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ABSTRACT Multi-objective optimization problems (MOPs) have been widely studied during the last
decades. In this article, we present a new intrinsically parallel approach based on Fractal decomposi-
tion (FDA) to solveMOPs. The key contribution of the proposed approach is to divide recursively the decision
space using hyperspheres. Two different methods were investigated: the first one is based on scalarization
that has been distributed on a parallel multi-node architecture virtual environments and taking profit from
the FDA’s properties, while the second method is based on Pareto dominance sorting. A comparison with
state of the art algorithms on different well known benchmarks shows the efficiency and the robustness of
the proposed decomposition approaches.

INDEX TERMS Multi-objective optimization, large-scale optimization, metaheuristics, geometric fractal
decomposition, local search, continuous optimization, containers, virtualization, Docker, Kubernetes.

I. INTRODUCTION
Many problems in science and industry are concerned
with multi-objective optimization problems (MOPs). Multi-
objective optimization seeks to optimize several components
of an objective function vector. Contrary to single-objective
optimization, the solution of a MOP is not a single solution,
however, a set of solutions known as Pareto optimal set,
which is called Pareto front when it is plotted in the objective
space. Any solution of this set is optimal in the sense that no
improvement can be made on a component of the objective
vector without worsening at least another of its components.
The main goal in solving a difficult MOP is to approximate
the set of solutions within the Pareto optimal set and, conse-
quently, the Pareto front.

Most of the well-known metaheuristics (e.g. evolutionary
algorithms, particle swarm, ant colonies) have been adapted
to solvemulti-objective problems [2], [3], [13], [30], [31]. For
instance, authors in [12] have proposed a new Particle Swarm
Optimization algorithm to solve multi-objective problems
based on double-archive mechanism and Levy Flight.

Multi-objective metaheuristics can be classified in three
main categories:
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• Scalarization-based approaches: this class of multi-
objective metaheuristics contains the approaches which
transform a MOP problem into a single-objective one
or a set of such problems. Among these methods
one can find the aggregation methods, weighted met-
rics, Tchebychev method, goal programming methods,
achievement functions, goal attainment methods and the
ε-constraint methods [14], [19], [20], [22].

• Dominance-based approaches: the dominance-based
approaches1 use the concept of dominance and Pareto
optimality to guide the search process. Since the
beginning of the nineties, interest concerning MOPs
area with Pareto approaches always grows. Most of
Pareto approaches use EMO (Evolutionary Multi-
criterion Optimization) algorithms. Population-based
metaheuristics seem particularly suitable to solve
MOPs, because they deal simultaneously with a set of
solutions which allows to find several members of the
Pareto optimal set in a single run of the algorithm.
Moreover, they are less sensitive to the shape of the
Pareto front (continuity, convexity). The well known
NSGA-II algorithm [6] belongs to this category. It uses
a crowded comparison method to select suitable individ-
uals. An improved version of the crowding distance has

1Also named Pareto approaches.
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been proposed in [10] and shows to improve NSGA-II
performances. Themain differences between the various
proposed approaches in this category arise in the follow-
ings search components: fitness assignment, diversity
management, and elitism [18], [32], [36].

• Decomposition-based approaches: most of decompo-
sition based algorithms in solving MOPs operate in the
objective space. One of the well-known frameworks
for MOEAs using decomposition is MOEOA/D [8],
[16], [33]. It uses scalarization to decompose the MOP
into multiple scalar optimization subproblems and solve
them simultaneously by evolving a population of can-
didate solutions. Subproblems are solved using infor-
mation from the neighboring subproblems [21]. Many
variations have been proposed such as GWASFGA [29],
an evolutionary algorithm based on achievement scalar-
izing function using the Tchebychev method. A recent
approach called CDG [1] is also a decomposition-
based MOEA. Instead of using a traditional scalariza-
tion method such asTcheybycheff, CDG-MOEA uses a
constrained decomposition with grids.

We are interested in tackling MOPs using a decomposition
of the decision space. In our previous work, we proposed
a new metaheuristic for single objective optimization called
Fractal Decomposition Algorithm (FDA) [23] which is based
on hyperspheres Fractals. It is a deterministic metaheuris-
tic developed to solve large-scale continuous optimization
problems. As pointed out, the main principle of the approach
consists of dividing the feasible search space into sub-regions
with the same geometrical pattern. Hyperspheres were chosen
as geometrical form because it has the benefit of scaling
easily when the dimension of the problem increase. In this
article we propose two algorithms that extend FDA to solve
MOPs:

• Scalarization-based approach (Mo-FDA-S): Mo-FDA-
S adapts FDA using scalarization techniques. This
approach has also been developed to benefit from a
multi-node parallel environment to improve the compu-
tational time taken to solve MOPs problems. This cho-
sen architecture benefits from containers, light-weight
virtual machines that are designed to run a specific task.

