
Received August 13, 2020, accepted August 29, 2020, date of publication September 9, 2020, date of current version September 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022847

Constraint-Based Schedulability Analysis in
Multiprocessor Real-Time Systems
HYUK LEE AND JIN-YOUNG CHOI , (Member, IEEE)
School of Cybersecurity, Korea University, Seoul 02841, South Korea

Corresponding author: Jin-Young Choi (narnia@korea.ac.kr)

This work was supported by the Next-Generation Information Computing Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant 2017M3C4A7083676.

ABSTRACT As the demand for more functions and capabilities in the system increases, the application
of multiprocessors has brought advantages in many ways. Many systems now have multiprocessors, and
safety-critical systems with real-time properties are no exception. In these systems where the satisfaction of
real-time properties is directly linked to the safety of life, the predictability of the behavior is very important,
and the behavior of the system can be predicted using the schedulability analysis. In this paper, we propose
the schedulability analysis of a real-time system in a homogeneous multiprocessor environment through
constraint solving approach. First, the constraints that must be satisfied in order for the system to function
properly were derived. These include the constraints of the task behavior, the scheduling behavior, and the
operating conditions of a homogeneousmultiprocessor environment. Once all the constraints were identified,
they were encoded in the form of first-order logic expressions. The encoded constraints are then entered into
a constraint solver along with a set of tasks. Finally, the solver provides a schedulable answer if the set of
tasks satisfies all the constraints.

INDEX TERMS Constraint satisfaction problem, satisfiability modulo theories, real-time schedulability
analysis, multiprocessor schedulability analysis.

I. INTRODUCTION
Multiprocessors systems are used in a variety of applications,
including safety-critical systems with real-time properties,
such as control systems used in automotive and avionics [1].
The complexity of the system has increased and the function-
ality that was previously implemented in hardware has been
replaced by software. Thus, the multiprocessor paradigm has
brought efficient and better computing power to improve the
functionality and capability of the software [2]. However,
in order to ensure real-time properties in safety-critical sys-
tem, the behavior of the system must be predictable, which
can be achieved through a schedulability analysis [3].

There are two approaches to schedulability analysis in
multiprocessor systems: utilization bound tests and sim-
ulation [3]–[13]. Schedulability analysis using utilization
bound tests provides safe results but lacks flexibility, whereas
simulation-based analysis is flexible but not safe because it
cannot be applied to all possible state traces. There are various

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

studies using model checking techniques to overcome the
shortcomings of simulation by identifying all possible status
traces. However, there is still the problem of state explosion,
which is the limitation of the model checking techniques.
In this paper, the framework we proposed uses a constraint
solving approach that does not have a state explosion problem
to solve scheduling problems.

Our approach considers the scheduling problem as a con-
straint satisfaction problem and focuses on whether a given
set of tasks satisfies the constraints. The motivation of this
paper is to present how a real-time system in a homogeneous
multiprocessor environment can be encoded into a set of con-
straints, and that a real-time schedulability can be analyzed by
showing satisfiability of such a set of constraints.

We define the system model which we used in schedula-
bility analysis of real-time systems in a homogeneous mul-
tiprocessor environment. Also, we identify constraints for
schedulability analysis in the system model. Once the sys-
tem model definition and constraints identification is done,
we encode these into the form of simple, clear, and strict log-
ical expressions using first-order logic. In doing so, we create

165168 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2441-709X
https://orcid.org/0000-0002-8100-7583
https://orcid.org/0000-0001-7300-9215

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

a set of constraints that let us know whether a given set
of tasks can be scheduled according to a specific schedul-
ing policy. In this paper, we have employed a preemptive
dynamic-priority scheduling algorithm. The constraint set is
used as an input to the satisfiability modulo theories (SMT)
solver along with the set of tasks for which we want to
analyze the scheduleability. SMT solver returns a model of
interpretation if all of the constraints are satisfied, otherwise,
it returns Unsatisfiable. This indicates whether a given set of
tasks can be scheduled or not.

In this paper, we propose extension of our past method
[14] which can be applied to a real-time system in a homoge-
neous multiprocessor environment. The contributions of this
paper are 1) A method for transforming a real-time system
in a homogeneous multiprocessor environment into a set of
constraints of simple, clear, and strict logical expressions is
proposed, 2) A way to prove that a real-time schedulability
in a homogeneous multiprocessor environment can be ana-
lyzed by showing satisfiability of such a set of constraints is
presented.

The remainder of this paper is structured as follows.
We discuss different methods for schedulability analysis in
a multiprocessor environment based on formal techniques in
Section II. In order to represent real-time systems in a multi-
processor environment as a set of constraints, we define sys-
tem model in Section III. Section IV identifies the constraints
of the systemmodel and represents them in the form of logical
expressions using first-order logic. The implementation and
examples of the proposed method are described in Section V.
In Section VI, we present the conclusions of this paper and
discuss future research.

II. RELATED WORK
Analytical approach, such as utilization bound test, is difficult
to apply to complex systems with multiprocessors or hier-
archies. In these system environments, a simulation-based
approach is more appropriate, but the aforementioned dis-
advantages must be overcome. For this reason, many studies
of simulation-based schedulability analysis have considered
various formal modeling languages [15]–[24]. Especially,
timed automata (TA) have been usedwidely to specify system
models [20], [24]–[29]. Krcal et al. [25] propose schedulabil-
ity analysis using task automata (TA extended with tasks),
and focus on partitioned scheduling (i.e., Each task runs
on a fixed processor and cannot be migrated to another
processor). Guan et al. [20] also use TA to specify system
models. However they use UPPAAL as a modeling tool and a
model checker of a given system model. In [26], Guan et al.
use NuSMV as a modeling tool in a similar way. Also,
Gu et al. [28] use MPETA which is an extension of TA
for multiprocessor scheduling. Boudjadar et al. [24] propose
Job automata with hierarchical scheduling framework, which
separate task instantiation from task automata in [30]. Other
than techniques based on TA, Oğuz et al. [31] use timed
CSP as a modeling language and PAT model checking for
non-preemptive fixed-priority multiprocessor scheduling.

