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ABSTRACT The output feedback position tracking control of permanent-magnet synchronous motor
(PMSM) drive system is addressed in this paper. In order to obtain a differentiable disturbance theoretically,
a continuous differentiable model is employed to model the nonlinear friction, and the desired velocity,
rather than the measured or estimated velocity, is used in the friction compensation. Then, based on the
desired friction compensation model, the reaching law based sliding mode controller is designed to make
the position tracking error as small as possible in the presence of model uncertainties and load disturbance,
and the gain of the reaching law is online tuned to adapt the variations of the controlled system. Moreover,
a nonlinear extended state observer (NESO) is designed to simultaneously estimate the unmeasured states
and unknown disturbance to guarantee the finite time stability of the proposed controller, and the designed
NESO is proven to be exponentially stable and has zero estimation errors theoretically. Simulations and
experimental results are given to verify the effectiveness of the proposed control scheme.

INDEX TERMS Adaptive reaching law, desired friction compensation, permanent-magnet synchronous
motor, position tracking control, sliding mode control, state and disturbance estimation.

I. INTRODUCTION
Permanent-magnet synchronous motor (PMSM) is widely
used in modern industrials due to its attractive advantages,
such as fast response, high efficiency, wide speed regulation
range and low maintenance cost [1]–[3]. The PMSM drive
system is essentially a nonlinear system subjected to model
uncertainties and unknown load torque. Although widely
used in the position tracking control of PMSM drive sys-
tem, there is no doubt that it is harder and harder for the
traditional PID control to fulfil the increasing control perfor-
mance demands of modern industrials. To improve the con-
trol performance of PMSM drive system, several advanced
control methods have been proposed in recent years, such
as adaptive control [4], [5], mode predictive control [6], [7],
active disturbance rejection control [8], [9] and intelligent
control [10], [11].

Apart from the abovementioned control methods, sliding
mode control (SMC) is one of the most commonly used
nonlinear control method for the position tracking control
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of PMSM drive system due to its simplicity, high precision
and robust [1]–[3], [12], [13]. An adaptive sliding mode con-
troller was proposed in [2] for the position tracking control of
PMSM, and the adaptive control was employed to online esti-
mate the unknown parameters and the bound of the switching
gain to improve the control performance. Moreover, to atten-
uate the chattering, which is not desired in real applications
for it may harm the mechanical system, a saturation function
was employed to replace the sign function. Although the
chattering can be effectively attenuated by choosing large
boundary layer of the saturation function, the robustness and
the position tracking performance will be deteriorated within
the boundary layer [14]. To overcome this problem, higher
order SMC (HOSMC), in which the discontinuous control
acts on the higher order derivative of the sliding variable, was
proposed in [15] to alleviate the chattering while preserv-
ing the main advantages of the traditional first-order SMC,
i.e., robust to model uncertainty and disturbance. In refer-
ence [16], HOSMCwith adaptive gains was proposed to relax
the requirement on the upper bound of the uncertainty and
disturbance. Although effectively reduced, the chattering is
mitigated rather than totally eliminated by HOSMC [17].
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The reaching law based sliding mode control is another
effective way for chattering attenuation [1], [18], [19]. The
control performance of the reaching law based SMC depends
significantly on the reaching law gains, which are usually
chosen as constants [18]. Generally speaking, small reaching
law gains will lead to poor robustness and long reaching time
while large reaching law gains cannot attenuate the chattering
effectively. To overcome this problem, the adaptive reaching
law based SMC was proposed in [1] and [19], in which
the gains of the reaching law were online tuned to adapt
the variations of the controlled system, and the control per-
formance is significantly improved in terms of robust and
precision. The adaptive reaching law can also be found in
the works [20], [21] and the references therein. For chattering
attenuation, soft computing based approaches, such as fuzzy
logic, neural networks and probabilistic reasoning, are also
widely used, the details can be found in the survey paper [22].
Another disadvantage of the traditional SMC is the asymptot-
ical converge rate due to the linear sliding surface. Terminal
SMC (TSMC) was proposed in [23] to obtain the finite time
stability of the error dynamics. However, the singular prob-
lem that caused by the negative fractional power of the error is
not desired in real applications. In reference [24], the nonsin-
gular TSMC (NTSMC) was proposed for the position control
of robotic manipulators, in which the singularity was totally
removed by rearranging the sliding surface, and essentially,
the dynamics of the proposed NTSMC in [24] is equivalent
to that of the TSMC in [23]. Although the neural network
was employed to improve the control performance of TSMC
in [25], the convergence rate decays quickly when the error
dynamics approach to the equilibrium point due to the small
fractional power. To further improve the control performance
of NTSMC, the nonsingular fast TSMC (NFTSMC) was
proposed in [26], in which an additional term with large frac-
tional power was added to the sliding surface of traditional
TSMC, and faster response and higher control precision were
obtained compared to the traditional NTSMC and TSMC.
However, only simulation results were given to verify the
effectiveness of the NFTSMC.

Friction that appears between the moving parts of mechan-
ical system is one of the main nonlinearities in PMSM drive
system. The nonlinear friction may lead to large steady state
error or limit cycles in low velocity regime [27]. Several mod-
els have been proposed to describe the friction phenomena,
such as the classic nonlinear model, Karnopp model, Dahl
Model, LuGre model and so on [27]–[29]. However, all the
above mentioned friction models are discontinuous due to the
sign function of velocity, which is not desired in high perfor-
mance control system. A continuously differentiable friction
model was developed in [29] for the high performance control
system, and the frictionmodel canwell capture themain char-
acteristics of the nonlinear friction. And the effectiveness of
this continuously differentiable friction model have been ver-
ified though experiments. Typically, the velocity signal that
measured by sensor or estimated by observer is used for the
friction compensation to improve the control performance.