• Dominance-based approach (Mo-FDA-D): Mo-FDA-D
uses the principle of non-dominated sorting to find an
approximation of the Pareto front. Mo-FDA-D proposes
both a new hypersphere evaluation technique based on
the hypervolume indicator and a new Pareto local search
algorithm.

.
The paper is organized as follow. Section II defines

multi-objective optimization. Section III recalls the main
principles of the Fractal decomposition metaheuristic FDA.
Then, the scalarization-based FDA algorithm is presented in
section IV. The dominance-based FDA algorithm is detailed
in section V. In section VI the experimental settings and
computational results against competingmethods are detailed

and analyzed. Finally, the section VII concludes and presents
some future works.

II. MULTI-OBJECTIVE OPTIMIZATION
Definition 1 (MOP): Amulti-objective optimization prob-

lem (MOP) may be defined as:

(MOP) =

{
min F(x) = (f1(x), f2(x), . . . , fk (x))
s.c. x ∈ X

(1)

where k (k ≥ 2) is the number of objectives, x = (x1 . . . , xn)
is the vector representing the decision variables, and X rep-
resents the set of feasible solutions associated with equal-
ity and inequality constraints, and explicit bounds. F(x) =
(f1(x), f2(x) . . . , fk (x)) is the vector of objectives to be opti-
mized. In this article, we considered the case of continuous
optimization: the decision variables used in the objective
functions are required to be continuous variables (X ⊆ R).

The set of all values satisfying the constraints defines the
feasible region X and any point Ex ∈ X is a feasible solution.
As mentioned before, we seek for the Pareto optima.
Definition 2 (Pareto): A point Ex∗ ∈ X is Pareto Optimal

if for every Ex ∈ X and I = {1, 2, . . . , k} ∀i∈I (fi (Ex) ≥ fi(Ex∗)
and there is at least one i ∈ I such that fi (Ex) > fi (Ex∗).

This definition states that Ex∗ is Pareto optimal if no feasible
vector Ex exists which would improve some criterion with-
out causing a simultaneous worsening in at least one other
criterion.
Definition 3 (Dominance): A vector Eu = (u1, . . . , un) is

said to dominate Ev=(v1, . . . , vn) (denoted by Eu 4 Ev) if and
only if Eu is partially less than Ev, i.e., ∀i ∈ {1, . . . , n} , ui ≤
vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.
Definition 4 (Pareto Set): For a given MOP Ef (Ex), the

Pareto optimal set is defined as P∗ = {Ex ∈ X |¬∃ Ex ′ ∈
X , Ef ( Ex ′) 4 Ef (Ex)}.
Definition 5 (Pareto Front): For a given MOP Ef (Ex) and its

Pareto optimal set P∗, the Pareto front is defined as PF∗ =
{Ef (Ex), Ex ∈ P∗}.
Definition 6 (Reference Point): A reference point z∗ =

[z1, z2, . . . , zn] is a vector which defines the aspiration level
(or goal) zi to reach for each objective fi.
Definition 7 (Nadir Point): A point y∗ = (y∗1, y

∗

2, . . . , y
∗
n)

is the nadir point if it maximizes each objective function fi
of F over the Pareto set, i.e. y∗i = max(fi(x)), x ∈ P∗,
i ∈ [1, n].

III. FRACTAL DECOMPOSITION ALGORITHM: A RECALL
The Fractal DecompositionAlgorithm [23] (FDA) is a divide-
and-conquer based algorithm that has been designed to solve
large-scale single objective continuous optimization prob-
lems. FDA builds a search tree of promising optimum areas
of a depth k (called Fractal depth), by dividing the search
space recursively using geometrical hyperspheres. Once FDA
divided the search space using hyperspheres as an elementary
geometric form, then, a search tree is built. While, navigating
through the tree FDA identifies, at each decomposition level,
candidate hyperspheres: areas where the global optimum

VOLUME 8, 2020 167605



L. Souquet et al.: Fractal Decomposition Approach for Continuous MOPs

FIGURE 1. Illustration of the Fractal decomposition of the search space:
here, the depth of the decomposition is equal to 4. (a) 1st level, (b) 2nd

level, (c) 3rd level, (d) 4th level.

could be found. This principle is illustrated in Fig. 1 with
in case of a four-level decomposition, the red hypersphere
being the best one at each level. Once the maximum fractal
depth k is reached, a local search is triggered into promising
hyperspheres to find the optimal solution.

