best results of various models in MoleculeNet and ADMETLab platforms on the
LogD7.4 dataset, respectively. Our MT-MolGIN outperformed Multi-SAMPN (a multi-task SAMPN model, detailed
in Table 3), leading state-of-the-art on the LogD7.4 dataset.

FIGURE 8. Comparison results of different methods on the PPB dataset. The admetSAR 2.0-best and
ADMETLab-best represent the best result of various models in the admetSAR 2.0 and ADMETLab platforms
on the PPB dataset, respectively. Our MT-MolGIN and ST-MolGIN won the first and second among all
comparative models, respectively.

corresponding ADMET datasets. The comparison results on
the LogD7.4, PPB, LD50, ESOL, Ames, Pgp-inhibitor, and
Tox21 datasets are shown in Figs.7-13, respectively.

From Figs.7-8 and 12-13, we observe that MolGIN outper-
formed all other models on the LogD7.4, PPB, Pgp-inhibitor,
and Tox21 datasets. MolGIN produced 4 new state-of-the-
art results on 7 benchmark ADMET datasets, winning the

most in all comparative models. Besides, we also observe
from Figs.9 and 11 thatMolGIN, respectively, ranked the sec-
ond among all comparative models on the LD50 and Ames
datasets, and ranked the fifth out of 21 comparative models
on the ESOL dataset, as shown in Fig.10.

In summary, the overall performance of MolGIN is sig-
nificantly better than that of other state-of-the-art models.
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FIGURE 9. Comparison results of different methods on the LD50 dataset. The BTAMDL1-best, BTAMDL2-best, GBDT-best,
Top-best, Top-MT-DNN-best, and admetSAR 2.0-best represent the best results of BTAMDL1, BTAMDL2, GBDT, Top, Top-MT-DNN,
and admetSAR 2.0 models/platforms using various types of input data on the LD50 dataset, respectively. Our MT-MolGIN won
the second among 11 comparative models.

FIGURE 10. Comparison results of different methods on the ESOL dataset. The admetSAR 2.0-best, MoleculeNet-best, and
ADMETLab-best represent the best results of various models in the admetSAR 2.0, MoleculeNet, and ADMETLab platforms on the
ESOL dataset, respectively. Our ST-MolGIN won the fifth among 18 comparative models.

MolGIN thus is very powerful alternative framework for
molecular ADMET properties prediction.

3) ABLATION STUDY
To explore the effect of individual components in MolGIN,
we conducted an ablation study on the ADMET classifica-
tion datasets. Specifically, we separately removed the bond
feature concatenation and neighborhood weight adjustment

from theMolGIN architecture respectively, while keeping the
other components unchanged. The model that removed the
bond feature concatenation from MolGIN named MolGIN-
bond, while the model that removed the neighborhood
weight adjustment named MolGIN-interact. The ablation
study results are showed in Table 8.

From Table 8, we can observe that the MolGIN perfor-
mance is significantly affected by the bond feature con-
catenation and neighborhood weight adjustment. When the
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FIGURE 11. Comparison results of different methods on the Ames dataset. The admetSAR 2.0-best represents the best result of
various models in the admetSAR 2.0 platform on the Ames dataset. Our ST-MolGIN and MT-MolGIN won the second and third among
12 comparative models, respectively.

FIGURE 12. Comparison results of different methods on the Pgp-inhibitor dataset. The admetSAR 2.0-best and
ADMETLab-best represent the best results of various models in the admetSAR 2.0 and ADMETLab platforms on the
Pgp-inhibitor dataset, respectively. Our MT-MolGIN and ST-MolGIN won the first and second among all comparative
models, respectively.

TABLE 8. Ablation study results (AUC) on ADMET classification datasets.

bond feature concatenation was removed, in terms of AUC
on the Pgp-inhibitor, Ames, and Tox21 datasets, MolGIN
respectively reduced by 1.61%, 0.98%, and 1.06% but still
respectively improved by 1.66%, 1.22%, and 1.32% com-
pared with GIN. When the neighborhood weight adjustment
was removed, in terms of AUC on the Pgp-inhibitor, Ames,
and Tox21 datasets, MolGIN respectively reduced by 2.57%,
1.63%, and 1.88% but still respectively improved by 0.66%,
0.56%, and 0.48% compared with GIN.

4) DISCUSSION
Our experimental comparison results on 7 ADMET datasets
showed that GIN significantly outperforms GCN on not

only all 5-fold cross-validations but also all external tests.
It is largely because GIN has the more expressive power
to capture different graph structures than GCN. This find-
ing is consistent with the finding of [33] that GIN has the
most expressive among the class of GNNs including GCN
not only empirically but also theoretically. Xu et al. [33]
has also theoretically proved that the GIN architecture is
as powerful as the Weisfeiler-Lehman graph isomorphism
test [44].

