
Received August 27, 2020, accepted September 6, 2020, date of publication September 9, 2020,
date of current version September 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022955

Automation of Dynamic Power Management in
FPGA-Based Energy-Constrained Systems
MICHAL ŠKUTA, DOMINIK MACKO , (Member, IEEE), AND
KATARÍNA JELEMENSKÁ, (Member, IEEE)
Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, 842 16 Bratislava, Slovakia

Corresponding author: Dominik Macko (dominik.macko@stuba.sk)

This work was support in part by the Ministry of Education, Science, Research and Sport of the Slovak Republic (Incentives for Research
and Development, under Grant 2018/14427:1-26C0, and in part by the Eset Research Centre.

ABSTRACT The era of the Internet of Things comes with a huge number of interconnected communicating
devices, which are often rather limited on the energy supply (e.g. battery powered or energy harvesting).
Therefore, the pressure on energy efficiency of their operation (influencing lifetime or amount of functions)
is especially crucial. In spite of a growing number of IoT devices, there still are many applications that
are very specific and their market is quite limited. This is where the FPGAs offer a good alternative to
dedicated application-specific chips, which would be too costly for such a purpose. Therefore, we target
the power-management automation that simplifies energy-efficient design for FPGA platforms. A designer
is then able to specify just an abstract power management in the commonly used SystemC model and it is
automatically transformed in the more-complex form acceptable by a specific FPGA device. The proposed
simplification and automation shortens the time-to-market of energy-efficient IoT products and prevents
possible human-errors that could be otherwise introduced to the design. The alleviated verification and
debugging spare even more time in the development process. The experiments have proved the benefits
of the proposed automation method.

INDEX TERMS Design automation, energy efficiency, FPGA design, Internet of Things, power
management.

I. INTRODUCTION
The market forces regarding cost reduction and time-
to-market of the products increase popularity of the FPGA
(Field-Programmable Gate Array) devices. These devices
can be programmed to perform some function in hardware
(i.e. at hardware speed); however, they are premanufactured,
thus the hardware designers do not need to wait for their
designs to be manufactured as a chip to integrate them in
their products. Therefore, FPGAs are often used for hard-
ware acceleration of some specific tasks. In contrast to
ASIC (Application-Specific Integrated Circuit) or PLD (Pro-
grammable Logic Device) chips, the hardware function of
the FPGA device can be changed by its reconfiguration. This
is very useful for space applications (e.g. in satellites or in
space-exploration missions devices), since it provides a way
to update the device function remotely [2]–[4]. The recon-
figuration possibility also widens a high interest of using the

The associate editor coordinating the review of this manuscript and

approving it for publication was Kim-Kwang Raymond Choo .

FPGA technology as a prototyping platform, for functional
verification and characterization of hardware designs that will
be later fabricated as ASIC chips. To ‘‘try-out’’ some new
circuit is just not feasible in ASIC technology, mainly due to
time and cost resources to manufacture single or a few chips.
Modern FPGAs can be very complex circuits, which often
integrate various special-purpose components (e.g. multipli-
ers, memories, specialized processors) to support as many
applications as possible (to widenmarket of their own). These
additional components are not always used (in each configu-
ration); however, they increase power requirements of FPGA
devices.

Energy costs, as well as the green-computing ideology,
put the energy efficiency of the hardware designs to the
forefront [5], [6]. Also, the rapidly growing market of the
Internet of Things (IoT) strictly requires low-power operation
of the devices limited by the energy source (e.g. battery
powered or energy harvesting) [7], [8]. Therefore, the energy
demands of FPGA-based systems have to be reduced as much
as possible and each hardware design should focus on energy

165894 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8235-2004
https://orcid.org/0000-0001-9208-5336


M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

efficiency – if not for low-power application market, then to
reduce costs, or at least for sustainability reasons. The usage
of well-known power-reduction techniques, such as power
gating of voltage scaling, is limited by the hardware architec-
ture of the FPGA device itself. For example, a multivoltage
design technique can be used only if the FPGA platform
supports multiple voltages and the power-gating technique
cannot be used in the application design if not enabled by the
FPGA device. Nowadays, the most efficient power-reduction
techniques are commonly applied by some sort of dynamic
power management, enabling to control power in various
parts of the system depending on current tasks executed by
the application (i.e. during runtime). However, it complicates
the design and is often just too difficult to be applied by
inexperienced designers. Therefore, various power-reduction
techniques are not used, even if they could be, wasting the
valuable energy.

There are various research works focused on increasing
the energy efficiency of FPGA-based systems. For example,
a modification of the place-and-route process can reduce
power requirements of the FPGA interconnect, as proposed
in [9]. This method is useful when synthesizing the applica-
tion design for the selected FPGA platform; however, it can-
not optimize the power consumption during runtime. Another
method [10] utilizes the autonomous power-gating technique
in a fine-grained manner, targeting LUTs (Look-Up Tables)
in asynchronous FPGAs. It thus focuses on the FPGA-chip
architecture rather than on reducing power in the application
design. A similar focus was preferred by [11] that uses power
gating in so-called mega cells to optimize power require-
ments. However, it also cannot be utilized for dynamic power
management by the application design. Another modification
of the FPGA architecture was proposed in [12]. Although
it enables a sort of power management, it cannot be used
on commercial FPGA devices. Dynamic power management,
applying software-driven power gating, was used in [13],
which targeted the Xilinx ZYNQ platform. However, it can-
not be used on devices that do not contain any embedded
processor in addition to the FPGA chip. A method utiliz-
ing clock domains and algorithm partitioning was applied
in [14]. Although such architectural modifications can indeed
help to reduce power requirements, they do not enable man-
aging power dynamically during runtime. There also exist
FPGA-based methods that enable to estimate power con-
sumption of system prototypes [15], or methods that demon-
strate benefits of various technologies in low-power system
design [16]. Neither one although enables dynamic power
management.