Three main phases compose the algorithm: 1) The initial-
ization phase; 2) The exploration phase and 3) The exploita-
tion phase. The first phase aims to initialize the biggest
hypersphere possible at the center of the search space and
within its boundaries (Upper and lower bound). Once the
first hypersphere is set, FDA starts the exploration phase.
The algorithm will decompose the first hypersphere into
2× D sub-hyperspheres, and apply the promising hyper-
sphere selection procedure to all of them. It was designed to
find the most promising regions. To do so, their attractiveness
is approximated as in [23]. Then, all sub-hyperspheres are
sorted by their scores, and the best one is selected to be further
decomposed. The whole procedure is called at each level until
the maximum fractal depth k is reached.
The exploitation phase starts when FDA has reached the

maximum depth k . The Intensive Local Search (ILS) starts
to explore intensively the sub-hyperspheres. ILS starts at
the center of each sub-hypersphere and moves along each
dimension sequentially, evaluating two solutions Exs1 and Exs2
as expressed in (2) and (3), respectively.

Exs1 = Exs + ω × Eei (2)

Exs2 = Exs − ω × Eei (3)

where Eei is the unit vector where the ith element is set to 1, and
other elements to 0. ω is the step-size in which Eei changes.
The best solution among Exs, Exs1 and Exs2 is chosen to be the

next current solution Exs, then, moves to the next dimension.
Once all dimensions have been exploited, if no improvement
has been found on the current best solution found, the ω is
reduced by a factor 1

λ
. ILS stops where either the stopping cri-

terion is reached or the ω has reached the tolerance threshold
ωmin. Once all the sub-hyperspheres have been visited by ILS,
FDA stops if the stopping criterion was reached or backtracks
in the search tree and select the next sub-hypersphere of the
level k − 1 creating a new branch in the search tree. The
whole algorithm is presented in Algorithm 1. The parameters
of FDA are: the Fractal depth k = 5, the coefficient step size
λ = 0.5, the inflation coefficient α = 1.75 and the tolerance
threshold ωmin.

IV. SCALARIZATION-BASED FRACTAL DECOMPOSITION
The aggregation (or weighted) method is one of the most
popular scalarization method for the generation of Pareto
optimal solutions. It consists in using an aggregation function
to transform a MOP into a single objective problem (MOPλ)
by combining the various objective functions fi into a single
objective function f generally in a linear way:

f (x) =
k∑
i=1

ωifi(x), x ∈ S (4)

where the weights ωi ∈ [0..1] and
∑k

i=1 ωi = 1.
The first proposed scalarization approach Mo-FDA-S

(Multi-Objective Fractal Decomposition Algorithm Scalar-
ization) uses the Tchebychev function [22]. It introduces the
concept of ideal point or reference point z∗i as follows:

Minimize max
i=1,...,k

[ωi(fi(x)− z∗i )]

Subject to x ∈ X (5)

where z∗ = (z∗1, . . . , z
∗
k ) is the reference point, and ω =

(ω1, . . . , ωk ) is the weight vector.
By usingN different weight vectorsω, Mo-FDA-S solvesN

different problems, each generating one solution composing
the final Pareto Front (PF). One of the downsides of using
scalarizationmethods is that the number of solutions compos-
ing the PF found by the algorithm will be, at most, the same
as the number of different weight vectors N. In certain cases,
if two or more weight vectors ω are too close, the algorithm
might find the same solution.

A. IMPLEMENTATION ON PARALLEL ARCHITECTURE
This approach take profit intrinsically from parallel archi-
tectures. Indeed, the algorithm is launched N times with N
variations of the weight vector ω. If we consider that the
number of function evaluations (FE) is used as a stopping
criterion, even though, each instance only has Maxfe

N FE,
the computational time can increase significantly. To over-
come this, a multi-node architecture has been developed
for Mo-FDA-S. The idea is to have each node finding one
solution corresponding to one combination of the weights ω
and combine all their results to build the final Pareto front.