More importantly, the experimental comparison results
showed that in terms of RMSE and AUC, our enhanced
GIN, i.e. MolGIN, significantly outperformed all baseline
models including GIN on all datasets, and achieved the best
performance on 4 datasets and the second-best performance
on 2 datasets when comparing to 39 state-of-the-art models.
MolGIN overall won the best among all comparative models.
These results demonstrate that MolGIN has powerful molec-
ular modeling and ADMET properties prediction capabilities
based on the GIN model. This is largely because MolGIN
not only inherits the strong discriminative/representational
power of GIN, but also exploits the molecular characteristic
information in molecular modeling.
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FIGURE 13. Comparison results of different methods on the Tox21 dataset. The MoleculeNET-best represents the best result of
various models in the MoleculeNET platform on the Tox21 dataset. Our MT-MolGIN and ST-MolGIN won the first and second
among 15 comparative models, respectively.

Especially, in direct comparison with GIN, MolGIN
achieved significantly better performance than GIN across
all datasets, improving performance from 1.44% to 11.41%
on 5-fold cross-validations and from 2.23% to 10.34% on
external tests. This reveals the advantages of our MolGIN
exploiting the molecular bond features and differences influ-
ence between the central atom and its neighbors base on
GIN. Furthermore, when we removed the bond feature con-
catenation or neighborhood weight adjustment from the
MolGIN architecture, the AUC of MolGIN dropped but still
improved compared with GIN, as shown in Table 8. Results
above strongly supports that the molecular characteristics,
i.e. bond features and the differences of the atom-atom inter-
actions, can effectively help the GNN to learn more local
structural features of molecules, thereby boosting molecular
ADMET properties prediction. The results in Table 8 show
that MolGIN removing bond feature concatenation has a
greater effect on performance than removing the neighbor-
hood weight adjustment. It reveals that the bond feature is
meaningful than the feature of differences influence between
the central atom and its neighbors in the MolGIN architec-
ture for ADMET properties prediction. More interestingly,
MolGIN simultaneous removing the bond feature and the
feature of differences influence strength of atom-atom inter-
actions had a greater impact on model performance than
the sum of MolGIN removing only bond information and
MolGIN removing only the feature of differences influence
between the central atom and its neighbors. It reveals that
the feature combination of molecular bond and atom-atom
interactions’ strength differences is more meaningful than the
simple sum of the bond feature and the feature of atom-atom
interactions’ strength differences for MolGIN.

The evaluation of the models performance in terms of
R2 shown in Fig. 6 demonstrates that MolGIN satisfies
the strict evaluation of R2 > 0.6 on all four regression
datasets, this strict evaluation is for a practical regression-
like QSAR/QSPR model according to the suggestions from
Wang et al. [50], Tropsha et al. [70]. This means that our
proposed model can be a practical predictive model and could
be helpful for fast estimating ADMET properties of new
chemical entities even to the high-throughput screening.

It is noteworthy that the finding that exploiting bond
features can improve the molecular properties prediction is
consistent with the EMNN model in Withnall’s study [56].
However, our MolGIN significantly outperforms EMNN on
2/3 datasets, as shown in Figs.7 and 13, and achieved com-
parable performance to EMNN on 1/3 datasets in this work,
as shown in Fig.10. This may be because MolGIN uses better
network architecture, the special information of atom-atom
interactions, and different way of exploiting bond features
comparing to EMNN.

Furthermore, the finding in this work will facilitate further
research on the boosting molecular modeling and its applica-
tion in bioinformatics and cheminformatics.

V. CONCLUSION
GIN has the maximum discriminative/representational power
from different graph structures and quantifies generalization
ability than other previous GNN architectures [33], thereby
being quickly attracted extensive attention in GNN research
community and used in graph data problems. However, GIN
has not fully exploited the characteristic information of the
molecular graph, failing to fully exploit its molecular model-
ing capability.
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To tackle the aforementioned problem, based on GIN, this
work mainly exploited molecular characteristics, i.e. bond
features and differences in the interaction strength between
the central atom and its neighbors, to enhance the molec-
ular modeling capability and to boost ADMET properties
prediction. We hence proposed an enhanced GIN, called
MolGIN, for ADMET properties prediction. MolGIN was
implemented by concatenating feature vectors of the atom
neighbors and the bonds connecting with the atom and adding
a control gate unit to adjust the neighborhood weights in the
information aggregator.

We carried out extensive performance evaluation by com-
paring our method with not only GIN and other 3 baseline
models but also a collection of state-of-the-art results on
7 different ADMET datasets. Experimental results in terms
of RMSE and AUC show that MolGIN significantly outper-
formed GIN and other baseline models in effectiveness mea-
sure, and achieved comparable or superior performance to
state-of-the-art models on the corresponding tasks. MolGIN
provides a potential way for large-scale chemical ADMET
properties prediction. The proposed method is also promising
for other molecular modeling problems in bioinformatics and
cheminformatics.

However, similar to other deep learning methods, the
MolGIN model still lacks interpretability. It is difficult to
clearly recognize which substructures of the molecule play
important roles in the prediction task. We will study to
improve the model interpretability in the future.
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