Model checking tools such as UPPAAL, NuSMV, and PAT
are very useful tools and they provide a fast, automated veri-
fication technique. However, the model checking technique
itself has a state-explosion problem in which the number
of states increases exponentially as the number of variables
increases [32]–[34]. Unlike model checking, our approach,
constraint solving with boolean satisfiability problem (SAT)
which is based on boolean expressions does not suffer from
the state-explosion problem.

At a very abstract level, the difference between our
approach and model checking is as follows. In model check-
ing, the system behavior model is built using modelling
language, and verification properties (e.g., schedulability)
are translated in temporal logic. The model checker then
finds out whether the property is true in the system behavior
model. On the other hand, in our approach, the constraints
of system behavior and schedulability condition (i.e., what
must be satisfied at each behavioral step) are modelled in a
first-order logic based language. Then, the constraint solver
finds an interpretation that satisfies all of the constraints.
Our approach uses SMT, an extension of the SAT, which
uses first-order logic with some useful theories such as linear
arithmetic theory, bit vectors, arrays, and strings for problem
solving [35].

In addition to the techniques mentioned above, there
are studies that analyze the schedulability as a constraint
problem. Kwak et al. [16] present schedulability analysis
framework based on Algebra of Communicating Shared
Resources with Value Passing (ACSR-VP). The specification
in ACSR-VP is analyzed by means of a symbolic algo-
rithm to produce a set of the predicate equations that can
be solved later by a constraint solver. However, they do
not attempt to solve these constraints in their work. Also,
a process algebraic approach uses a parallel composition
method to simulate the behavior of the tasks together, which
can cause scalability limitations. Hong et al. [36] propose a
SAT-based scheduling method to solve the dynamic offline
scheduling problem in big data processing system. They
focus on finding schedulable answers through the SAT solver,
not schedulability analysis in a given scheduling policy.
Zhang et al. [37], [38] propose a framework of transform-
ing the scheduling problem of Clock Constraint Specifica-
tion Language (CCSL) into SMT-based decision procedure.
Pedro et al. [39] also propose a transformation of a scheduling
problem in Restricted Metric Temporal Logic with dura-
tions (RMTL-

∫
) into the Satisfiability Modulo Theories

Library (SMT-LIB) language. Cheng et al. [22], [23] pro-
pose SMT-based scheduling method for overloaded real-time
systems in a uniprocessor and multiprocessor environment.
In this case, they focus on maximizing the number of schedu-
lable tasks without a specific scheduling algorithm. However,
our work is aimed at scheduling hard real-time tasks using
conventional scheduling disciplines. Our previous work [14]
presents constraint solving approach to schedulability anal-
ysis in a uniprocessor environment. The main differences
from our previous work [14] are 1) Task behavior model is

VOLUME 8, 2020 165169

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

FIGURE 1. Overview of the proposed approach.

generalized for better expression and 2) The framework is
extended to represent the task behavior in a multiprocessor
environment, as shown in Fig. 1.

III. SYSTEM AND TASK BEHAVIOR MODEL
A. SYSTEM MODEL
A real-time system consists of a set of real-time tasks 0 =
(τ1, τ2, · · · , τn) and a real-time task τi, where τi ∈ 0, is char-
acterized by τi = (Ci,Di,Ti) in which Ci is a worst-case
computation time, Di is a deadline, and Ti is a period for task
τi respectively. For a periodic task τi, Ti represents the period
of the task such that the time interval between the release of
jobs separated by Ti. If a task τi has an implicit deadline,
that is, the deadline of τi is equal to the period (i.e., Di =
Ti), then the deadline can be omitted as τi = (Ci,Ti). In a
homogeneous multiprocessor environment, scheduling a set
of tasks is done onm identical processors, P = {p1, · · · , pm}.
We assume that the time domain uses discrete time in our
approach. Further assumptions for the tasks are as follows:

• All tasks are periodic
• All tasks have known worst-case computation time

TABLE 1. Symbols and Definitions.

• All tasks have implicit deadline
• All tasks arrive and are released at the same time
• All tasks are independent, with no shared resources
• All costs for context switching and migration overhead
are ignored (assuming they are included in worst-case
computation time).

1) SCHEDULABILITY
For a given set of tasks, if all tasks can complete the execution
time for their periods, the task set is said to be schedulable.

A periodic task is that the task is regularly invoked with
the fixed time interval. When scheduling periodic tasks, there
exists a certain behavioral pattern that repeats infinitely. It is
called a hyper-period.

2) HYPER-PERIOD
The hyper-period of a task set is the minimum time interval in
which the periodic pattern of all tasks is repeated. It is defined
as the least common multiple (LCM) of all task periods
(T0 = lcm(T1, · · · ,Tn)).
Lemma 1: If a periodic task set S can be scheduled up to

the hyper-period, then S is schedulable [40].
Our task model is based on preemptive dynamic-priority

scheduling. In our task model, the general behavior of task
execution can be described in two perspectives (i.e., task per-
spective and scheduler perspective). From a task perspective,
the task execution within a period can be briefly described as
follows. If the task consumed all of its computation time, then
the task remains idle until the next period. Otherwise, the task
is assigned a priority according to the scheduling policy and
waits for execution. From the viewpoint of the scheduler,
the task execution in the period can be described as follows.
If there is an available processor, the processor executes one
task. Or, if more than one processor is available, the processor
executes the same number of tasks as the available processor,
in the highest priority order. Otherwise, no tasks are executed.
For a given set of tasks, if all tasks are appropriately allocated
and schedulable across multiple processors, then the set of
tasks is schedulable in a given multiprocessor environment.