167606 VOLUME 8, 2020



L. Souquet et al.: Fractal Decomposition Approach for Continuous MOPs

Algorithm 1 FDA Algorithm

Input: Deep of the fractal decomposition: k = 5 and precision threshold: ωmin = 1× e−20

Input: Coefficient step-size: λ = 0.5, inflation coefficient: α = 1.75 and dimension of the problem: D

Initialize the center EC of the first Hypersphere, at the center of the search space.

while Stopping criterion is not reached do
Partition the current hypersphere H into 2× D sub-hyperspheres

for 2× D l-level hypersphere do
Relaxe hypersphere by α and compute its quality

end

Sort the 2× D hyperspheres at the current l-level by their quality

Replace the current hypersphere H by the first of the sorted hyperspheres at the current level

if l == k then
// last level reached

for 2× D hypersphers at the last level do
Apply the ILS heuristics on each created hypersphere

end

if stopping criterion is not reached then
Move up one level (l = l − 1)

end

else
Go to next level: l = l + 1

end

end

Result: the best solution BestSol and its coordinates

The challenge behind this architecture is that the comput-
ing resources needed increase with the size of the Pareto-
Front. For instance, if N = 100, it means that 100 nodes
would be required, hence 100 different computers (or virtual
machines), which can be seen as an oversized architecture.
To tackle this important issue we have decided to develop
the approach using containers and specifically the power-
ful combination of docker as the container technology with
kubernetes as an orchestrator as shown on Fig. 3. Containers
are significantly lighter than virtual machines as they all
share the same operating system kernel. This way, a single
machine can host more containers than virtual machines. This
architecture is significantly lighter than a traditional one and
allows to benefit from multi-node approaches while develop-
ing it on a limited number of hosts. In addition, containers
can be deployed on multiple different physical (or virtual)
machines seamlessly, without having to change the structure
of our algorithm. Kubernetes is the leading open-source solu-
tion for container-orchestration and takes care, in our case,
of the creation and deployment of all the containers on the
different hosts without changing anything in the algorithm
implementation.

Table 1 and Fig. 2 show the obtained computation time.
This example considers the time to solve a function in dimen-
sionD = 30 with 100 different weights vectorsω on different

number of virtual hosts N. It is important to indicate that even
on two hosts, computation gain can be observed, however not
as important as when the number of hosts increases. This is
because each host has to handle, in this case, 50 different con-
tainers. Moreover, when N increases significantly, the gain in
time is significant compared to the sequential version but at
some point, the increase in compute nodes does not decrease
the computational time. This is due to the communication
overhead required to synchronise all nodes and gather all
points compositing the PF. All tests have been done on a
cluster of machines with the following characteristics: one
3.1 GHz Intel Xeon R© Platinum 817 processor with 16GB of
RAM. Moreover, Mo-FDA-S has been developed in Python
and uses the library MPI (Message Passing Interface).

V. DOMINANCE-BASED FRACTAL DECOMPOSITION
The idea behind Mo-FDA-D (Multi-Objective Fractal
Decomposition Algorithm Dominance Based) is to keep the
structure of the framework provided by the original version
of FDA [23], i.e. the geometric fractal decomposition as well
as the geometric form and the different phases composing
the original version of FDA. The procedure to evaluate
hyperspheres and the ILS heuristic to conduct the local search
at the maximal fractal depth k have been extended to solve
MOPs.
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TABLE 1. An example of computation time required to solve a function
with Mo-FDA-S with different number of physical nodes N for
100 instances of FDA, hence 100 points in the Pareto Front.

FIGURE 2. Computation time function of the number of physical nodes N
for 100 instances of FDA.

FIGURE 3. The architecture of Mo-FDA-S using containers on N different
nodes.

A. MULTI-OBJECTIVE HYPERSPHERE SELECTION
(EXPLORATION STRATEGY)
This procedure aims to select the most promising region that
might contains Pareto solutions. The aim is to find both the
most promising region to be further decomposed but also
to find potential non-dominated points composing the final
Pareto Front (PF). To do so, we evaluated multiple points
along each dimension using the following equations:

Es = ECl ±
rl
γ
× Eei for i = 1, 2, . . . ,D (6)

where EC (l) is the coordinates of the center of hypersphere
being evaluated, r is its radius, γ ∈ [1, 3] and Eei is the unit

FIGURE 4. Evaluating (a) 2 × D points plus the center with γ = 1 and
(b) 6 × D points plus the center with γ = {1,2,3}.

vector at the dimension i. This is illustrated by 4 with a two-
dimensional example by two different scenarii:

• (a) 2 × D points plus the center are evaluated with γ =
1, meaning that the points are on the sphere.

• (b) 6 × D points plus the center are evaluated with γ =
{1, 2, 3}. Solutions are on and within the hypersphere.

All evaluated solutions are stored in a temporary list to
be sorted. The sorting is based on the Pareto dominance
and only non-dominated points are kept, producing a local
Pareto front of locally non-dominated solutions within the
hypersphere. The sorting algorithm used to sort evaluated
points and generate the local PF is called Simple Cull [11].
Once the local PF obtained, all points are compared to the
Nadir point of the objective space and all points above are
excluded from the PF.