However, the compensation performance may be unsatisfac-
tory due to the measurement noise or estimated error. The
desired compensation technique [30], [31] is an effective way
to attenuate the effect of measurement noise or estimation
error. The main idea of the desired compensation technology
is that the desired velocity, which is known exactly and noise
free, is used in the friction compensation rather than the mea-
sured or estimated velocity, thus the friction compensation
signal is smooth and noise free.

Another difficulty for the high performance control of
PMSM drive system is the unmeasured states and unknown
disturbance. To improve the control performance of PMSM
drive system, the sliding mode observer was designed in [3]
to estimate the external disturbance, and the estimated dis-
turbance was embedded in the SMC to reduce the switching
gain. However, the disturbance was assumed to be constant,
which is not always fulfilled in real applications. More-
over, the sliding mode observer suffers from the chattering
problem due to the discontinuous sign function, and addi-
tional low-pass filter is needed to obtain smooth signals.
Disturbance observer (DOB) [32]–[34] is another commonly
used method for disturbance estimation. DOB can asymptot-
ically estimate the time-invariant disturbance, and the esti-
mation error for time-varying disturbance can be effectively
reduced by tuning the observer gains [34]. However, all
the above mentioned observers need full states of the sys-
tem, and this limits their usage in practical applications.
Sliding mode observer was also designed to estimate the
unknown states of a class of nonlinear system with uncer-
tainties in [35], [36], but the disturbance is not estimated.
Extended state observer (ESO) is a special kind of observer
that can simultaneously estimate the unknown states and
disturbance [34], [37], [38]. Although the estimation errors
can be effectively reduced by tuning the observer gain, the tra-
ditional ESO has bounded estimation errors rather than zero
estimation errors if the time derivative of the disturbance is
not Lipchitz [38].

In this paper, motived by the above discussions, an adaptive
reaching law based sliding mode position tracking controller
is proposed for the PMSMdrive system based on a novel non-
linear ESO. Simulations and experimental results are given to
verify the effectiveness of the proposed controller. The main
contributions of this paper are listed as follows.

(1) In order to estimate the unmeasured states and dis-
turbance precisely, a nonlinear ESO is designed, which is
exponentially stable and has zero estimation errors theoret-
ically, thus, the discontinuous term can be totally removed
from the SMC while preserves its main advantages in the
whole working space, i.e., robust and high precision. More-
over, the desired compensation technology is employed to
guarantee the stability of the designed nonlinear ESO.

(2) The dynamics of the PMSM drive system is rearranged
based on the desired compensation model, and then, based on
the rearranged model, a reaching law based fast nonsingular
terminal sliding mode controller is designed to obtain faster
response and higher position tracking precision. And the
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designed controller is proven to be finite time stable in the
presence of model uncertainties and disturbance.

(3) To further improve the control performance of the
PMSM drive system, an adaptive law is designed to online
tuning the gain of the reaching law such that the gain increases
to accelerate the convergence process when the sliding vari-
able is far away from the origin, and vice versa, the gain
decays to a small level to avoid chattering when the sliding
variable is close to the origin.

For simplicity of expression, the following notations are
introduced.

(1) Let λmax(•) and λmin(•) be the maximum and minimal
eigenvalue of the matrix •, respectively.
(2) ||•||2 denotes the Euclidean norm of the vector •.
(3) the sign function is defined as

sign(•) =


1, •> 0
0, •= 0
−1, •< 0.

II. DYNAMIC MODEL OF THE PMSM DRIVE SYSTEM
WITH UNCERTAINTIES
Typically, the dynamic model of PMSM drive system con-
tains mainly two parts, namely, the PMSM model and the
mechanical model. The PMSM model in d-q-axis can be
described by the following equations [1]–[4].{

i̇d = (ud − Rid + pθ̇Lqiq)/Ld
i̇q = (uq − Riq − pθ̇Ld id − pθ̇ψf )/Lq

(1)

while the mechanical model can be given as
J θ̈ + Tf (θ̇ )+ TL = TM (2)

where ud , ud , id , iq, Ld and Lq are the d-q-axis voltages,
currents and inductances, respectively; R is the resistance
of stator winding; θ is the mechanical angle displacement
of the rotor; p is the number of pole pairs; ψf is the rotor
flux; J is the equivalent moment of inertia of the rotor,
including the load; Tf is the nonlinear friction; TL is the load
torque, including the unknown external disturbance and the
unmolded dynamics; TM is the electromagnetic torque that
provided by the PMSM, which can be given as [1], [2]

TM = 1.5p(ψf id − (Ld − Lq)id iq) (3)

If the Field Oriented Control (FOC) is applied with the
d-axis current being controlled to be zero, i.e., id = 0,
the motor torque (3) can be rewritten as

TM = 1.5pψf id = KT u (4)

where KT = 1.5pψf is the torque constant of the motor,
u = iq is the control input.

Considering that the lumped disturbance should be dif-
ferentiable for the observer design, the nonlinear friction
Tf
(
θ̇
)
is modeled by the following continuously differen-

tiable model [28]:

Tf
(
θ̇
)
= c1

(
tanh

(
c2θ̇

)
− tanh

(
c3θ̇

))
+ c4 tanh

(
c5θ̇

)
+ c6θ̇ (5)

where ci (i = 1, 2, . . . , 6) are positive constants. The term
c1
(
tanh

(
c2θ̇

)
− tanh

(
c3θ̇

))
+ c4 tanh

(
c5θ̇

)
is the approx-

imation of the static friction, the stribeck phenomenon is
captured by the term tanh

(
c2θ̇

)
− tanh

(
c3θ̇

)
, and the viscous

damping is modeled by the term c6θ̇ .
Considering model uncertainties, the mechanical dynam-

ics (2) can be rewritten as

(KT0 +1KT ) u = (J0 +1J) θ̈ + Tf 0
(
θ̇
)
+1Tf

(
θ̇
)
+ Td

(6)

where KT0, J0, Tf 0 and 1KT , 1J , 1Tf are the nominal and
uncertain part of KT , J , Tf , respectively. The equation (6) can
be further rewritten as