The timing graph in Fig. 2 shows the typical scheduling
behavior of task set 01 under global rate monotonic (G-RM)
scheduling algorithm in a multiprocessor environment with

165170 VOLUME 8, 2020

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

FIGURE 2. Multiprocessor scheduling task set 01 under G-RM.

two processors, where 01 = {τ1, τ2, τ3}, P = {p1, p2},
τ1 = (1, 3), τ2 = (2, 3), and τ3 = (3, 3). The priority is
(τ3 > τ2 > τ1), and the up and down arrows indicate the
beginning and end of the each task period, respectively. In
Fig. 2, processors p1 and p2 execute both τ3 and τ2, con-
currently. For each processor, task is selected for execution
according to the scheduling policy. However, subtask-level
parallelism is not allowed. That is, at time instant zero, τ3
which is the highest priority, can not be executed in parallel
on both processors p1 and p2.

3) MULTIPROCESSOR SCHEDULABILITY
In a multiprocessor environment, a real-time system is said
to be schedulable with a certain scheduling algorithm if, it is
possible to find a mapping from tasks to processors such
that all the tasks are schedulable with the certain scheduling
algorithm.

In a multiprocessor environment, scheduling methods can
be split in two major ways. One is global scheduling with a
common ready queue for all processors, and the other is a
partitioned scheduling with a ready queue dedicated to each
processor. There is also a semi-partitioned scheduling that
combines twomethods that are not yet popular. Each schedul-
ing method has advantages and disadvantages. In partition
scheduling [41]–[45], each processor has a dedicated ready
queue, which has the advantage of being able to apply a
uniprocessor scheduling algorithm.However, proper distribu-
tion of tasks is another issue that needs to be addressed and is
known to be solvable by the bin packing algorithm [46]. There
are many studies on constraint-based approaches in the bin
packing algorithm [47]–[51]. In global scheduling [44], [45],
all processors use a common ready queue, so tasks are not
dependent on any processor. In other words, task migra-
tion can make processor operations more efficient. However,
the optimal scheduling algorithm used in a uniprocessor envi-
ronment can no longer guarantee optimal results.

Scheduling disciplines are algorithms that determine how
resources are allocated [4]. Well-known scheduling algo-
rithms in a uniprocessor are Rate Monotonic (RM), Earliest
Deadline First (EDF), and Least Laxity First (LLF). Their
extensions are G-RM, G-EDF, and G-LLF, which can also
be used for global scheduling in a multiprocessor environ-
ment. While these scheduling algorithms no longer guarantee

optimal scheduling results, the proposed approach focuses on
constraint-based methodology rather than finding the optimal
solution. The following formulas are used to calculate task
priority at a kth step:

• G-RM: Dmax − Ti
• G-EDF: Dmax − (Di − (k mod Ti))
• G-LLF: Dmax − (Di − (k mod Ti)− (Ci − ctki))
where Dmax = 1+max(Di)

B. COMPARING TASK BEHAVIOR MODEL
In our previous work [14], we considered scheduling in a
uniprocessor environment and used a state-based task behav-
ior model. The state-based task behavior model and the
execution-based task behavior model are briefly described as
follows.

In the state-based task behavior model, the state of a task is
determined based on the current status of the state variables
(i.e., accumulated execution time and the elapsed time of a
task). The task is in one of the following four states: Start,
Wait, Ready, and Deadlock, depending on whether the com-
putation time is left and the time to deadline is left. Start state
indicates that the task has reached its deadline and that the
computation time is complete. If the task has not reached
its deadline, it is in Wait state when the computation time
is complete, and in Ready state if the computation time is
not completed. Deadlock state indicates that the task has
reached its deadline but has not completed its calculation
time. The term Deadlock was used to indicate that the task
was in a dead-end state where it could no longer proceed. The
state transition occurs according to the priority of the current
state and determines the next state which changes the state
variables of all tasks.

The main advantage of using the state-based task behavior
model is that the constraint encoding for state transitions is
straightforward. However, expanding the task model into a
multiprocessor environment complicates the state transition
rules and reduces the flexibility of constraint encoding.

In this paper, we use a basic behavior model, which is an
execution-based behavior model for scheduling in amultipro-
cessor environment. In the execution-based behavior model,
tasks consume computation time independently of each other.
Therefore, constraint expressions for task execution behavior
can be easily extended. The basic task execution constraints
are as follows. A task must complete their computation time
before its deadline. The number of tasks that can be exe-
cuted simultaneously cannot be greater than the number of
processors.

IV. ENCODING CONSTRAINTS
In this section, constraints for the schedulability analysis are
described, and the constraints encoded in first-order logic are
presented. The constraint encoding of schedulability anal-
ysis is roughly divided into three categories. The first is
constraints on the general behavior that a task must satisfy.
The second is the constraints for a task to be executed in a

VOLUME 8, 2020 165171

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

multiprocessor environment. The third is the constraints that
must be satisfied in order for the task to be schedulable.

The variables used for the constraints are es, ct , tp, and k ,
representing execution status, computed time, task priority,
and step index, respectively. Execution status describes the
task execution (i.e., TRUE or FALSE), and eski,j represents
the execution status of task τi in processor pj at a kth step.
Computed time describes the number of jobs that the task
executed, and ctki represents the computed time of task τi at
a kth step. Similarly, tpki represents the priority of task τi at a
kth step.

A. TASK BEHAVIOR CONSTRAINTS
The following constraints must be satisfied in order for the
task to be schedulable. The schedulability of periodic task sets
can be verified by schedulability analysis up to hyper-period
by Lemma 1. Therefore, all tasks in 0 must satisfy the fol-
lowing constraints for any step index k within T0 .