We have used the hypervolume indicator as a quality indi-
cator to evaluate the sub-hyperspheres. To do so, we compute
the hypervolume of the local PF with regards to the Nadir
point, znad [26]. The hypersphere with the highest value is
considered better than the other hyperspheres of the same
level and will, therefore, be selected to be further decom-
posed. Once all the hyperspheres of a given level have been
evaluated, all the locally non-dominated sets are concatenated
and sorted again to find the global PF of non-dominated
solutions.

B. MULTI-OBJECTIVE INTENSIVE LOCAL SEARCH
Once the fractal depth k is reached, the intensive local
search (ILS) is triggered. In this context, it is important to
notice that any multi-objective local search or metaheuristic
could be used at this step. Instead of searching locally within
hyperspheres of the last level, ILS iterates around each non-
dominated solutions found so far during the exploration phase
of evaluating hyperspheres. Therefore, the entry point of one
ILS instance is one solution of the current global Pareto Set.

ILS starts by creating two empty lists, one for the Pareto
Set listNewPS (decision space) and one for their correspond-
ing solutions in the Pareto front denoted listNewPD (objec-
tive space) and insert in the first list the point given as
input parameter. Then for each dimension and each point in
listNewPS, ILS will produce two additional points denoted
ExL and ExR. They stand in opposite directions from the current
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point being exploited, ExC at equal distance ω, also called step
size as per the following equations:

ExL = ExC + ω × Eei (7)

ExR = ExC − ω × Eei (8)

where Eei is the unit vector which the ith element is set
to 1 and the other elements to 0, ExC , ExL and ExR are then
evaluated and inserted in listNewPS and their corresponding
solutions in the objective space, respectively F(ExC ), F(ExL)
and F(ExR) are added to the listNewPF list. Once all the points
in listNewPS have been exploited for the current dimension,
the non-dominated sorting algorithm is applied to the list of
all potential solutions (listNewPF) and this will generate a
new local Pareto Front of non-dominated solutions. Hence
listNewPF only contains a set of non-dominated solutions
and listNewPS only contains their equivalent in the decision
space. At the end of each iteration, once all dimensions have
been searched, ω is multiplied by a coefficient defined as a
hyperparameter of Mo-FDA-D. This is repeated until either:

• the stopping criterion is reached;
• or ω has reached its minimum value ωmin and therefore
ILS moves on to the next point in the Pareto set.

Once ILS has finished searching around each point of the
Pareto set, all points found during ILS are sorted and only
the non-dominated points will remain and will compose the
new global Pareto-Set. Either the stopping criterion is reached
and Mo-FDA-D has finished or the backtracking procedure
is applied and a new sphere from the level k - 1 is selected
to be decomposed. The whole procedure is illustrated in
Algorithm 2.

VI. PERFORMANCE ANALYSIS
In this section, the two proposed algorithms, Mo-FDA-S and
Mo-FDA-D, are analyzed and their performance is assessed
using different benchmarks (ZDT [34], DTLZ [4], Fonseca–
Fleming [9]). In the literature different metrics have been
developed to measure the quality of the Pareto sets obtained
by different algorithms [28]. Eachmetric measures a different
characteristic of a Pareto front [27]:

• Convergence (or accuracy), i.e. the closeness (i.e dis-
tance) to the optimal or best known Pareto front;

• Cardinality, i.e. the number of points in the Pareto front;
• Diversity, i.e. the distribution of the front. The points in
a Pareto front should be well spread over the objective
space.

We have chosen to focus on the four most commonly used
metrics evaluating all aspects of a Pareto front:

• The Hypervolume computes the volume of the objective
space that is dominated by a reference point [35].

• The Generational Distance metric (GD), computes the
average distance from the obtained set to the true Pareto
front [28].