KT0u = J0θ̈ + Tf 0
(
θ̇
)
+ Tlump (7)

where Tlump = Td −1KT u+1J θ̈ +1Tf
(
θ̇
)
is the lumped

disturbance.
Note that the nonlinear friction model (5) is differentiable

and has bounded derivatives, thus it is reasonable to assume
that 1Tf is also differentiable and has bounded derivatives.
Note also that the model uncertainties 1KT , 1J and the dis-
turbance Td are all bounded in practical applications. Hence,
if the control signal u is designed to be differentiable and
bounded, then the following assumption can be made.
Assumption 1: The lumped disturbance Tlump is differen-

tiable and bounded with bounded derivative, i.e.,{∣∣Tlump∣∣ ≤ $1∣∣Ṫlump∣∣ ≤ $2
(8)

where $1 > 0 is a unknown constant while $2 > 0 is a
known constant.

If the state variables are chosen as x = [x1 x2]T = [θ θ̇ ]T ,
then the mechanical dynamics (7) can be rewritten in the state
space form as

ẋ1 = x2

ẋ2 =
KT0
J0

u−
1
J0
Tf 0 (x2)−

1
J0
Tlump

y = x1

(9)

Given the desired motion trajectory xd , which is assumed
to be continuous and bounded up to the third order derivative,
i.e., |xd | + |ẋd | + |ẍd | + |

...
x d | < +∞. The control task in this

paper is to design a bounded and differentiable control law u
such that the angle displacement of the PMSM drive system
can tracking the desired motion trajectory xd as closely as
possible in the presence of model uncertainties and unknown
load torque.

III. DESIGN OF SLIDING MODE CONTROLLER WITH
ADAPTIVE REACHING LAW
In this section, a slidingmode position tracking controller will
be designed based on the reaching law approach, and the gain
of the reaching law is online updated for control performance
improvement. In order to reduce the effect of the measure-
ment noise or estimation errors, the desired compensation
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technology [30], [31] is employed to generate a smooth and
noise free friction compensation signal. More specifically,
by using the desired compensation, the second equation of (9)
can be rearranged as follows:

ẋ2 =
KT0
J0

u−
1
J0
Tf 0 (ẋd )−

1
J0
Tlump

+
1
J0
Tf 0 (ẋd )−

1
J0
Tf 0 (x2)

=
KT0
J0

u−
1
J0
Tf 0 (ẋd )+ d (10)

where d = −Tlump/J0 + Tf 0 (ẋd ) /J0 − Tf 0 (x2) /J0 is the
new defined disturbance. Note that d is bounded due to the
boundedness of Tf 0 and Tlump.

Define the position tracking error as

e = x1 − xd (11)

By using (9) and (10), the time derivatives of the position
tracking error (11) can be given as

ė = ẋ1 − ẋd = x2 − ẋd (12a)

ë = ẋ2 − ẍd =
KT0
J0

u−
1
J0
Tf 0 (ẋd )+ d − ẍd (12b)

In order to obtain the finite time convergence of the
position tracking error (11) and its first order time deriva-
tive (12a), the nonsingular fast terminal sliding mode sur-
face [25] is introduced as follows.

s = k0e+ k1 |e|α sign(e)+ k2 |ė|β sign (ė) (13)

where k0 > 0, k1 > 0, k2 > 0, 1 < β < 2 and α > β are
constants to be determined later.
Remark 1: Typically, k0 is set to k0 = 1 in the traditional

nonsingular fast terminal slidingmode surface [26]. However,
in view of (13), the sliding variable s is small when the
position tracking error e and its first order time derivative ė
are in the vicinity of zero, which leads to a slow response of
the closed loop system. Thus, in this paper, a large value of k0
is used for the control performance improvement, i.e., k0 > 1.

By using (10) and (12), the first order time derivative of the
sliding variable (13) can be given as

ṡ = k0ė+ αk1 |e|α−1 ė

+βk2 |ė|β−1
(
KT0
J0

u−
1
J0
Tf 0 (ẋd )+ Tall − ẍd

)
(14)

Theorem 1: For the system (9) satisfying assumption 1,
if the control law is designed as

u =
J0
KT0

(u1 + u2) (15a)

u1 =
1
J0
Tf 0 (ẋd )− d + ẍd

−
k0 + αk1 |e|α−1

βk2
|ė|2−β sign (ė) (15b)

u2 = − (η + µ) |s|γ sign (s) (15c)

µ̇ = −ϑ |µ|γ sign (µ)+ βk2 |ė|β−1 |s|γ+1 (15d)

where η > 0 and ϑ > 0 are constants to be designed later.
Then the position tracking error (11) and the reaching law
gain µ will converge to zero in finite time and all signals are
bounded.

Proof: Substituting the control law (15) into (14) yields

ṡ = ė
(
k0 + αk1 |e|α−1

)
+βk2 |ė|β−1

(
−
k0 + αk1 |e|α−1

βk2
|ė|2−β sign (ė)+ u2

)
= ė

(
k0 + αk1 |e|α−1

)
s−

(
k0 + αk1 |e|α−1

)
ė

+βk2 |ė|β−1 u2
= −βk2 |ė|β−1 (η + µ) |s|γ sign (s) (16)

Define the positive definite Lyapunov function as

Vc =
1
2
s2 +

1
2
µ2 (17)

By using (15d) and (16), the first order time derivative of
Lyapunov function (17) can be given as

V̇c = sṡ+ µµ̇

= −βk2 |ė|β−1 (η + µ) |s|γ+1

+µ
(
−ϑ |µ|γ sign (µ)+ βk2 |ė|β−1 |s|γ+1

)
= −ηβk2 |ė|β−1 |s|γ+1 − ϑ |µ|γ+1

= −ηβk2 |ė|β−1
∣∣∣s2∣∣∣(γ+1)/2 − ϑ ∣∣∣µ2

∣∣∣(γ+1)/2 (18)

Note that for any positive real numberm1 > 0,m2 > 0 and
0 < n < 1, the inequality (m1 + m2)

n
≤ mn1+m

n
2 holds [24].