Incorporating dynamic power management is definitely a
challenge for design teams, since it substantially increases
complexity of the system. To improve design productivity
of complex systems, the International technology roadmap
for semiconductors [17] suggested the adoption of higher
abstraction in the design process. The ESL (Electronic
System Level) progressively becomes the industrial design
starting point, especially in FPGA-based systems [18]–[22].

Although the ESL-based design methods definitely increase
the productivity in programming FPGAs, they tend to
omit the energy point in the high-level synthesis, focusing
on the functional aspect of the design. There were some
methods already developed for adoption of power manage-
ment into ESL specification [23]–[26]. However, all exist-
ing methods are focused on automatically generating power
intent at lower levels in a standard format, suitable only
for the ASIC technology. In our previous work, we have
already outlined the idea of power-management automation
in FPGA-based systems [27]. It was mainly focused on the
power-management unit (PMU) automated generation, based
on an ESL specification. However, important parts of the
power management, such as clock gating, isolation cells,
or other support logic, have not been generated. Thus, a high
amount of manual effort was still required to successfully
finish power-management integration into the design.

In this work, we extend our previous results [1] into a
new method, which enables to analyze the abstract ESL
specification of the power-managed system described in Sys-
temC/PMS [26] and automatically synthesizes Verilog model
of the PMU that enables to scale the frequency of the system,
as well as other required logic, such as synchronization ele-
ments between clock domains of the system. In comparison
to [1], which proposed the method and provided early experi-
mental verification of manual power-management techniques
application to an FPGA-based design, this work is accom-
panied by the fully functional automation tool that has
automatically synthesized the power management compara-
ble to the previously used manual one (a golden model).
The key contribution of the work is that the synthesized
power management is application-specific (i.e. optimized,
to accomplish just the intent specified in SystemC/PMS),
instead of the use of general-purpose power controllers.
Just to be clear, this article does not introduce a new
power-reduction technique, it focuses on simplified applica-
tion of the existing popular techniques that are rather com-
plicated for introduction into an FPGA-based system design.
Usage of abstract power-management specification signifi-
cantly simplifies the ESL modeling, and thus shortens the
design time. Moreover, the automated transition from ESL
to RTL (Register-Transfer Level) abstraction levels prevents
possible human errors that could be introduced to the design,
and thus reduces debugging effort. The proposed method
simplifies and speeds-up the design process of low-power and
energy-efficient FPGA-based systems. This way, it enables
even designers unfamiliar with power-reduction techniques to
target energy efficiency, making their products to run longer
on batteries, integrate more functions into the products while
not exceeding energy limits, and contribute to sustainability.

The remaining part of the article is structured as follows.
The next section includes an overview of the back-
ground, regarding the SystemC/PMS specification. Section III
describes the proposed power-management automation
method for FPGA-based systems. In Section IV, the experi-
mental results supporting the benefits of the proposedmethod

VOLUME 8, 2020 165895



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

are reported and discussed. And in the last section, the work
is concluded.

II. SystemC/PMS SPECIFICATION
The abstract power-management specification in SystemC/
PMS was introduced in [26]. It is based on the standard
power concepts defined by the UPF (Unified Power Format)
standard [28], which are introduced into a system-level model
described in SystemC [29] in an easy-to-use way. The key
utilized concepts include power states, power domains, power
modes, and power policy. There are five abstract states pre-
defined by SystemC/PMS, which are summarized in Table 1
along with the corresponding power-reduction techniques
that are expected to be applied by the power states. A power
domain groups multiple components that are always operat-
ing in the same power states (the state changes simultaneously
in all components). Power modes represent allowed combina-
tions of power states in all power domains (one power state for
each power domain) – i.e. like a system-wide power state. The
power policy specifies when and how the system switches
between power modes. Unlike in UPF, the SystemC/PMS
abstract power state is not limited to the specification of
the supply-voltage level only, but also the frequency level.
Such a frequency-voltage pair is called a performance level,
whichmust be specified for each active power state (i.e. either
NORMAL or DIFF_LEVEL).

TABLE 1. The predefined abstract power states in SystemC/PMS.

To illustrate how such SystemC/PMS specification of
architectural power management looks like, we provide an
example in Fig. 1. The abstract power management is spec-
ified in the top module called example_top. The declara-
tion part of the module contains a declaration of available
power domains and power modes. However, a specification
of power states for power domains and power modes, along
with the assignment of components to the power domains,
is contained in the functional part of the module, such as

FIGURE 1. A partial example of power-management specification in
SystemC/PMS.

its constructor. The special variable POWER_MODE holds
information about the current power mode of the system, and
it can be switched in some other SystemC process of the
functional model.