• The Inverted generational distance (IGD), measures
both convergence and diversity by computing the

Algorithm 2Mo-FDA-D - ILS Procedure

Input: ωmin = 10−5. //precision or tolerance error

Input: Coefficient step-size: λ

Input: D // the dimension of the problem

Input: Number of function evaluations NBEval

Input: The first point to search as starting point
startingPoint

Set the step size ω to the radius of a kth level
hypersphere H

Set an empty list for Non-dominated Points Coordinates
listNewPS

Add startingPoint to listNewPS

Set an empty for Non-dominated Points Solutions
listNewPF

while ω ≥ ωmin do
for Each dimension i = 1, . . . ,D do

foreach currentPoint ∈ listNewPS do
set ExC = currentPoint

ExL = ExC − ω × Eei
ExR = ExC + ω × Eei
Evaluate the fitness of ExC , ExL and ExR
NBEval = NBEval + 3

Add F(ExC ), F(ExL) and F(ExR) to listNewPF

end

Sort listNewPF to leave only the non-dominated
solutions

Modify listNewPS so it contains only the
coordinates of the non-dominated solutions

end

Decrease the step size ω: ω = ω × λ.

end

Output: listNewPS and listNewPF

distance from each point known in the true Pareto-Front
to each point to the obtained set.

• The Spread measures how well spread the non-
dominated solutions are over the objective space [6].

The following sections carry out the sensitivity analysis of
the proposed multi-objective FDA algorithms to their param-
eters, and a comparison to some popular multi-objective evo-
lutionary algorithms (e.g. NSGA-II, MOEAD/D).

A. IMPACT OF THE SCALARIZATION METHOD
As Mo-FDA-S is based on the original version of FDA,
the sensitivity analysis with regards to its parameters can
be found in [24]. However two scalarization methods have
be used to study their impact: the Weighted Sum and the
Tchebychev methods. The stopping criterion has been set
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FIGURE 5. Pareto fronts for the two studied scalarization methods on 4 different dimensions using Tchebychev function (a) D = 2, (b) D = 5,
(c) D = 10, (d) D = 30, and weighted sum (e) D = 2, (f) D = 5, (g) D = 10, (h) D = 30.

FIGURE 6. Obtained Pareto fronts for different sets of paramters (nb,k, ILS): (a) Case 1 (2,5,no ILS), (b) Case 2 (2, 5, ILS), (c) Case 3 (6, 5,
no ILS), (d) Case 4 (6, 5, ILS), (e) Case 5 (6, 8, no ILS), (f) Case 6 (6, 8, ILS), (g) Case 7 (6, 16, no ILS), (h) Case 8 (6, 16, ILS).

up to 5000 × D and 10−5 as precision tolerance ωmin.
Using the Hypervolumes in Table 2, it is obvious that the
Tchebychev method much more efficient than the aggrega-
tion method. The same results has been obtained for all ZDT,

DTLZ, and Fonseca–Fleming benchmarks. As an illustration,
Fig. 5 shows the obtained results for the ‘‘Fonseca–Fleming’’
benchmark for different dimensions [9]. Besides, it is inter-
esting to note that Mo-FDA-S works well at low dimensions
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FIGURE 7. Pareto front for a large scale problem: (i) Case 9 (D = 5, no ILS), (j) Case 10 (D = 5, ILS),
(k) Case 11 (D = 10, no ILS), (l) Case 12 (D = 10, ILS), (m) Case 13 (D = 30, no ILS), (n) Case 14 (D = 30, ILS).

TABLE 2. Hypervolumes of the two studied scalarization methods on
different dimensions.

and high dimensions but is less efficient on intermediate
dimensions.

B. IMPACT OF DOMINANCE BASED EXPLORATION
AND EXPLOITATION
The dominance based exploration and exploitation of hyper-
spheres Fractals is analyzed with regards to three parame-
ters: the number of solutions evaluated in the hyperspheres
nb, the fractal depth k , and the step size λ by which ω is
multiplied in ILS. It is important to highlight the fact that in
the different cases, the common criteria are the number of
function evaluations set up to 5000×D as stopping criterion
and 10−5 as precision tolerance ωmin.
Using DoE (Design of Experiments) methodology, 8 sce-

narios of values have been selected for this set of parameters.
All those scenarios are illustrated in Fig. 6 and results are
shown in Table 3 for a small problem (i.e. D = 2). For
small problems, ILS tends to concentrate the Pareto front
around one some area and therefore penalizes the diversifi-
cation of the Pareto front. Going to deep hyperspheres (i.e.
k = 16) will decrease the performances of the algorithm in

FIGURE 8. Illustration of the final ranking of the algorithms for
2-Objective functions for each metric.

terms of quality, whether ILS is used or not. However, using
ILS increases significantly the computing time. Parameters
values maximizing the quality (i.e. hypervolume) lead to an
increase in the computing time and vice versa. For small size
problems, the best configuration for the set of parameters is
(nb = 6, k = 8, no ILS).
To analyse the results for large scale problems, the selected

benchmark ZDT and DTLZ are scaled to dimension D = 30.
The Pareto sets of the different cases are shown in Figure 7
and the quantitative results are shown in Table 4. Those
results highlight the important fact that the use of ILS
becomes essential when the dimension of the problem
increases.

C. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
A comparison of our developed approaches has been car-
ried out with some popular multi-objective evolutionary
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FIGURE 9. Pareto fronts for 4 selected benchmarks for our two approaches. With MO-FDA-D (a) ZDT1, (b) ZDT3, (c) DTLZ2, (d) DTLZ4. With
MO-FDA-S (e) ZDT1, (f) ZDT3, (g) DTLZ2, (h) DTLZ4.

TABLE 3. Hypervolumes, ranks and computing time for the different
studied Case from 1 to 9.

algorithms (MOEAs). We have considered the 5 following
MOEA algorithms:
• NSGA-II: a MOEA based on a non dominated sorting
approach [6].

• NSGA-III: an extension of NSGA-II adapted to solve
many-objective problems, i.e. more than 3 objectives.
It works with a set of supplied or predefined reference
points aiming to maintain the diversity among popula-
tion members [5].

• MOEA/D-DE: a decomposition-based approach which
uses scalarization to transform the MOP into a single-
objective problem [17]. The different scalar optimiza-
tion sub-problems are optimized simultaneously. The
Tchebychev method is used as a scalarization method.

TABLE 4. Hypervolumes, ranks and computing time for the different
parameters. The other parameters have been fixed to nb = 6 points
evaluation for hypersphere (γ = {1,2,3}) and k = 8.

• GWASFGA: a global weighting achievement scalarizing
function genetic algorithm [29]. This algorithm is also
based on a scalarization method and uses an achieve-
ment scalarizing function which is based on the Tcheby-
chev method but includes the use of the Utopian and the
Nadir points.

• CDG: a decomposition-based MOEA. Instead of using
a traditional scalarization method such as Tchebychev,
CDG-MOEA uses a constrained decomposition with
grids [1]. One objective function is selected to be opti-
mized while the other objective functions are converted
into constraints by setting up the upper and lower
bounds.

All experiments on the competing algorithms have been
done using the framework jMetal 5.0 [7], [25]. Settings for
the algorithms have been set according to [15] as well as
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TABLE 5. Mean and Standard deviation values for the hypervolume metric on all 2D functions with ranks in parentheses.

TABLE 6. Mean and Standard deviation values for the GD metric on all 2D functions with ranks in parentheses.

default values in jMetal [7]. Population size has been set to
N = 100 and the stopping criterion MaxFES = 300, 000.
As the competing algorithms are stochastic, their results
have been averaged over 20 independent runs. As a recall,
both Mo-FDA-S and Mo-FDA-D are deterministic algo-
rithms and their results have been obtained after a single run.

As mentioned earlier, we have decided to use a set of 8
functions, 5 from the ZDT family problems and 3 from the
DTLZ. The dimension set is D = 30 for both benchmarks.
To compare the results obtained by the different algorithms,
we used the Friedman Rank summethod to rank the approach
based on their performance on each metric and each function.
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TABLE 7. Mean and Standard deviation values for the IGD metric on all 2D functions with ranks in parentheses.

TABLE 8. Mean and Standard deviation values for the Spread metric on all 2D functions with ranks in parentheses.

1) TWO-OBJECTIVE FUNCTIONS
First we have focused on both the ZDT and DTLZ bench-
marks using 2 objective functions. Results from the com-
peting algorithms are shown in Tables 5 to 8. On each
table the values in bold highlight the best algorithm for

the given function and the given metric and the value in
parentheses represents the rank for the given function. As a
recall, the standard deviation for Mo-FDA-S and Mo-FDA-
D are equal to zero as they are deterministic algorithms.
Mo-FDA-D is regularly ranked first on the first three metrics
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TABLE 9. Average ranks for each metric and each algorithm over all 2D
functions used using the Friedman Rank Rum.

TABLE 10. Final ranks based on the Friedman Rank Sum values for the
9 used 2D functions.

TABLE 11. Mean and Standard deviation values for the Hypervolume
metric on all 3D functions with ranks in parentheses.

TABLE 12. Mean and Standard deviation values for the GD metric on all
3D functions with ranks in parentheses.

TABLE 13. Mean and Standard deviation values for the IGD metric on all
3D functions with ranks in parentheses.

but last on the fourth metrics. This means that Mo-FDA-D
finds good Pareto fronts, close to the true Pareto front but the
solutions are less spread that the other algorithms. Regarding
the other approach, Mo-FDA-S shows more stability over all
the metrics.