Thus, it can be obtained from (18) that

V̇c = −ηβk2 |ė|β−1
∣∣∣s2∣∣∣(γ+1)/2 − ϑ ∣∣∣µ2

∣∣∣(γ+1)/2
≤ −kη

(∣∣∣s2∣∣∣(γ+1)/2 + ∣∣∣µ2
∣∣∣(γ+1)/2)

≤ −kη2(γ+1)/2V (γ+1)/2c (19)

where kη = min
{
ηβk2 |ė|β−1 , ϑ

}
.

The stability and the convergence can be analyzed in the
following two cases.
Case 1: ė 6= 0. In this case, it is easy to check that
|ė|β−1 > 0. Thus, we have ηβk2 |ė|β−1 > 0, which means
that kη > 0. Hence, Vc will converge to zero in finite
time [24], [26], and consequently, the sliding variable s and
the reaching law gain µ will converge to zero in finite time.
Case 2: ė = 0. In this case, the control law (15b) can be

rewritten as

u1 =
1
J0
Tf 0 (ẋd )− d + ẍd (20)

Then, the equation (12b) and (15d) can be rewritten as

ë = − (η + µ) |s|γ sign (s) (21)

µ̇ = −ϑ |µ|γ sign (µ) (22)

In view of (22), µ̇ 6= 0 if µ 6= 0, which means that µ = 0
is a global attractor and µ is finite time stable. Therefore,
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η + µ > 0 holds after the convergence to zero of µ due to
η > 0. Hence, it can be concluded from (21) that ë 6= 0 for
both s > 0 and s < 0, that is, ė = 0 is not a attractor and the
across over the vicinity of ė = 0 will occur in finite time.
Now, it can be concluded from the above discussions

that the sliding surface s = 0 can be reached in finite
time. Note that the initial tracking errors are bounded due
to the boundedness of the desired motion trajectory and the
states of PMSM drive system, and the disturbance is also
bounded according to assumption 1, thus all the signals will
be bounded. The proof is completed.
Remark 2: Although the sign function and the absolute

values are involved in the control law (15), it is continuous
and differentiable. Thus, the chattering is totally removed
theoretically.
Remark 3: In view of (15d), the reaching law gain µ is

online updated according to s, µ and ė. For stability and
chattering elimination reasons, the parameter ϑ should be
chosen large enough such that µ decreases to a small level
when the tracking error is small. However, too large value
of ϑ will result in a quick converge rate of µ, and µ will
decay quickly to zero when s and ė are small, which will lead
to a poor robust and slow response of the closed loop system.
On the other hand, small value of ϑ will also lead to a poor
robust due to the slow increase rate of µ when large tracking
error appears. Hence, the parameter ϑ should be chosen to
balance the control performance and stability of the closed
loop system.

In view of (15b), the disturbance d is involved in the control
law. However, the disturbance d is not known. Moreover, the
sliding variable (13) also cannot be calculated directly due
to the unknown velocity signal. Thus, the control law (15)
cannot be implemented directly. It should be also noted that
only bounded tracking errors can be obtained by the reaching
law based SMC if the disturbance d is not known exactly [18].
Therefore, the next step is to estimate the unknown velocity
and disturbance d precisely based on the desired compensa-
tion model (10).

IV. DESIGN OF NONLINEAR OBSEVER WITH ZERO
ESTIMATION ERRORS
In this section, the unknown velocity and disturbance d
will be estimated with zero estimation error based on the
desired compensation model (10). To do this, the traditional
ESO [36], [37] is employed with suitable modification. As in
the traditional ESO design, the disturbance d is extended as
a new state x3, namely, x3 = d . Note that the disturbance d
is differentiable due to the differentiability of Tlump and Tf 0.
Denote the first order time derivative of d as h(t),
i.e., ḋ = ẋ3 = h (t). Then, the system (9) can be rewritten
in the extended form as

ẋ1 = x2

ẋ2 =
KT0
J0

u−
1
J0
Tf 0 (ẋd )+ x3

ẋ3 = h (t)

(23)

Note that the first order time derivative of Tf 0 and Tlump are
both bounded, thus, it is reasonable to assume that h(t) is also
bounded by some known constant δ, i.e., |h (t)| < δ.

Define the estimation error as
x̃1 = x1 − x̂1
x̃2 = x2 − x̂2
x̃3 = x3 − x̂3

(24)

where x̂1, x̂2 and x̂3 are the estimation of x1, x2 and x3,
respectively. The proposed nonlinear ESO is given as

˙̂x1 = x̂2 +
3ωo
ε
x̃1 + L3 |x̃1|

2/3 sign (x̃1)

˙̂x2 =
KT0
J0

u−
1
J0
Tf 0 (ẋd )+ x̂3

+
3ω2

o

ε2
x̃1 + L2 |x̃1|

1/3 sign (x̃1)

˙̂x3 =
ω3
o

ε3
x̃1 + L1sign (x̃1)

(25)

where ωo > 0, L1 > 0, L2 > 0, L3 > 0 and ε > 0
are constants to be designed later. By using (23) and (25),
the estimation error dynamics (24) can be rewritten as

˙̃x1 = x̃2 −
3ωo
ε
x̃1 − L3 |x̃1|

2/3 sign (x̃1)

˙̃x2 = x̃3 −
3ω2

o

ε2
x̃1 − L2 |x̃1|

1/3 sign (x̃1)

˙̃x3 = h (t)−
ω3
o

ε3
x̃1 − L1sign (x̃1)

(26)

which can be written as ˙̃x = f1 (x̃)+ f2 (x̃), where

f1 (x̃) =

 −3ωo/ε 1 0
−3ω2

o/ε
2 0 1

−ω3
o/ε

3 0 0

 x̃ = Ax̃,

f2 (x̃) =

−L3 |x̃1|2/3 sign (x̃1)−L2 |x̃1|
1/3 sign (x̃1)

h (t)− L1sign (x̃1)

,
in which

A =

 −3ωo/ε 1 0
−3ω2

o/ε
2 0 1

−ω3
o/ε

3 0 0

, x̃ = [x̃1, x̃2, x̃3]T .