It must be noted that SystemC/PMS represents just an
abstract specification of power management, it does not
model the effects of power management. It means that it spec-
ifies ‘‘what’’ should be achieved, but ‘‘how’’ it is achieved
must be modeled and implemented at lower abstraction
levels.

As previously mentioned, the SystemC/PMS specification
is based on UPF concepts. The original goal was to simplify
power-intent specification by abstracting from unnecessary
details at the system level, and then automatically synthe-
size a more-complex equivalent specification in UPF. How-
ever, the UPF standard is intended for ASIC-based chips
(Application Specific Integrated Circuits) and its concepts
are not easily applicable to FPGA-based systems. The whole
power-management synthesis algorithm must be adjusted to
this kind of devices.

III. THE PROPOSED POWER-MANAGEMENT
AUTOMATION
An initial idea of adopting power-management simplification
benefits offered by SystemC/PMS to FPGA-based system
was presented in [27]. This work extends the previous idea by
automated synthesis of FPGA-supported power-management
execution logic, such as clock gating, isolation or synchro-
nization elements, in addition to the power-management unit.
The proposed low-power FPGA-based application design
flow is illustrated in Fig. 2. The red dashed line marks the
process in the design flow, targeted by the proposed automa-
tion method (the flow step 4b in the figure). Similarly to
the ASIC-based flow [26], we expect the design process to
start at the highly abstract ESL, as a crude model specifi-
cation (step 1). The abstraction-refinement process (step 2)

165896 VOLUME 8, 2020



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

FIGURE 2. The proposed low-power FPGA-based application design flow.

is then used to specify abstract power management directly
into the functional model using SystemC/PMS (step 3).
Since the abstract power-management specification does not
affect the system function, the designer does not need to
worry that it will corrupt the simulation results (the optional
step A). The designer can rely on the previously developed
abstract power-management static analysis [30] to validate
the specification. Just before the functional high-level synthe-
sis (HLS) takes place (step 4b), the power-management HLS
extracts the power-related information from the ESL model
(step 4a), in order to be synthesizable by commonly used
HLS tools (e.g. VivadoHLS). After the functional RTLmodel
is synthesized, the power-management HLS automatically
generates the appropriate power-management components
and integrates them into the functional model (step 5).

The synthesized power-managed RTL model can then be
verified during a functional simulation (the optional step B).
After logical synthesis and place and route process (step 6),
the design can be analyzed for power consumption and
resource utilization (the optional step B). The analyzed infor-
mation (the optional step C) can be then used (while taking
into account the trade-off between power, performance, and
area) to adjust the abstract power-management specification
(step 3) and resynthesize the model (steps 4 and 5). If the
functionality was not modified, the functional HLS process
(step 4b) does not need to be run again. This speeds-up
power-management exploration.

The proposed method was implemented into a tool, called
pmuToFPGA, which automates the power-management syn-
thesis process. It was implemented in the Python program-
ming language, version 3.7, using IDE editor PyCharm CE
at the Mac OS X platform. Since Python is a multiplatform
language, the tool is also usable at different platforms, such
as Linux or Windows. The modular architecture of the tool is
illustrated in Fig. 3. It consists of five separate components
with dedicated functions. Such a modular design makes the
tool flexible for extension and future modifications.

The Controller component interconnects all the other
components and enables to exchange data among them in
an efficient and meaningful way. For example, it enables

FIGURE 3. Components of the automation tool.

to obtain user-defined inputs via a user interface (either
GUI - Graphical User Interface or CLI - Command Line
Interface), redirects them to the other components, and pro-
vides the synthesized model to the user again via a user
interface.

The Analyzer component is used to load the input ESL
specification of the system model in SystemC/PMS, extract
the power-related data from the specification, and fill them
into an intermediate structure. For this structure to be kept
in a simple and easy-to-use form (for a human as well as for
a computer), we have proposed a JSON-based format of the
internal structure, as illustrated in Fig. 4.

FIGURE 4. An example of the internal JSON structure.

Firstly, Analyzer has to find all the specified performance
levels in SystemC/PMS model. The information about the

VOLUME 8, 2020 165897



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

power state name, the supply voltage, and the frequency
value, is stored. Since the performance levels of inactive
power states (i.e. HOLD, OFF, OFF_RET) are not specified
explicitly, the Analyzer must deduce them. Then, the Ana-
lyzer component finds all the specified power domains,
along with the assigned components and the allowed power
states for each domain. Also, all the signals interconnecting
the components of the modeled system must be indexed,
and the information about which components are connected
and the direction of the communication are stored. It is
inevitable for synchronization and isolation purposes. Last
but not least, Analyzer must find all the specified power
modes and store the information about the selected power
states for each domain in each mode.

The analyzed data in the internal JSON structure are then
forwarded to the Generator component. Using the internal
structure, Generator synthesizes the power-management unit,
driving all the clock signals according to the specification,
as well as the control signals for other power-management
elements. Generator also synthesizes the power-management
support logic, such as synchronizers. For the code synthesis,
theMako-based templates [31] are used. To show an example,
a portion of the template for the PMU synthesis is provided
in Fig. 5. It is used to create the main body of the synthesized
PMU; however, individual parts of the PMU are synthesized
by utilization of another more-complex template (the whole
synthesis code is available on GitHub [32]).