1) EXECUTION RANGE
The computed time cannot exceed the computation time
or be negative. This constraint indicates that the task can
execute only as much as the computation time. Based on
these attributes, the constraints on the computed time can be
defined as (1):

ExecRange
def
= ∀τi ∈ 0 ∀k ∈ {0, · · · ,T0}(

ctki ≥ 0 ∧ ctki ≤ Ci
)

(1)

2) INSTANT EXECUTION
In order to prevent unnecessary resource waste, the ready
tasks are executed immediately when resources are available.
Based on these attributes, the constraints for instant execution
can be defined as (2):

InstExec
def
= ∀τi ∈ 0 ∀k ∈ {0, · · · ,T0}(

(tpki > 0)→
(
∃pj ∈ P(eski,j == TRUE)

)
∨(

∀pj ∈ P ∃τi′ ∈ 0 (i 6= i′) ∧

(tpki′ ≥ tp
k
i) ∧ (eski′,j == TRUE)

))
(2)

3) ASSIGN PRIORITY
This constraint guarantees that the appropriate priority is
assigned to the tasks which have not yet completed execu-
tion, according to the scheduling policy. The tasks that have
completed their execution time receives the lowest priority.
The calculation of priorities for scheduling policies (e.g., G-
RM, G-EDF, and G-LLF) can be done using the formulas
provided in the previous section. Based on these attributes,
the constraints for assign priority can be defined as (3):

AssignPriority
def
= ∀τi ∈ 0 ∀k ∈ {0, · · · ,T0}((

(ctki < Ci)→ (tpki == Priority)
)

∧
(
(ctki ≥ Ci)→ (tpki == 0)

))
(3)

4) TASK IDLE
Tasks that have completed their computation time remain
idle. TaskIdle is closely related to the ExecRange and Assign-
Priority. Tasks can only be executed as much as their compu-
tation time, and once the computation time is complete during
that period, they receive the lowest priority. This constraint
indicates that the task with the lowest priority must not be
executed. Based on these attributes, the constraints for task
idle can be defined as (4):

TaskIdle
def
= ∀τi ∈ 0 ∀k ∈ {0, · · · ,T0}(
(tpki == 0)→ ∀pj ∈ P (eski,j == FALSE)

)
(4)

5) EXECUTION COUNT
When a task is executed, the computed time of the task
must be increased by one. Otherwise, it remains the same.
This constraint indicates that the pre- and post-condition of
a task execution, expressed in the execution count, should be
satisfied for all tasks and their steps of execution. Based on
these attributes, the constraints for task idle can be defined
as (5):

ExecCount
def
= ∀τi ∈ 0 ∀pj ∈ P ∀k ∈ {0, · · · ,T0}((

((k mod Ti) == (Ti − 1))→ (ctk+1i == 0)
)
∧(

(eski,j == TRUE)→(
((k mod Ti) 6= (Ti − 1))→ (ctk+1i == ctki + 1)

))
∧(

(eski,j == FALSE)→(
((k mod Ti) 6= (Ti − 1))→ (ctk+1i == ctki)

)))
(5)

6) RESTART PERIOD
Periodic tasks have computation times to execute in each
period. The computed time is set to the default value at the
beginning of every period. This constraint indicates that the
computed time of a task should be zero for every first step of
the period. Based on this attribute, the constraint for restart
period can be defined as (6):

RestartPeriod
def
= ∀τi ∈ 0 ∀k ∈ {0, · · · ,T0}(

((k mod Ti) == 0)→ (ctki == 0)
)

(6)

B. MULTIPROCESSOR ENVIRONMENT CONSTRAINTS
The following constraints must be satisfied in order for the
task to behave correctly in a multiprocessor environment.

1) ATOMIC EXECUTION
A processor can execute only one task at a time. This con-
straint indicates that if a task is executed at a particular time
in a particular processor, then another task should not be
executed at that time in that processor. This property can be
regarded as a conservative extension of the atomic execution

165172 VOLUME 8, 2020

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

of a uniprocessor. Based on these attributes, the constraints
for atomic execution can be defined as (7):

AtomExec
def
= ∀τi ∈ 0 ∀pj ∈ P ∀k ∈ {0, · · · ,T0}(

(eski,j == TRUE)→

∀τi′ ∈ 0
(
(i 6= i′) ∧ (eski′,j == FALSE)

))
(7)

2) PARALLEL EXECUTION
At any point in time, as many tasks as the number of proces-
sors can be executed simultaneously. However, a task cannot
be executed on more than one processor. This constraint
indicates that if a task is executed at a specific time in a
particular processor, then the task cannot be executed at the
same time in another processors. Based on these attributes,
the constraints for job-level parallelism prohibition can be
defined as (8):

NoParallel
def
= ∀τi ∈ 0 ∀pj, pj′ ∈ P ∀k ∈ {0, · · · ,T0}(

(eski,j == TRUE)→(
(j 6= j′) ∧ (eski,j′ == FALSE)

))
(8)

C. SCHEDULABILITY CONSTRAINTS
To ensure that a set of tasks can be scheduled in amultiproces-
sor environment, the following constraints must be satisfied.

1) SCHEDULABLE CONSTRAINTS
In order for a given set of tasks to be schedulable, all tasks
must execute all their computation time within their respec-
tive periods before the deadline. This constraint indicates that
the execution counters for all tasks must be equal to their
computation time at the end of each period. Based on these
attributes, the constraints for schedulable constraints can be
defined as (9):

Schedulable
def
= ∀τi ∈ 0 ∀k ∈ {0, · · · ,T0}(

((k mod Ti) == Di)→ (ctki == Ci)
)

(9)

D. PUTTING IT ALL TOGETHER
All encoding of constraints for schedulability analysis has
been completed. The conjunction of these constraints is all
the constraints that must be satisfied in order for a set of tasks
to be schedulable. By putting all of these encoded constraints
together, the constraints on the schedulability analysis of a
given task set can be defined as (10):

MPSCHED
def
=
(
ExecRange ∧ InstExec

∧ AssignPriority ∧ TaskIdle

∧ ExecCount ∧ RestartPeriod

∧ AtomExec ∧ NoParallel

∧ Schedulable
)

(10)

Theorem 1: The real-time periodic task set S is schedula-
ble in a multiprocessor environment iff S satisfies the set of
constraints MPSCHED.