Note that the matrix A is Hurwitz since ωo > 0, thus,
there must exist some positive symmetric matrix P such that
ATP+PA = −I3×3, where I3×3 is the unit matrix, and for the
Lyapunov function V1 (x̃) = x̃TPx̃, the following inequality
holds:

V̇1 (x̃) ≤ −
1

λmax (P)
V1 (x̃) (27)

Thus, it can be concluded that the subsystem ˙̃x = f1 (x̃)
is exponentially stable. More details about the stability and
convergence of the subsystem ˙̃x = f1 (x̃) can be found
in [36]–[38] and the references therein.

Note also that the subsystem ˙̃x = f2 (x̃) is (3, 2, 1)-
homogeneous of degree −1, which means that it is finite
time stable [40]. Hence, there exist some constants c > 0,
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0 < α < 1 and a continuous positive definite function V2 (x̃)
such that [40]

V̇2 (x̃) ≤ −cV α2 (x̃) (28)

For the stability analysis of the proposed observer, define
the Lyapunov function as Vo = V1 + V2. By using (27) and
(28), the time derivative of Vo can be given as

V̇o (x̃) = V̇1 (x̃)+ V̇2 (x̃)

≤ −
1

λmax (P)
V1 (x̃)− cV α2 (x̃) (29)

For the case V1 (x̃) ≥ 1, we have V1 (x̃) ≥ V α1 (x̃), then it
can be obtained from (29) that

V̇o (x̃) = V̇1 (x̃)+ V̇2 (x̃)

≤ −
1

λmax (P)
V α1 (x̃)− cV

α
2 (x̃)

≤ −min
{

1
λmax (P)

, c
}
V αo (x̃) (30)

Thus, V0 (x̃) is finite time stable, which means that V1 (x̃)
will be bounded by V1 (x̃) < 1 in finite time. Note that
λmin (P) ‖x̃‖

2
2 ≤ V1 (x̃), thus the estimation errors are also

bounded in finite time, i.e., ‖x̃‖22 < 1/λmin (P), and the
bound can be effectively reduced by tuning the parametersωo.
Recall that V2 (x̃) is a continuous function of x̃, thus, if the
parameters ωo is chosen large enough such that V2 (x̃) < 1,
which means V2 (x̃) ≤ V α2 (x̃). Then it can be obtained
from (29) that

V̇o (x̃) = V̇1 (x̃)+ V̇2 (x̃)

≤ −
1

λmax (P)
V1 (x̃)− cV2 (x̃)

≤ −min
{

1
λmax (P)

, c
}
Vo (x̃) (31)

which means that V0 (x̃) together with V1 (x̃) and V2 (x̃)
will converge to zero exponentially. Therefore, based on the
above discussions, we can conclude that the estimation errors
will first converge to a small bound in finite time and then
converge to zero exponentially.
Remark 4: In order to make sure that V2 (x̃) < 1 when

V1 (x̃) < 1, the observer gain ωo should be chosen large
enough. However, large value of ωo may lead to stability
issues due to the measurement noise. Thus, the observer
gain ωo should be chosen to balance the stability and esti-
mation performance.
Remark 5: The traditional ESO has bounded estimation

errors if the extended state h(t) is not Lipchitz with respect
to the estimation error x̃ [38]. By introducing a nonlinear
term, the designed observer can estimate the unknown states
and disturbance with zero estimation errors if the extended
state h(t) is bounded, which is a much relax requirement.
Thus, the application of the ESO is extended to a wide range.
Remark 6: The selection of the L1, L2 and L3 has great

influence on the estimation performance of the observer.

It is recommended that they are chosen following the design
of Levant’s Differentiator [41].

Now, based on the estimated signals, the equation (12a) can
be rewritten as

ė = x̂2 − ẋd (32)

And the disturbance d can be written as

d = x̂3 (33)

Thus, the sliding variable (13) and the controller (15) can be
calculated based on (32) and (33).

The diagram of the proposed control scheme is shown
in Figure 1.

FIGURE 1. Diagram of the proposed control scheme.

V. CLOSED LOOP STABILITY ANALYSIS
The stability and convergence of the closed loop system will
be established in the following three stages.

Stage 1: In this stage, the estimation errors of the
observer (25) will converge to a small level in finite time, and
then the estimation errors will converge to zero exponentially.
Since the states of the PMSM drive system are bounded
in practical applications, all the estimated signals are also
bounded.

Stage 2: The sliding variable s reaches zero in finite time
under the control of the control law (15), and meanwhile,
the adaptive gain of the reaching law µ converges to zero.

Stage 3: After the convergence to zero of the sliding vari-
able s, the position tracking error (11) and its time derivatives
(12) will converge to zero in finite time with fast convergence
rate.

To further verify the stability and convergence of the closed
loop system, define the Lyapunov function as V = VO + Vc,
it can be obtained from (19), (30) and (31) that V̇ < 0 holds
during the whole process. Thus, the Lyapunov function V
together with Vo and Vc will converge to a small level in
finite time and then converge to zero exponentially, and con-
sequently, the position tracking error (11) and the controlled
plant (x1 - xd ) will also converge to a small level in finite time
and then converge to zero exponentially, and all the signals
are bounded due to the boundedness of the system states,
observer dynamics and the initial errors.

VI. SUMULATION AND EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of the proposed con-
troller, simulations and experiments were carried out. And
the following two controllers were performed for comparison
purpose.
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(1) PIVF: This is the commonly used PID controller with
velocity feedforward, which is given as

u = kpe+ ki

∫ t

0
e (t) dt + kvẋd (34)

where kp > 0, ki > 0, kv > 0 are the controller gains to be
designed.