The Generator component is configured by a configuration
file, which is used by the designer to set some synthesis
parameters for a specific FPGA device (e.g. whether the PLL
module should be used or not, or what are the acceptable
boundaries of the generated clock frequencies). An example
of the configuration file is provided in Fig. 6. The synthe-
sized PMU uses the PLL unit, if use_pll attribute is acti-
vated. Input parameters for the PLL to generate a specific
frequency are computed using Algoritm 1. If the PLL cannot
generate the clock frequency in the specified boundaries,
the divider is synthesized to adjust the frequency value of
the main clock signal (the divide_clock attribute must be
activated). The divide_pll attribute enables dividing the PLL
output signal. The main clock signal has precedence before
the PLL-generated signal. Using the strict_freq and all_freq
attributes, it is possible to specify whether the power domains
are limited only to the frequencies deduced from the speci-
fied abstract power states, or they can use all the generated
frequencies.

The configuration file also enables to activate the reconfig-
uration support. The synthesized PMU is then able to not only
switch between power modes, but also switch between mul-
tiple configurations. It is usable, for example, as a replace-
ment for unsupported power gating by some FPGA devices
(like the selected FPGA device iCE40 for our prototype).
Instead of powering down some component, it is possible
to switch to the alternative design, not including that com-
ponent. Although this functionality is fully supported by the
synthesized PMU, the alternative designs (i.e. configurations)

FIGURE 5. The Mako-based template for PMU synthesis.

must be created by the designer – their creation is not yet
automated. After the synthesis of PMU and synchronizers,
the Generator component must find a suitable place in the
top module of the modeled system for their automated inte-
gration. According to the direction of a specific signal of
some component, it is renamed to the signal generated by the
synchronization element (e.g. signal_synced).

After the power-managed model is automatically synthe-
sized, a few manual modifications are required. The designer
needs to find the place in the code, where the synthesized
power-management modules have been inserted. To simplify
the code search, we have identified such a place by a com-
mentary of ‘‘Start of auto-generated components PMU +
synchronizers’’. Since the main clock signal can have various

165898 VOLUME 8, 2020



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

FIGURE 6. An example of configuration file contents.

Algorithm 1 An Algorithm to Calculate PLL Parameters to
Generate a Given Frequency
1~best_fout = 0
2~for divr in range(16):
3 f_pfd = device.clk_freq / (divr + 1)
4 for divf in range(128):
5 f_vco = f_pfd * (divf + 1)
6 for divq in range(1, 7):
7 fout = f_vco * math.pow(2, -divq)
8 if math.fabs(fout -

freq_setting.frequency) <
math.fabs(best_fout -
freq_setting.frequency) or
not found_something:

9 best_fout = fout
10 best_divr = divr
11 best_divf = divf
12 best_divq = divq

identifiers, the designer must connect it with the clk port
of the PMU module. If the sync_control attribute has been
activated in the Generator configuration file, the synchro-
nizers for PMU inputs are also synthesized. It is necessary
to connect two input clock signals, one for the controlling
component (requesting power-mode switching, e.g. CPU)
and one for the PMU. Also, two control signals driven by the
controlling component have to be connected manually. The
power-mode switching request signal must be connected to
the FlagIn_clkA port, and the switching vector must be con-
nected to the BusIn port. Also, in case of other synchronizers
(between other communicating components), it is necessary

to connect a suitable signal to the FlagIn_clkA port. There is
an optional FlagOut_clkB port that informs about new value
at the BusOut output, which can also be connected. Another
optional output port is Busy_clkA, which can be connected to
inform the input power domain (generating the signal) that
the signal has not been processed yet by the output domain.
All modules have a reset signal, preset to the static zero
value. It is recommended to replace it so that the signal is
driven dynamically. In the prototype, we have activated reset
signal upon the start for the period of one clock cycle and
the system worked correctly. The last required modification
is to connect clock signals of the functional modules to the
clock signals generated for their power domains. To assist
with this, the commentaries are generated in the code, e.g.
‘‘Change clock to pd_clk_0’’.

All of the specified functional and non-functional require-
ments have been met, which can be summarized as follows.
The developed tool is able to load SystemC/PMS specifica-
tion and extract the information about power management.
It is able to synthesize PMU that applies power-reduction
techniques supported by the target FPGA device. The tool
is multi-platform and is able to run by various operating
systems. The tool is available as an easy to use tool offering
both, command line and graphical, user interfaces. Besides,
the created source code can be used as a module for other
Python projects. The tool supports simple user information
about the current state (i.e. progress) and it is also able to
generate a detailed SystemC/PMS analysis report. Config-
urability of the tool is achieved mainly by the JSON-based
configuration file.

IV. RESULTS AND DISCUSSION
To evaluate the proposed method, the experiments have
consisted of four parts. Firstly, the ability of the devel-
oped tool (implementing the proposed method) to analyze a
SystemC/PMS model and to extract the power-management
information has been verified. The second part has veri-
fied the ability of the tool to create a PMU, including the
power-reduction techniques available on the selected FPGA
device, based on the extracted power-management informa-
tion. The third part evaluated the simplification of the design
process offered by the proposed automation method. And last
but not least, it has been verified that the generated code is
accepted by the development environment for the selected
FPGA and that the energy requirements of the final hardware
device (i.e. the FPGA with the running application including
automated power management) can be reduced using the
proposed method.