Proof: (⇒): Let S be a real-time periodic task set.
To prove Theorem 1, assume S is a schedulable task set.
Following the definitions of Schedulability, Multiprocessor
schedulability and by Lemma 1, all tasks in task set S com-
plete the computation time for all their periods up to the
hyper-period with given processors. Because the constraints
Schedulable, AtomExec, and NoParallel in MPSCHED, tasks
with incomplete computation times within a hyper-period and
multiple tasks running on a single processor and a single task
on multiple processors are not allowed. Thus, if task set S is
scheduleable, then task set S satisfies MPSCHED.
(⇐): Assume task set S satisfy the set of constraints

MPSCHED. Following the definition of MPSCHED,
the behavior of task set S satisfies all of the constraints
defined in this section. Especially, by constraints Schedu-
lable, AtomExec, and NoParallel, all tasks in the task set S
satisfy the following constraints up to the hyper-period; the
completion of computation time for all the respective periods
and the execution of atomic task per atomic processor for
a given number of processors. Thus, by the definitions of
Schedulability, Multiprocessor schedulability and Lemma 1,
the given task set S is schedulable in a multiprocessor
environment. �
Apart from the above constraints, additional constraint

can be defined for the consecutive task execution in a mul-
tiprocessor environment. The addition of constraints is a
time-consuming addendum from a verification perspective.
However, this is a factor that can reduce unnecessary over-
head when tasks are run in real-world environments.
Consecutive Execution. When a task is executed con-

secutively, it must be executed on the same processor. This
constraint indicates that if a task is executed consecutively
more than a single time unit, the processor on which it exe-
cutes must be the same processor. Based on these attributes,
the constraints for consecutive execution can be defined
as (11):

ConseExec
def
= ∀τi ∈ 0 ∀pj, pj′ ∈ P ∀k ∈ {0, · · · ,T0}((

(eski,j == TRUE) ∧ (esk+1i,j′ == TRUE)
)
→

(j == j′)
)

(11)

V. IMPLEMENTATION AND EXPERIMENTS
This section presents an implementation of the schedula-
bility analysis based on the proposed approach. We used
Python and Z3Py, a Python API for SMT solver Z3 [52], for
implementation. The pseudo style code of the implementa-
tion is presented in Algorithm. 1. Z3py allows almost direct
encoding of first-order logic, the constraints in the pseudo
code may look very similar to what we have encoded in the
previous section. For a given set of tasks, the solver verifies

VOLUME 8, 2020 165173

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

Algorithm 1 A Pseudo Code for Schedulability Analysis
Input : A list of tasks τi, where i > 1, and

a number of processors pj, where j ≥ 1.
Output : Schedulability Result.

(Satisfiable (with model) / Unsatisfiable)
/* Task information is given as the

form of a tuple of (Ci,Di,Ti). */
1 Period_HYPER = LCM(Ti) // Least Common
Multiple of periods.

2 Con_TASK = ExecRange ∧ InstExec ∧ AssignPriority
∧ TaskIdle ∧ ExecCount ∧ RestartPeriod

3 Con_ENV = AtomExec ∧ NoParallel
4 Con_SCHED = Schedulable
5 MPSCHED = Con_TASK ∧ Con_ENV ∧ Con_SCHED
/* Encoded constraints for each

peoperties to be satisfied. */
6 solver = []
7 solver.append(MPSCHED)
/* Add all the encoded constraints

into solver. */
8 if solver.check() != sat then
9 return Unsatisfiable

10 else
11 return Satisfiable, solver.model()

that all the constraints defined in the previous section are
satisfied. If all constraints are satisfied, that is, if the result
is Satisfiable, the solver returns its interpretation, called the
Model. Otherwise, the solver returns Unsatisfiable, meaning
that the solver has not found an interpretation that satisfies all
the constraints.

We performed experiments on schedulability analysis for
several example task sets using the implementation of the pro-
posed approach. The system environment for the experimen-
tation was as follows: Intel i7 CPU 3.40GHz Octacore CPU
with 16 GB RAM, Linux kernel 4.4.0-21-generic x86_64,
Z3 version 4.4.2, Python 2.7.12. The experiment was carried
out in two parts. One is to compare the performance of the
proposed method with our previous study [14] and to show
the performance difference of the schedulability analysis due
to the task behavior model. The other was an experiment to
investigate the performance of the schedulability analysis in
a multiprocessor environment. In order to avoid confusion,
we refer to the method used in previous study as the past
method, and the method proposed in this paper as the present
method or the proposed method.

A. PERFORMANCE COMPARISON WITH PREVIOUS
METHOD
The first part of the experiment compares the performance
between the past and present methods in a uniprocessor
environment and the results are shown in Table. 2. In this
experiment, we experimented with example task sets that

TABLE 2. Performance comparison of schedulability analysis for past and
present methods.

contained 2, 3, 4, and 8 tasks, respectively, to level with the
previous method. Each example task set has a task utilization
of 1, where the utilization is

(∑
τi
Ci/Ti

)
. Both the example

task sets 8(a) and 8(b) have 8 tasks, but 8(b) has a longer
hyper-period configuration, which in the end requires more
execution. This configuration increases the solver’s search
space to find a satisfactory solution.

The results show that for all cases the present method
performs better in a uniprocessor environment, both in terms
of time spent and the maximum amount of memory used. In
particular, the difference is large for example task set with
8 tasks.

In our observation, the first noticeable difference is the way
in which problems are represented. In other words, we have
further simplified the way in which the actions of the task
are represented in the present method, thereby reducing the
state space for the representation of the overall task behavior.
The second observation is obvious one that the complexity
of a task set affects performance. There was also an increase
in the number of possible state combinations, which was a
major factor complicating the implementation of encoded
constraints. The present method, the execution-based behav-
ioral model, has overcome the scalability problem for task
sets with many tasks, as shown in Table. 2.