(2) SMC: This is the reaching law based sliding mode
control proposed in [1], which is given as

u =
J0
KT0

(
ẍd − λė+

1
J0
Tf (x2)

)
−

J0
KT0

(
k1 |e|α sign (s)+ k2 |s|b×sign(|s|−1) s

)
(35)

where s = ė+λe,Tf (x2) = a1 tanh (a2x2)+a3x2. The veloc-
ity signal was obtained by backward differentiation method.

The motor used in the simulations and experiments is
a three-phases and eight-pole PMSM with Y connection,
and the main parameters of the motor are listed as fol-
lows: rated power 1000 W, rated speed 1000 r/min, phase
resistance 0.245 �, torque constant 1.0 Nm/A, rotor inertia
0.00277 Kgm2.
Considering the fact that the control input in real appli-

cations is bounded, the control effort in the simulations
and experiments was saturated within −10∼10 Amperes,
i.e., −10 < u < 10.

A. SIMULATION RESULTS
Simulations were carried out by using Matlab/Simulink soft-
ware and AMESim software to verify the effectiveness of the
proposed controller. The PMSM drive system was modeled
in AMESim software, and the EMDPMSM01 model and
EMDPMSMFOC01 model were used for the PMSM and
FOC, respectively. The coefficient of viscous friction was set
as 0.0115 Nm/(rad/s) while the coulomb friction torque and
static torque were set as 0.55 Nm and 0.625 Nm, respectively.
The control algorithmwas carried out in theMatlab/Simulink
software. The sample time was fixed to 0.1ms.

The gains of the proposed controller are chosen as k0 = 30,
k1 = 10, k2 = 10, α = 3, β = 1.5, γ = 0.6, η = 10,
ϑ = 100. The gains of the designed nonlinear ESO are
chosen as ωo = 50, ε = 0.1, L1 = 5.5, L2 = 2.23 and
L3 = 8.77. And the coefficients of the friction model (5)
are chosen according to the simulation configuration
as c1 = 0.3854, c2 = 29.07, c3 = 1.672, c4 = 0.507,
c5 = 3.605, c6 = 0.0115. The gains of PIVF are chosen
via try-and-error method as kp = 10.0, ki = 5.0, kv = 0.03.
The gains of SMC are set as λ = 50, k1 = 20, k2 = 20,
a = 0.4, b = 0.3, and the friction coefficients are chosen
also according to the simulation configuration as a1 = 0.55,
a2 = 100, a3 = 0.0115. It should be pointed out that all the
gains of the three controllers were tuned for the sinusoidal
motion trajectory.

In order to evaluate the performance of the three con-
trollers, the sinusoidal and point-to-point motion trajectory
were tested in the following simulations.

(1) sinusoidal motion trajectory (sine): the sinusoidal
motion trajectory with the maximum speed of 6π rad/s was
tested in this simulation, i.e.,

xd = 20 sin (0.3π t) rad.

The normal system was first test to evaluate the control
performance of the three controllers. The simulation results
are given in Figure 2 - Figure 6. As can be seen from Figure 2,
the position tracking error of PIVF is about ±0.16 rad while
that of SMC and the proposed controller are about±0.04 rad
and ±0.03 rad, respectively, which shows the superiority of
the advanced controller. Although the position tracking error
of PIVF can be further reduced by increase the controller
gains, serious chattering would appear due to the limited
bandwidth of the controlled system. It should be also noted
that some chattering has already appeared in PIVF, which
can be seen from Figure 3. Moreover, large position tracking
error, about 0.3 rad, appears in PIVF within the first a few
seconds, this is mainly caused by the mismatched initial
conditions, i.e., ẋ1(0) 6= ẋd (0). The mismatched initial con-
ditions will also lead to large control effort, which can be
seen from Figure 3. To further reduce the position tracking
error within the first a few seconds and avoid large control
effort, the desired motion trajectory should be filtered such
that x1(0) = xd (0), ẋ1(0) = ẋd (0) and ẍ1(0) = ẍd (0) as in [2].

FIGURE 2. Position tracking error in normal case (sine).

The sliding variable of SMC and the proposed controller
are shown in Figure 4, as can be seen, although the sliding
variable of the proposed controller is much larger than that
of SMC in the beginning, it decays quickly to a small level.
The large sliding variable of the proposed controller is still
mainly caused by the unmatched initial conditions. In view
of (15d), the large value of sliding variable will lead to large
value of µ, which can be seen Figure 5. It also as can be
seen from Figure 5 that µ increases quickly when the sliding
variable is large, and it decays to almost zero when the sliding
variable is small. It should also be noted that large value of µ
may lead to stability problems as discussed in Remark 4.
To overcome this problem, a simple but effective way is to
saturate µwithin a suitable range, i.e., µ < µ0, where µ0 is a
positive constant that determined by the specific application.
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FIGURE 3. Control effort in normal case (sine).

FIGURE 4. Sliding variable in normal case (sine).

FIGURE 5. Evolution of µ in normal case (sine).

However, it would lead to a slower responsewhen largemodel
uncertainty or external disturbance appears if is µ0 small.
Thus, the chosen of µ0 should balance the performance and
the stability. The estimated velocity and disturbance are given
in Figure 6 and Figure 7, respectively. The maximal velocity
estimation error is about ±0.15 rad/s, that is about 0.8% of
the maximum velocity, which shows the effectiveness of the
designed nonlinear ESO.

To test the robustness of the three controllers, model uncer-
tainties and external disturbance were considered in the fol-
lowing simulation. The rotor inertia was set as 5 times of the
normal value, i.e., J = 0.0138 Kgm2 and the friction was
set as 2 times of the nominal value, namely, the coefficient
of the viscous friction was set as 0.022 Nm/(rad/s) while the

FIGURE 6. Estimation of velocity in normal case (sine).