Although the pmuToFPGA tool has been developed at the
Mac OS X platform, which was also used in the following
experiments, the tool is multiplatform thanks to the Python
nature. The environment requirements are Python version
3.7 or higher with the following libraries: pyparsing, Mako,
and PyQt5. Besides the Mac platform, we have successfully
tested the tool using the Windows 10 Home 64-bit operating

VOLUME 8, 2020 165899



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

system running at the machine with the Intel Core i5 proces-
sor and 8 GB of RAM.

In the first part of the experiments, we have used various
SystemC/PMS specifications described manually. The basic
SystemC model described a simple FPGA application with
one Intel 8080-compatible processor and the RS232 interface.
There were three performance levels specified. Other models
described small variations of the basic model. For example,
an additional power state was used or there was another power
domain with an extra component specified. The intermediate
JSON files with extracted power-management information
have then been manually checked whether they correspond to
the specifications. The result of this part of the experiments
is that the analysis and extraction features of the tool worked
correctly.

In the second part, six intermediate JSON files specifying
various power management have been used to verify the
synthesis function of the developed tool. In these files, the dif-
ferences were, for example, in the specified frequencies or in
the number of power domains. These six power-information
JSON files were accompanied by another 13 configurations
for FPGA, testing various possible parameters. All possible
combinations of these files and configurations have been used
to synthesize the PMUs and other code required by the FPGA
to successfully use the power-reduction techniques (e.g. syn-
chronizers). Simple testbenches were also generated to run
simple Verilog simulations to verify the syntactical correct-
ness. The logical correctness of the automatically generated
code has beenmanually checkedwhether it corresponds to the
original PMS specifications. For a single randomly selected
combination, the manually created more complex testbench
was used to verify all possible states during the simulation.
The results confirmed that the automatically synthesized Ver-
ilog code is generated correctly.

The main goal of the proposed method was to simplify and
speed-up the design process for FPGA-application designers,
who need to develop energy-efficient systems. To evaluate
these benefits of the method, we have summarized the statis-
tics (concerning the code size) from the previous experiments.
Six samples of different power-management specifications
were used and the average values have been compared.
For the abstract power management, only the SystemC/PMS
information about power management is counted. For the
synthesized power management, the Verilog code describing
the PMU and generated synchronization and isolation nodes
are counted, as well as the modifications in the top-level
Verilog module. Since various code-style discipline could
influence a single-parameter comparison, a number of lines,
a number of words, and a number of characters have been
compared. The results reported in Table 2 show that the
synthesized power management in Verilog is approximately
6.6 times more complex than the abstract power manage-
ment in SystemC/PMS. It means that the manual effort of
designers regarding power management is 6.6 times smaller
using SystemC/PMS, and thus the design is faster (since
the automated-synthesis time is negligible). Such a result

TABLE 2. Abstract and synthesized power management comparison.

represents a significant simplification for the power-managed
FPGA-applications design process.

To evaluate the proposed method in real hardware, we have
selected the Lattice iCEstick Evaluation Kit [33] (the
iCE40 device, specifically suitable for low-power designs),
mainly due to good support by open-source tools and small
purchase costs. A drawback of the selected FPGA is its sup-
port of just a single voltage level for the application logic. Due
to this fact, we were limited to clock gating and frequency
scaling techniques to increase energy efficiency. However,
it was sufficient to show the benefits and applicability of the
proposed method.

FIGURE 7. The implemented case-study system overview.

As a demonstration application to be running on the
FPGA, a simple open-source 8-bit microprocessor (CPU)
was interconnected with the UART (Universal Asynchronous
Receiver-Transmitter) interface. We have created the abstract
model of the top module of this system using SystemC/PMS
and specified power management for such a system. The
system was split into two clock domains, one for CPU
(PD_CPU) and the other for UART (PD_UART). Four power
states were specified for the CPU domain: the first one to
stop its operation, the second to scale its operating frequency
to 1.2 kHz, the third to scale the frequency to 12 MHz, and
the last to scale the frequency to 48 MHz. Based on this
specification, a new top-module Verilog code along with the
PMU have been synthesized automatically. We have made
a few small manual modifications (to identify clock signals
of the components) and used the freely available synthesis
tools of the IceStorm project [34] to program the FPGA
device with the designed system. In order to visually see in
which power state the CPU is operating, we have created a
simple assembly program writing specific text strings via the
UART interface. Special keys were preconfigured to switch
the power states. An abstract overview of such a setup is
illustrated in Fig. 7. The synchronizers are automatically
introduced into the design by the proposed method. These are

165900 VOLUME 8, 2020



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

required for signals and buses interconnecting the two power
domains (clock domains) and to control the PMUby the CPU.

The result of this experiment was the correctly functioning
FPGA application – i.e. the speed of text-strings appearing
while reading the UART interface by the laptop was notice-
able when the special key was pressed. Although the chosen
application was pretty simple, it was enough to illustrate
the benefits of the proposed method. The proposed automa-
tion method helped to scale the frequency of multiple clock
domains, while the automatically generated synchronizers
successfully avoided the metastability issues.