B. PERFORMANCE EVALUATION OF PROPOSED METHOD
The second part of the experiment evaluates the performance
of the proposed method in a multiprocessor environment. The
experiment was performed on a task set of up to 32 tasks
in 2, 3, 4, 8, and 16 multiprocessors environment, and the
results are shown in Table. 3. Task sets with less than the
number of processors and task sets that failed to output veri-
fication results within 72 hours (i.e., 259,200 seconds) were
excluded. Also, task utilization of every task set in the exam-
ple is 1, where

(∑
τi
Ci/Ti/m

)
= 1, and m is the number of

processors.
We observed several points on following aspects through

the experiment. The performance values, the time spent
and the maximum memory used for schedulability analysis
are proportional to the number of tasks and the number

165174 VOLUME 8, 2020

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

TABLE 3. Performance evaluation of schedulability analysis with proposed method.

of processors. These factors ultimately determine the size of
the space that the solver must seek to find the answer.

Since the verification time was limited to 72 hours, some
experimental results were missing. In Table. 3, the dash(-)
indicates that the result is omitted due to timeout and dot(·)
indicates that the experiment didn’t take place due to com-
plexity reason (i.e., no. of tasks < no of processors). For
example, the number of task sets that gave verification result
in time decreased with the number of processors added. In the
4-processor and 8-processor environments, the verification
result was given up to a set of tasks consisting of 24 tasks.
In the 16 processor environment, only the task set consisting
of only 16 tasks gave the verification result.

Although the proposed method has reduced the time and
memory required for schedulability analysis compared to the
past method, it still requires extensive resources. To reduce
the verification time, we need to find a way to optimize the
task behavior representation. For this reason, the proposed
method is more suitable for systems where ensuring schedu-
lability at the design phase is important, such as safety-critical
systems.

VI. CONCLUSION AND FUTURE WORK
A schedulability analysis can be used to predict the behavior
of a real-time system to ensure that the behavior satisfies
real-time properties. In this paper, we have described the
schedulability analysis of real-time system in multiprocessor
environment using the constraint solving approach.

In order to use constraint approach on schedulability anal-
ysis, the behaviors of a real-time system in multiprocessor
environment need to be identified and be expressed in the
form of constraints. After that, the constraints are encoded
as first-order logic expressions, along with a task set, use
as input into SMT solver, and have let SMT solver find an
answer which satisfies all the constraints.

Several experiments were performed to investigate the per-
formance of the proposed method and the factors affecting
performance were examined. We observed that, in the pro-
posed method, the time spent and the memory used for the
schedulability analysis of real-time system in a multiproces-
sor environment increased in proportion to the number of

tasks and the number of processors. This is because these
factors are closely related to the size of the space createdwhen
finding satisfactory answers to all the constraints.

The proposed method is one of many possible methods
that can be applied for schedulability analysis based on con-
straint solving approach. It appears that there is room for
improvement to achieve better performance through various
task behavior models and constraint expression methods.

In future research, we plan to optimize the representation of
task model and constraints to improve performance. We also
plan to extend our research to scheduling for dependent tasks
and schedulability analysis of hierarchical real-time systems.

Although we did not consider a scheduling of dependent
tasks in this paper, it seems possible to apply the proposed
method to a task model using shared resources. We can not
discuss the idea in detail, but here are some thoughts.

Consider two tasks τi and τj, where i 6= j, sharing a
resource CSij. In order for τi to be scheduled with CSij at a
specific time, CSij should not be occupied by τj at that time.
This attribute is one of the execution constraint of τi.

With respect to hierarchical scheduling, the constraints of
the task model become more complex. For example, consider
a following configuration:

• Three sets of tasks 0L1, 0L2, and 0L3 in different hier-
archy level (0L1 is the highest level)

• 0L1 = {τ1, τ2}, 0L2 = {τ3, τ4} and 0L3 = {τ5, τ6}
• τ1 associated with τ3, τ4
• τ3 associated with τ5, τ6

In order for task set 0L1 to be schedulable, the execution
constraints of τ1 must include the execution constraints in
which tasks τ3, τ4, τ5, and τ6 can be scheduled.

REFERENCES
[1] R. Mall, Real-Time Systems: Theory and Practice. Noida, India: Pearson,

2009.
[2] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling for

Real-Time Systems. Cham, Switzerland: Springer, 2015.
[3] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings,

‘‘Fixed priority pre-emptive scheduling: An historical perspective,’’ Real-
Time Syst., vol. 8, nos. 2–3, pp. 173–198, 1995.

[4] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in aHard-Real-Time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

VOLUME 8, 2020 165175

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

[5] K. Jeffay, D. F. Stanat, and C. U. Martel, ‘‘On non-preemptive scheduling
of period and sporadic tasks,’’ in Proc. 12th Real-Time Syst. Symp., 1991,
pp. 129–139.

[6] K. Tindell and J. Clark, ‘‘Holistic schedulability analysis for dis-
tributed hard real-time systems,’’Microprocess. Microprogramm., vol. 40,
nos. 2–3, pp. 117–134, Apr. 1994.

[7] M. Litoiu and R. Tadei, ‘‘Real time task scheduling allowing fuzzy due
dates,’’ Eur. J. Oper. Res., vol. 100, no. 3, pp. 475–481, Aug. 1997.

[8] J. C. Palencia and M. Gonzalez Harbour, ‘‘Schedulability analysis for
tasks with static and dynamic offsets,’’ in Proc. 19th IEEE Real-Time Syst.
Symp., Dec. 1998, pp. 26–37.

[9] S. Manolache, P. Eles, and Z. Peng, ‘‘Schedulability analysis of appli-
cations with stochastic task execution times,’’ ACM Trans. Embedded
Comput. Syst., vol. 3, no. 4, pp. 706–735, Nov. 2004.