FIGURE 7. Estimation of disturbance in normal case (sine).

static friction torque and the coulomb friction torque were
set as 1.25 Nm and 1.1 Nm, respectively. Moreover, a step
disturbance was added after the tenth second, i.e.,

d =

{
0, t < 10
3× sign(θ̇ )Nm otherwise.

The simulation results are given in Figure 8 - Figure 13.
As can be seen from Figure 8, before the step disturbance
is added, the position tracking error of the proposed con-
troller is about ±0.04 rad while that of PIVF and SMC is
±0.06 rad, ±0.28 rad, respectively. That is about 33.3% and
85.7% improvement of the position tracking precision. After
the step disturbance is added, the position tracking error of
SMC and PIVF increases to about ±0.23 rad and ±1.1 rad,
respectively. Meanwhile, the position tracking error of the
proposed controller increases slightly to about ±0.06 rad
during that time, which shows the superior performance of the
proposed controller. As can be seen from Figure 9, the control
effort of the three controllers are almost the same except that
some chattering appears in the control effort of PIVF.

The sliding variable of the proposed controller and SMC
are shown in Figure 10. As can be seen, some peaks appear in
the sliding variable of the proposed controller, this is mainly
caused by the large friction and the change of load distur-
bance. It can be seen from Figure 11 that µ increases quickly
to attenuate the effect of disturbance when it is added, and
thus a small position tracking error is obtained. The estimated
velocity and disturbance are given in Figure 12 and Figure 13,
respectively.
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FIGURE 8. Position tracking error in uncertain case (sine).

FIGURE 9. Control effort in uncertain case (sine).

FIGURE 10. Sliding variable in uncertain case (sine).

FIGURE 11. Evolution of µ in uncertain case (sine).

(2) Point-to-point motion trajectory (PTP): The classic
point-to-point motion trajectory with the maximum speed
of 50 rad/s, which is given in Figure 14, was tested in this
simulation. The same model uncertainties as in the sinusoidal

FIGURE 12. Estimation of velocity in uncertain case (sine).

FIGURE 13. Estimation of disturbance in uncertain case (sine).

FIGURE 14. PTP motion trajectory.

FIGURE 15. Position tracking error (PTP).

motion trajectory were also considered in this simulation. The
simulation results are given in Figure 15 to Figure 20.

As can be seen from Figure 15, the maximum absolute
position tracking error of PIVF is about 0.6 rad while that
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FIGURE 16. Control effort (PTP).

FIGURE 17. Sliding variable (PTP).

of SMC and the proposed controller are about 0.25 rad and
0.17 rad, respectively. The proposed controller still has better
control performance in this situation. Remember that all the
gains of the three controllers were tuned for the sinusoidal
motion trajectory, which means that they maybe not optimal
for the PTP motion trajectory, thus, it takes several seconds
for the position tracking error to approach zero by PIVF.
There is no doubt that the position tracking error can be
further reduced by increasing the gains of PIVF, and this
is also true for SMC and the proposed controller. However,
it should be noted that the purpose of this simulation is to
evaluate the performance of the three controllers, thus, for
the sake of fairness and simplicity, the same controller gains
were still used in this simulation. The steady-state error of
PIVF and the proposed controller are almost zero while that
of SMC is about 0.02 rad. It should be noted that although the
integral action was not employed in the proposed controller
due to its side-effect such as long settling time and large over
shoot, zero position tracking error was still obtained, which
shows the superior of the proposed controller.

The control effort of the three controllers are given
in Figure 16, as can be seen, they are almost the same except
that the control effort of SMC is about zero in the steady-state
while that of PIVF and the proposed controller are both about
1.1 Amperes, which is almost the same as the coulomb fric-
tion torque. This is why the steady-state error of PIVF and the
proposed control are about zero while that of SMC is about
0.02 rad. The steady-state error shows the disadvantage of

FIGURE 18. Evolution of µ (PTP).

FIGURE 19. Estimation of velocity (PTP).

FIGURE 20. Estimation of disturbance (PTP).

the reaching law based sliding mode control proposed in [1].
The sliding variable of SMC and the proposed controller are
shown in Figure 17. The evolution of µ is given in Figure 18,
as can be seen, µ decreases quickly when the sliding variable
is large, and decays to almost zero quickly when the sliding
variable is small. It should be noted that the parameter ϑ was
selected for the sinusoidal motion trajectory, thus, it maybe
not optimal for the PTP motion trajectory. The estimation
of velocity and disturbance are shown in Figure 19 and
Figure 20, respectively.

B. EXPERIMENTAL RESULTS
To further evaluate the effectiveness of the proposed
controller, a test bench was set up, which is shown
in Figure 21. The motor controller is a IGBT-Module
(FS400R07A1E3, Infineon) controlled by a digital signal
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FIGURE 21. Test bench.

FIGURE 22. Nonlinear friction and its fitting curve.

processor (TMS320F28379D, Texas Instruments). The main
parameters of PMSM are the same as the PMSM used in
the simulation. The angle position of the rotor is measured
by a resolver, and the resolver signal is acquired via a
12bit A/D converter. To attenuate the measurement noise,
a second order Butterworth Filter with the cut-off frequency
of 2 kHz is employed. The load torque is generated by a
magnetic powered brake whose rated speed and brake torque
are 1000 r/min and 0-5 Nm, respectively. Moreover, the Filed
Oriented Control (FOC) is employed to control the motor in
the experiments. The two current loops are both controlled
by the standard PI controller, which are tuned via try-and-
error method. The PI parameters of the two current loops
are the same, i.e., kp = 6.16, ki = 0.075. The sampling
time of the current loop and the position loop are 100 us
and 200 us, respectively. The control algorithm is coded
with Code Composer Studio Integrated Development Envi-
ronment (CCS IDE V10.1 Texas Instruments) and carried
out in the digital signal processor (TMS320F28379D, Texas
Instruments).