In order to ensure that the developed tool and the imple-
mented method are not limited to specifically selected
iCE40 FPGA device, we have used the tool to implement
the same application on commonly known Xilinx Spar-
tan 3 FPGA [35]. Both the Vivado synthesis tools and the
Spartan 3 device accepted the pmuToFPGA-generated RTL
model without any problems. Thus, the tool is not suited just
to the specifically selected prototype device – since the pro-
posed automation method is general enough, the tool is easily
extendible for other target FPGAdevices. The device-specific
components (such as PLL) must be predefined in the tool
to correctly generate the enriched RTL model for a given
platform. If not, a general RTL code is synthesized, accept-
able by any FPGA device – however, it might not be optimal
(e.g. a common counter is used to generate the required clock
frequencies instead of dedicated clock-management circuitry,
such as PLL).

Using the Kkmoon RDTester UM24C [36] device, the cur-
rent consumption in the four specified power states have
been measured (see Table 3). Since the current consumption
directly relates to the power consumption (P = I × V ),
the energy requirements of the device can be thus deduced.
The calculated power in the HOLD state can be approxi-
mated to the static power of the device (no operation). Thus,
the dynamic power can be assumed as the remaining amount
of the calculated power.

TABLE 3. Current measurements in individual power states.

To derive the energy, we would need to measure also the
time, which the device has spent in each power state. The
dynamic power calculations (provided in the last column
of the table) however are enough to show that the applied
frequency scaling can indeed reduce power consumption, and
thus the energy can be saved (e.g. when frequency scaling is

applied to reduce idling of the components). Since the pro-
posed method was not targeted to any new power-reduction
technique, but to easier application of existing ones, this
evaluation was focused on showing that the automatically
applied technique works. This experiment has proved that
the automatically synthesized power management using the
proposed method can be used to reduce power, and thus it
contributes to energy-efficient systems design.

Although there is still a small amount of manual effort
needed to finish the integration of the automatically synthe-
sized power-management code into the Verilog model, it is
insignificant. In the used case-study system, the pure-manual
introduction of power management has taken several hours
and subsequent adding/modification of the frequency has
taken another hour of work. Using the developed automation
tool, it has taken up to an hour of complete time (including
the mentioned post-synthesis manual modifications), while
the synthesis itself has taken few seconds. We expect that
the designer can save hours of design time using the pro-
posed automation method. Evenmore, if we take into account
possible introduction of human errors into the design and
subsequent debugging effort.

The whole project implementing the proposed automation
method along with the created/modified source code and
the used test samples are available on GitHub [32], [37]
to increase the reproducibility of our results. To summa-
rize, the benefits and limitations of the proposed method are
briefly stated in Table 4.

TABLE 4. Advantages and disadvantages of the proposed automation
method.

It must be noted that the amount of actually reduced power
consumption and increased energy efficiency depends on the
used techniques and their actual implementation on the FPGA
device done by logic synthesis and place & route tools (not
targeted in our work). The proposed automationmethod helps
to create an RTL model of the power-managed system based
on the abstract specification and it relies on existing tools
(provided by the FPGA vendor) to implement the model into
the device. Thus, different tools can provide different results.

V. CONCLUSION
This work was focused on the simplification of application
of power-reduction techniques in FPGA-based designs using
power management. Especially, it was focused on the auto-
mated insertion of power-management elements (the control

VOLUME 8, 2020 165901



M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

unit as well as the supporting logic) required by the FPGA
device based on the abstract specification in SystemC/PMS.
The power-intent specification in SystemC/PMS is simple
and intuitive, thus usable even by inexperienced design-
ers. The complicated more-detailed power management is
synthesized automatically; therefore, the design process is
faster and verification effort is minimized (less debugging
due to a limited number of human errors). The proposed
method is useful especially in low-power application design
for FPGA platforms, but also in other FPGA-based designs
that require energy efficiency (such as energy-constrained
IoT applications). The experimental results confirmed the
benefits of the proposed automation method, which sim-
plified the power-management specification approximately
6.6 times and reduced development time by hours of effort.

In the future, the method can be extended by other
power-reduction techniques (such as power gating or voltage
scaling); however, another FPGA device supporting them
would need to be used. There is also the possibility to fully
automate power management (outlined in [38]), in order to
be completely transparent to the designer. It would enable
the designer to fully focus on the system function by auto-
matically manage power to accomplish the specified function
with minimal spent energy. It is however complex task, which
would require automated splitting of the system into power
domains and assignments of appropriate power states and
power modes to the domains. These cannot be optimally
determined without further (dynamic) information about the
system and without knowledge of the target FPGA device.
But maybe some computational-intelligence methods could
statistically predict close-to-optimal management based on
the abstract functional simulation.

ACKNOWLEDGMENT
This is an extended version of the paper presented at the
DDECS 2019 conference [1].

REFERENCES
[1] M. Škuta and D. Macko, ‘‘Automated integration of dynamic power man-

agement into FPGA-based design,’’ in Proc. IEEE 22nd Int. Symp. Design
Diag. Electron. Circuits Syst. (DDECS), Apr. 2019, pp. 1–4.