Final ranks are shown in Fig. 8. Table 10 shows the final
rank based on the values found in Table 9. This is also
illustrated in the Fig. 8. This data shows that Mo-FDA-D is
the best algorithm on three metrics, i.e. the Hypervolume,
the GD and IGD. However, it performs the worst on the
Spread metric. This shows a lack of diversity in the Pareto

TABLE 14. Mean and Standard deviation values for the Spread metric on
all 3D functions with ranks in parentheses.

TABLE 15. Average ranks for each metric and each algorithm over all 3D
functions used using the Friendman Rank Rum.

TABLE 16. Final ranks based on the Friendman Rank Sum values for the
3D functions.

FIGURE 10. Illustration of the final ranking of the algorithms for
3-Objective functions for each metric.

front compared to other algorithms. However, Mo-FDA-S
is complementary to Mo-FDA-D where it performs well
on the Hypervolume and GD and outperforms the other
methods on the Spread. This means that scalarization allows
finding a well Pareto front with good diversity. Those con-
clusions can be seen in Fig. 9 corresponding to the differ-
ent Pareto sets obtained via our algorithms on 4 selected
functions.

2) MANY-OBJECTIVE FUNCTIONS
A comparison has been realized for many-objective problems
composed of 3 objectives (DTLZ). Results from the compet-
ing algorithms are shown in Tables 11 to 14. On each table
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FIGURE 11. Pareto fronts for the 3-Objective functions found by Mo-FDA-D. (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4.

FIGURE 12. The true fronts for the ZDT functions used in our study. (a) ZDT1, (b) ZDT2, (c) ZDT3,
(d) ZDT4, (e) ZDT6.
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TABLE 17. Definitions of the functions used from the ZDT Benchmark.

FIGURE 13. The true fronts for the DTLZ functions with 2 Objectives used
in our study. (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4.

the values in bold highlight the best algorithm for the given
function and the given metric and the value in parenthesis
represent the rank. Mo-FDA-SD does not perform as well on
3-Objective functions. However, on each function, it outper-
forms the other algorithm on at least one metric. Final ranks
are shown on Table 10 based on the values found in Table 9.
Fig. 10 shows that Mo-FDA-D is the best algorithm for the
GD metric. This means that the points found by Mo-FDA-D
are closer to the true Pareto front than the other algorithm. It is
ranked second on the IGD and similarly to the 2-Objective

function, struggle to perform on the Spread. The best algo-
rithm overall is NSGA-III as it has been adapted to many-
objective problems. Our algorithm, Mo-FDA-D is, overall,
ranked second in the studied metrics, which shows promising
results. Those conclusions can be seen in Fig. 11 representing
the Pareto sets of our algorithms the four DTLZ 3-objective
functions.

VII. CONCLUSION AND PERSPECTIVES
In this article, we have proposed new deterministic decom-
position approaches to solve MOPs. The decomposition
approach is based on geometrical fractal using hyperspheres.
The exploration an the exploitation phases of the FDA algo-
rithm have been extended to solve MOPs. Parallel scalariza-
tion and dominance based approaches have been developed.
A comparison with state-of-the-art MOEAs shows that the
proposed algorithms are very competitive in terms of the
quality of the obtained Pareto fronts.

The main issues of the Fractal Decomposition Algo-
rithms when handling MOPs are the hypersphere selection
(exploration phase) and the Intensive Local Search. In this
article, low complex and efficient strategies have been inves-
tigated. However, more sophisticated strategies could be
designed to deal with those two important issues.

Furthermore, in Mo-FDA-D the hypervolume is used as
a selection indicator for the hyperspheres. One can inves-
tigate the Spread metric to both improve the hypersphere
selection as well as the best solutions to search around
using ILS.

A massively parallel implementation on heterogeneous
architectures composed of multi-cores and GPUs is under
development to take profit from FDA added value: intrinsi-
cally parallel. Besides, we will investigate the adaptation of
the algorithms to large scale MOPs such as the hyperparam-
eter optimization of deep neural networks.
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FIGURE 14. The true fronts for the DTLZ functions with 3 Objectives used in our study. (a) DTLZ1,
(b) DTLZ2, (c) DTLZ3, (d) DTLZ4.

TABLE 18. Definitions of the functions used from the DTLZ Benchmark.

APPENDIX
DETAILS OF SELECTED BENCHMARK
This appendix contains the functions and the pareto fronts
of the considered benchmarks. Table 17 shows the ZDT
problems and Fig. 12 their true pareto fronts. Table 18 shows
the DTLZ problems, Fig. 13 their true pareto fronts in 2D and
Fig. 14 their true pareto fronts in 3D.
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