In order to measure the performance of the three
controllers, the following three performance indexes are
employed, i.e.,

(i) Maximum absolute value of the position tracking errors,
which is defined as

Me = max
i=1,...,N

{|e(i)|}

where N is the number of recorded position tracking errors,
e(i) is the i-th position tracking error.

FIGURE 23. Position tracking error (sine).

FIGURE 24. Control effort (sine).

(ii) Average value of the absolute position tracking errors,
which is defined as

Mµ =
1
N

N∑
i=1

|e(i)|

where N and e(i) are the same as in (i).
(iii) Standard deviation of the position tracking errors,

which is defined as

Mσ =

√√√√ 1
N

N∑
i=1

|e(i)− µ|2

where µ is given in (ii).
Since the friction compensation is involved in the proposed

controller and SMC, a PI speed controller was designed for
friction identification purpose. Note that the PI speed con-
troller has little effect to the friction identification since only
steady-state information are needed, i.e., the q-axis current
during a period of constant speed. Thus, the gains of the
speed controller were chosen via try-and-error method and
given as kp = 0.88, ki = 0.36. The identified friction is
shown in Figure 22, and the following coefficients are used
to fit the recorded friction data: c1 = 0.7708, c2 = 29.07,
c3 = 1.672, c4 = 1.014, c5 = 3.605, c6 = 0.0229. The
friction coefficient in the SMC are chosen as a1 = 1.0,
a2 = 100, a3 = 0.0229 according to the recorded friction
data.

The three controllers were first tested to track the sinu-
soidal motion trajectory, i.e., xd = 20 sin (0.3π t) rad, which
is the same as in the simulation, and a 3.0 Nm step load
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FIGURE 25. Sliding variable (sine).

FIGURE 26. Evolution of µ (sine).

torque was added to test the robust of the three controllers.
The position tracking errors of the three controllers are shown
in Figure 23. As can be seen, before the step load torque is
added, the position tracking error of the three controllers are
about±0.51 rad (PIVF),±0.38 rad (SMC) and±0.23 rad (the
proposed controller), respectively. After the step load torque
is added, the position tracking error of PIVF increases to
about 1.31 rad and then decays to±0.75 rad, and the position
tracking error of SMC during that time is about ±0.42 rad.
However, the position tracking error of the proposed con-
troller remains almost the same when the step disturbance is
added. The three performance indexes of the three controllers
are given in Table 1, as can be seen, the proposed controller
has better performance than PIVF and SMC.

TABLE 1. Performance indexes (sine).

The control effort of the three controllers are shown
in Figure 24, as can be seen, some chattering appears in all
the control effort of the three controllers, especially after the
step disturbance is added. The sliding variable of SMC and

FIGURE 27. Estimated signals (sine).

FIGURE 28. Position tracking error (PTP).

TABLE 2. Performance indexes (PTP).

the proposed controller is shown in Figure 25. The evolution
ofµ of the proposed controller is given in Figure 26, as can be
seen, it increases quickly to attenuate the model uncertainly
and external disturbance, andwhen the position tracking error
is small, it decays quickly to a small level. The estimated
signals are given in Figure 27.

To further evaluate the performance of the three
controllers, the classic point-to-point motion trajectory
(Figure 14) was test in the following experiment. The step
disturbance is not added in this experiment.

As can be seen from Figure 28, the maximum posi-
tion tracking error of the proposed controller is about
0.25 rad while that of PIVF and SMC are about 0.42 rad
and 0.31 rad, respectively. It should also be noted that
the steady-state position tracking error of SMC is much
large than that of the proposed controller and PIVF.
The large steady-state error of SMC is mainly caused by the
large friction. Although the friction composition was used
in SMC, it was not satisfactory due to the measurement
noise. The three performance indexes are given in Table 2,
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FIGURE 29. Control effort (PTP).

FIGURE 30. Sliding variable (PTP).

FIGURE 31. Evolution of µ (PTP).

as can be seen, the proposed controller still has better
performance than PIVF and SMC in this experiment. The
large Mµ of SMC is mainly cause by the large steady-state
errors.

The control effort of the three controllers are given
in Figure 29, as can be seen, some chattering appears in the
control effort of PIVF. The sliding variable of the proposed
controller and SMC are shown in Figure 30. As can be seen,
the sliding variable of the proposed controller is much smaller
than that of SMC in the steady state. The evolution of µ
is shown in Figure 31, as can be seen, it increases quickly
when position tracking error is large, and decays quickly
to a small level when the position tracking error is small

FIGURE 32. Estimated signals (PTP).

to avoid the chattering problems. The estimated signals are
given in Figure 32.

VII. CONCLUSION
In this paper, the output feedback position tracking control
of PMSM drive system is addressed. A continuous differ-
entiable model is employed for friction compensation, and
the desired velocity rather than the estimated or measured
velocity is used in the nonlinear friction compensation, thus,
the generated compensation signal is smooth and noise-free.
Then, the reaching law based slidingmode control is designed
to make the position tracking error as small as possible in
the presence of model uncertainty and external disturbance,
and the fast nonsingular terminal sliding mode surface is
employed to obtain the finite time convergence of the error
dynamics. Moreover, the gain of the reaching law is online
tuned to attenuate the effect of model uncertainties and exter-
nal disturbance. In order to guarantee the finite time conver-
gence to zero of the proposed controller, a nonlinear extended
state observer is designed to simultaneously estimate the
unmeasured states and unknown disturbance, and it is proven
to be exponentially stable and has zero estimation errors
theoretically. Simulations and experimental results show that
the proposed controller has better control performance than
the commonly used PI controller with velocity feedforward
and the adaptive reaching law based sliding mode control in
terms of position tracking precision and robustness. It should
be noted that the motor dynamics is assumed to be ideal
in this paper, however, it cannot be always fulfilled in real
applications. Our future workwill focus on the effect ofmotor
dynamics on the control performance and take the motor
dynamics into consideration during the controller design.
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