[2] H. Hihara, A. Iwasaki, M. Hashimoto, H. Ochi, Y.Mitsuyama, H. Onodera,
H. Kanbara, K. Wakabayashi, T. Sugibayashi, T. Takenaka, H. Hada,
M. Tada, M. Miyamura, and T. Sakamoto, ‘‘Atomic switch FPGA: Appli-
cation for IoT sensing systems in space,’’ in Atomic Switch, M. Aono, Ed.
Cham, Switzerland: Springer, 2020, pp. 33–58.

[3] J. X. Qin, J. Yang, Z. Qu, and Y. X. Wang, ‘‘A mission oriented reconfig-
uration technology for spaceborne FPGA,’’ J. Phys., Conf. Ser., vol. 1195,
Apr. 2019, Art. no. 012012, doi: 10.1088/1742-6596/1195/1/012012.

[4] D. Liu, G. Zhou, J. Huang, R. Zhang, L. Shu, X. Zhou, and C. Xin, ‘‘On-
board georeferencing using FPGA-based optimized second-order polyno-
mial equation,’’ Remote Sens., vol. 11, no. 2, p. 124, Jan. 2019. [Online].
Available: https://www.mdpi.com/2072-4292/11/2/124

[5] K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H. Homayoun,
‘‘Energy-efficient acceleration of big data analytics applications using
FPGAs,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2015,
pp. 115–123.

[6] D. Weller, F. Oboril, D. Lukarski, J. Becker, and M. Tahoori, ‘‘Energy
efficient scientific computing on FPGAs using OpenCL,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
New York, NY, USA, 2017, pp. 247–256. [Online]. Available:
http://doi.acm.org/10.1145/3020078.3021730

[7] T. Gomes, S. Pinto, T. Gomes, A. Tavares, and J. Cabral, ‘‘Towards an
FPGA-based edge device for the Internet of Things,’’ in Proc. IEEE 20th
Conf. Emerg. Technol. Factory Automat. (ETFA), Sep. 2015, pp. 1–4.

[8] D. Chen, J. Cong, S. Gurumani, W.-M. Hwu, K. Rupnow, and Z. Zhang,
‘‘Platform choices and design demands for IoT platforms: Cost, power, and
performance tradeoffs,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1,
pp. 70–77, Dec. 2016.

[9] S. Huda and J. H. Anderson, ‘‘Power optimization of FPGA interconnect
via circuit and CAD techniques,’’ in Proc. Int. Symp. Phys. Design (ISPD),
2016, pp. 123–130.

[10] S. Ishihara, M. Hariyama, and M. Kameyama, ‘‘A low-power FPGA based
on autonomous fine-grain power gating,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 19, no. 8, pp. 1394–1406, Aug. 2011.

[11] A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, and M. B. Tahoori,
‘‘Towards dark silicon era in FPGAs using complementary hard logic
design,’’ in Proc. 24th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2014, pp. 518–523.

[12] A. A. M. Bsoul, S. J. E. Wilton, K. H. Tsoi, and W. Luk, ‘‘An FPGA
architecture and CAD flow supporting dynamically controlled power gat-
ing,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1,
pp. 178–191, Jan. 2016.

[13] M. Hosseinabady and J. L. Nunez-Yanez, ‘‘Run-time power gating in
hybrid ARM-FPGA devices,’’ in Proc. 24th Int. Conf. Field Program. Log.
Appl. (FPL), Sep. 2014, pp. 512–517.

[14] P. P. Czapski and A. Śluzek, ‘‘System-level approaches to power effi-
ciency in FPGA-based designs (data reduction algorithms case study),’’
J. Automat. Mobile Robot. Intell. Syst., vol. 5, pp. 49–59, Jan. 2011.

[15] G. Patrigeon, P. Benoit, and L. Torres, ‘‘FPGA-based platform for
fast accurate evaluation of ultra low power SoC,’’ in Proc. 28th Int.
Symp. Power Timing Modeling, Optim. Simulation (PATMOS), Jul. 2018,
pp. 123–128.

[16] A. Schwandt and M. Winzker, ‘‘Modular evaluation system for low-
power applications: Educating undergraduate students in advanced digital
design,’’ in Proc. 24th IEEE Int. Conf. Electron., Circuits Syst. (ICECS),
Dec. 2017, pp. 364–367.

[17] ITRS 2.0. (2015). International Technology Roadmap for Semiconductors
2.0. [Online]. Available: http://www.itrs2.net/itrs-reports.html

[18] D. Bacon, R. Rabbah, and S. Shukla, ‘‘FPGA programming for the
masses,’’ Queue, vol. 11, no. 2, pp. 40–52, Feb. 2013, doi: 10.1145/
2436696.2443836.

[19] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, ‘‘Are we there yet?
A study on the state of high-level synthesis,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019.

[20] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar, ‘‘High-level language tools for reconfigurable computing,’’
Proc. IEEE, vol. 103, no. 3, pp. 390–408, Mar. 2015.

[21] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun, ‘‘Spatial:
A language and compiler for application accelerators,’’ in Proc. 39th ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI). New York,
NY, USA: Association for Computing Machinery, 2018, pp. 296–311, doi:
10.1145/3192366.3192379.