[10] M. Bertogna, M. Cirinei, and G. Lipari, ‘‘Improved schedulability analysis
of EDF onmultiprocessor platforms,’’ in Proc. 17th Euromicro Conf. Real-
Time Syst. (ECRTS), 2005, pp. 209–218.

[11] P. K. Muhuri and K. K. Shukla, ‘‘Real-time task scheduling with fuzzy
uncertainty in processing times and deadlines,’’ Appl. Soft Comput., vol. 8,
no. 1, pp. 1–13, Jan. 2008.

[12] F. Zhang and A. Burns, ‘‘Schedulability analysis for real-time systems with
EDF scheduling,’’ IEEE Trans. Comput., vol. 58, no. 9, pp. 1250–1258,
Sep. 2009.

[13] G. Zhang, H. Xu, H. Gao, and A. Liu, ‘‘Applying probability model to the
genetic algorithm based cloud rendering task scheduling,’’ in Proc. 29th
Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2017, pp. 12–17.

[14] H. Lee and J.-Y. Choi, ‘‘Constraint solving approach to schedulability
analysis in real-time systems,’’ IEEE Access, vol. 6, pp. 58418–58426,
2018.

[15] J.-Y. Choi, I. Lee, and H.-L. Xie, ‘‘The specification and schedulability
analysis of real-time systems using ACSR,’’ in Proc. 16th IEEE Real-Time
Syst. Symp., Dec. 1995, pp. 266–275.

[16] H.-H. Kwak, I. Lee, A. Philippou, J.-Y. Choi, and O. Sokolsky, ‘‘Symbolic
schedulability analysis of real-time systems,’’ in Proc. 19th IEEE Real-
Time Syst. Symp., Dec. 1998, pp. 409–418.

[17] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. S. Kim, I. Lee, and H.-L. Xie,
‘‘A process algebraic approach to the schedulability analysis of real-time
systems,’’ Real-Time Syst., vol. 15, no. 3, pp. 189–219, 1998.

[18] A. N. Fredette and R. Cleaveland, ‘‘RTSL: A language for real-
time schedulability analysis,’’ in Proc. Real-Time Syst. Symp., 1993,
pp. 274–283.

[19] S.-J. Kim and J.-Y. Choi, ‘‘Formal modeling for a real-time scheduler
and schedulability analysis,’’ in Proc. Int. Conf. Parallel Comput. Technol.
Cham, Switzerland: Springer, 2003, pp. 253–258.

[20] N. Guan, Z. Gu, Q. Deng, S. Gao, and G. Yu, ‘‘Exact schedu-
lability analysis for static-priority global multiprocessor scheduling
using model-checking,’’ in Proc. IFIP Int. Workshop Softw. Tech-
nol. Embedded Ubiquitous Syst. Cham, Switzerland: Springer, 2007,
pp. 263–272.

[21] A. de Matos Pedro, D. Pereira, L. M. Pinho, and J. S. Pinto,
‘‘Logic-based schedulability analysis for compositional hard real-time
embedded systems,’’ ACM SIGBED Rev., vol. 12, no. 1, pp. 56–64,
Mar. 2015.

[22] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim, ‘‘Scheduling overload for real-
time systems using SMT solver,’’ inProc. 17th IEEE/ACIS Int. Conf. Softw.
Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD), May 2016,
pp. 189–194.

[23] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim, ‘‘SMT-based scheduling for
multiprocessor real-time systems,’’ in Proc. IEEE/ACIS 15th Int. Conf.
Comput. Inf. Sci. (ICIS), Jun. 2016, pp. 1–7.

[24] J. Boudjadar, J. H. Kim, L. T. X. Phan, I. Lee, K. G. Larsen, and U. Nyman,
‘‘Generic formal framework for compositional analysis of hierarchical
scheduling systems,’’ in Proc. IEEE 21st Int. Symp. Real-Time Distrib.
Comput. (ISORC), May 2018, pp. 51–58.

[25] P. Krcal, M. Stigge, and W. Yi, ‘‘Multi-processor schedulability analysis
of preemptive real-time tasks with variable execution times,’’ in Proc.
Int. Conf. Formal Modeling Anal. Timed Syst. Berlin, Germany: Springer,
2007, pp. 274–289.

[26] N. Guan, Z. Gu, M. Lv, Q. Deng, and G. Yu, ‘‘Schedulability analysis
of global fixed-priority or EDF multiprocessor scheduling with symbolic
model-checking,’’ inProc. 11th IEEE Int. Symp. Object Compon.-Oriented
Real-Time Distrib. Comput. (ISORC), May 2008, pp. 556–560.

[27] F. Yu, G. Li, and N. Xiong, ‘‘Schedulability analysis of multi-processor
real-time systems using uppaal,’’ in Proc. 2nd Int. Conf. Inf. Sci. Eng.,
Dec. 2010, pp. 1–6.

[28] Z. Gu, Z. Wang, H. Chen, and H. Cai, ‘‘A model-checking approach
to schedulability analysis of global multiprocessor scheduling with fixed
offsets,’’ Int. J. Embedded Syst., vol. 6, nos. 2–3, pp. 176–187, 2014.

[29] W. Wang, ‘‘Schedulability analysis and symbolic verification method for
heterogeneous multicore real-time systems,’’ Int. J. Performability Eng.,
vol. 13, no. 6, p. 785, 2017.

[30] T. Amnell, E. Fersman, L.Mokrushin, P. Pettersson, andW.Yi, ‘‘TIMES:A
tool for schedulability analysis and code generation of real-time systems,’’
in Proc. Int. Conf. Formal Modeling Anal. Timed Syst. Cham, Switzerland:
Springer, 2003, pp. 60–72.

[31] O. Oğuz, J. F. Broenink, and A. Mader, ‘‘Schedulability analysis of
timed CSP models using the pat model checker,’’ Communicating Process
Archit., vol. 2012, pp. 65–88, Aug. 2012.

[32] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, ‘‘Symbolic model checking
without BDDs,’’ in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst.
Cham, Switzerland: Springer, 1999, pp. 193–207.

[33] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[34] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, ‘‘Model checking
and the state explosion problem,’’ in Proc. LASER Summer School Softw.
Eng. Cham, Switzerland: Springer, 2011, pp. 1–30.

[35] M. Davis and H. Putnam, ‘‘A computing procedure for quantification
theory,’’ J. ACM, vol. 7, no. 3, pp. 201–215, Jul. 1960.

[36] H.Hong, L. Khan, A. Gbadebo, Z. Shaohua, andW.Yong, ‘‘A complex task
scheduling scheme for big data platforms based on Boolean satisfiability
problem,’’ in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI), Jul. 2018,
pp. 170–177.

[37] M. Zhang andY. Ying, ‘‘Towards SMT-based LTLmodel checking of clock
constraint specification language for real-time and embedded systems,’’
ACM SIGPLAN Notices, vol. 52, no. 5, pp. 61–70, Sep. 2017.

[38] M. Zhang, F. Song, F. Mallet, and C. Xiaohong, ‘‘SMT-based bounded
schedulability analysis of the clock constraint specification language,’’ in
Proc. FASE-Fundam. Approaches Softw. Eng., 2019, pp. 61–78.

[39] A. de Matos Pedro, D. Pereira, L. M. Pinho, and J. S. Pinto, ‘‘SMT-based
schedulability analysis using RMTL-

∫
,’’ACMSIGBEDRev., vol. 14, no. 3,

pp. 40–42, Nov. 2017.
[40] I. Ripoll and R. Ballester-Ripoll, ‘‘Period selection for minimal hyper-

period in periodic task systems,’’ IEEE Trans. Comput., vol. 62, no. 9,
pp. 1813–1822, Sep. 2013.

[41] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia, ‘‘Worst-case uti-
lization bound for EDF scheduling on real-time multiprocessor systems,’’
in Proc. 12th Euromicro Conf. Real-Time Syst. Euromicro RTS, 2000,
p. 25.

[42] S. Baruah and N. Fisher, ‘‘The partitioned multiprocessor scheduling of
sporadic task systems,’’ in Proc. 26th IEEE Int. Real-Time Syst. Symp.
(RTSS), Miami, FL, USA, Dec. 2005, pp. 321–329.

[43] T. P. Baker, ‘‘Comparison of empirical success rates of global vs.
partitioned fixed-priority and EDF scheduling for hard real time,’’
Dept. Comput. Sci., Florida State Univ., Tallahassee, FL, USA,
Tech. Rep. TR-050601, 2005.

[44] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, ‘‘An empirical
comparison of global, partitioned, and clustered multiprocessor EDF
schedulers,’’ in Proc. 31st IEEE Real-Time Syst. Symp., Nov. 2010,
pp. 14–24.

[45] R. I. Davis and A. Burns, ‘‘A survey of hard real-time scheduling for
multiprocessor systems,’’ ACM Comput. Surv., vol. 43, no. 4, p. 35, 2011.

[46] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, ‘‘An application of
bin-packing to multiprocessor scheduling,’’ SIAM J. Comput., vol. 7, no. 1,
pp. 1–17, Feb. 1978.

[47] P. Shaw, ‘‘A constraint for bin packing,’’ in Proc. Int. Conf. Princ. Pract.
Constraint Program. Cham, Switzerland: Springer, 2004, pp. 648–662.

[48] P. Schaus, ‘‘Solving balancing and bin-packing problems with constraint
programming,’’ Ph.D. dissertation, Université catholique de Louvain,
Ottignies-Louvain-la-Neuve, Belgium, 2009.

[49] T. Soh, K. Inoue, N. Tamura, M. Banbara, and H. Nabeshima,
‘‘A SAT-based method for solving the two-dimensional strip packing prob-
lem,’’ Fundamenta Informaticae, vol. 102, nos. 3–4, pp. 467–487, 2010.

[50] J.-C. Régin andM. Rezgui, ‘‘Discussion about constraint programming bin
packing models.,’’ AI Data Center Manage. Cloud Comput., vol. 11, p. 8,
Jan. 2011.

165176 VOLUME 8, 2020

H. Lee, J.-Y. Choi: Constraint-Based Schedulability Analysis in Multiprocessor Real-Time Systems

[51] M.Mistry, A. C. D’Iddio, M. Huth, and R. Misener, ‘‘Satisfiability modulo
theories for process systems engineering,’’ Comput. Chem. Eng., vol. 113,
pp. 98–114, May 2018.

[52] L. De Moura and N. Bjørner, ‘‘Z3: An efficient SMT solver,’’ in Proc. Int.
Conf. Tools Algorithms Construct. Anal. Syst., Berlin, Germany: Springer,
2008, pp. 337–340.

HYUK LEE received the B.S. degree from the Uni-
versity of Technology Sydney, Sydney, Australia,
in 2006, and the M.S. and Ph.D. degrees from
Korea University, Seoul, South Korea, in 2009 and
2019, respectively. He is currently a Research
Professor with the Graduate School of Informa-
tion Security, Korea University, Seoul. His current
research interests include formal methods, con-
straint problem solving, and secure software engi-
neering.

JIN-YOUNG CHOI (Member, IEEE) received the
B.S. degree fromSeoul National University, Seoul,
South Korea, in 1982, theM.S. degree fromDrexel
University, Philadelphia, PA, USA, in 1986, and
the Ph.D. degree from the University of Penn-
sylvania, Philadelphia, in 1993. He is currently a
Professor with the Graduate School of Informa-
tion Security, Korea University, Seoul. His current
research interests include real-time computing,
formal methods, programming languages, process

algebras, security, and secure software engineering.

VOLUME 8, 2020 165177