[22] B. Pauget, D. J. Pearce, and A. Potanin, ‘‘Towards compilation of
an imperative language for FPGAs,’’ in Proc. 10th ACM SIGPLAN
Int. Workshop Virtual Mach. Intermediate Lang. (VMIL). New York,
NY, USA: Association for Computing Machinery, 2018, pp. 47–56, doi:
10.1145/3281287.3281291.

[23] A. Qamar, F. B. Muslim, J. Iqbal, and L. Lavagno, ‘‘LP-HLS: Auto-
matic power-intent generation for high-level synthesis based hardware
implementation flow,’’ Microprocessors Microsyst., vol. 50, pp. 26–38,
May 2017.

[24] K. Gagarski, M. Petrov, M. Moiseev, and I. Klotchkov, ‘‘Power specifi-
cation, simulation and verification of SystemC designs,’’ in Proc. IEEE
East-West Design Test Symp. (EWDTS), Oct. 2016, pp. 1–4.

[25] D. Lemma, M. Goli, D. Grose, and R. Drechsler, ‘‘Towards generation of
a programmable power management unit at the electronic system level,’’
in Proc. 23rd Int. Symp. Design Diag. Electron. Circuits Syst. (DDECS),
Apr. 2020, pp. 1–6.

[26] D. Macko, K. Jelemenská, and P. Čičák, ‘‘Simplifying low-power SoC
top-down design using the system-level abstraction and the increased
automation,’’ Integration, vol. 63, pp. 101–114, Sep. 2018.

[27] D. Macko, ‘‘Adoption of abstract power-management specification to
FPGA-based design,’’ in Proc. Int. Conf. Emerg. eLearn. Technol. Appl.
(ICETA), Nov. 2016, pp. 199–204.

165902 VOLUME 8, 2020

http://dx.doi.org/10.1088/1742-6596/1195/1/012012
http://dx.doi.org/10.1145/2436696.2443836
http://dx.doi.org/10.1145/2436696.2443836
http://dx.doi.org/10.1145/3192366.3192379
http://dx.doi.org/10.1145/3281287.3281291


M. Škuta et al.: Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems

[28] IEEE. IEEE Standard for Design and Verification of Low-Power, Energy-
Aware Electronic Systems, IEEE Standard 1801-2018, 2019.

[29] IEEE. IEEE Standard for Standard SystemC Language Reference Manual,
IEEE Standard 1666-2011, 2012.

[30] D. Macko, K. Jelemenská, and P. Čičák, ‘‘Verification of power-
management specification at early stages of power-constrained sys-
tems design,’’ J. Circuits, Syst. Comput., vol. 26, no. 8, Aug. 2017,
Art. no. 1740002.

[31] M. Bayer. Mako Templates for Python. Accessed: Dec. 4, 2018. [Online].
Available: https://www.makotemplates.org/

[32] M. Škuta. (2019). pmuToFPGA. [Online]. Available: https://github.com/
mintos5/pmuToFPGA

[33] Lattice Semiconductor. (2019). iCEstick Evaluation Kit: Rapid Devel-
opment for Affordable Innovation. [Online]. Available: https://www.
latticesemi.com/icestick

[34] C. Wolf and M. Lasser. Project IceStorm. Accessed: May 20, 2019.
[Online]. Available: http://www.clifford.at/icestorm/

[35] Xilinx. (2019). Spartan-3 FPGA Family. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/fpga/spartan-3.html

[36] KKmoon. (2016). KKmoon UM24C USB 2.0 Color LCD Display
Tester Voltage Current Meter Voltmeter Ammeter Battery Charge Cable
Impedance Measurement Communication Version. [Online]. Available:
https://www.kkmoon.com/p-e3358-2.html

[37] M. Škuta. (2019). iCE40HX1K Demos. [Online]. Available: https://github.
com/mintos5/iCE40HX1K-demos

[38] D. Macko, ‘‘Contribution to automated generating of system power-
management specification,’’ in Proc. IEEE 21st Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), Apr. 2018, pp. 27–32.

MICHAL ŠKUTA received the bachelor’s and
master’s degrees in computer engineering from
the Faculty of Informatics and Information Tech-
nologies, Slovak University of Technology in
Bratislava, in 2017 and 2019, respectively.

In his work, he focused on low power IoT
devices, specifically the development of an access
point for the LoRa technology and automation of
power management on FPGA platforms.

DOMINIK MACKO (Member, IEEE) received the
master’s degree in computer engineering and the
Ph.D. degree in applied informatics from the Fac-
ulty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava,
in 2011 and 2015, respectively.

He is currently with the Institute of Com-
puter Engineering and Applied Informatics of
his Alma Mater. His research interests are in
the area of low-power digital-systems design and

energy-efficient communications within the Internet of Things.

KATARÍNA JELEMENSKÁ (Member, IEEE)
received the Ph.D. degree in computer science
from the Slovak University of Technology in
Bratislava, in 1995.

She is currently the Director of the Faculty
of Informatics and Information Technologies,
Institute of Computer Engineering and Applied
Informatics, Slovak University of Technology in
Bratislava. She has been working with the Slo-
vak University of Technology in Bratislava, since

1986. Her research interests include digital systems design, modeling, and
verification, means of hardware specification, as well as efficient use of
information and communication technologies in education.

VOLUME 8, 2020 165903


