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ABSTRACT Several automated test case generation techniques have been proposed to date, although the
adoption of such techniques in the industry remains low. A key factor that has contributed to this low adoption
rate is the difficulty experienced by the developer in terms of reading and understanding automatically
generated test cases. For this reason, it is essential to construct a test case understandability model for
improving the generated test case. In the present paper, we extracted 20 test case metrics, six developer
relatedmetrics and two understandability proxies from awhite-box test case classification experiment. Based
on these metrics, we employed classification and regression algorithms to build test case understandability
model. From the experiment, we can conclude that combined metrics always exhibit better discriminatory
performance in classification models as well as a higher correlation in regression models when compared to
a model that involved only test case metrics or developer metrics.

INDEX TERMS Test case, understandability model, automated test case generation.

I. INTRODUCTION
Software is increasingly important in all facets of life. Con-
sequently, it’s also important to improve software quality by
applying software testing practices. There are three activities
in software testing [1]: i) test case generation; ii) test case
execution; iii) test result evaluation. Exhausted testing will
take a lot of time and resources, especially in generating test
cases.

Several automated test case generation techniques have
been proposed to facilitate the software testing process,
including random testing [2], search-based generation test-
ing [3], and dynamic symbolic execution [4]. These tech-
niques only require the source code in order to generate an
input test for the program being tested. The output result of
the test case execution is evaluated automatically using an
assertion statement.

The generation of useful test cases is both a monotonous
and an error-prone task. During the development period, the
test cases need to be read and understood by different team
members. Every test case that generates failure in the program
under test (PUT) needs to be investigated so that it can be
determined whether the error lies in the PUT or the test case.
This process requires the developer to understand the test
cases and their behavior.
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The adoption of automated test case generation techniques
in the industry remains low [5]. One reason for this low
adoption rate is the fact that automatically generated test
cases are more difficult for developers to understand and
manage [6], [7] than manually written test cases [8]. After
test case generation and execution, developers need to correct
every failure that is found based on the execution of the
test case. This stage is a manual activity that requires the
developer’s understanding of the behavior of the test case. In a
study conducted by [9], it was reported that developers spend
almost 50% of their time trying to understand and analyze
the outputs of automated testing tools. It has also been found
that the misclassification rate is as high as 20% when the
developer has to determine whether the results of the test case
execution produced successful or failed outputs [10].

Based on research on [7], [8], [11] it was found that
automatically generated tests can be more challenging to
understand than manually written tests. For this reason, it is
crucial to examine the factors that influence the understand-
ability of automatically generated test cases. To overcome this
problem, Daka, et.al. [6] proposes an approach in optimizing
the presentation of the test cases by developing the readability
model. This model can estimate the readability value of a test
case. It has been implemented as a secondary fitness function
in a search-based test case generation technique to optimize
the readability of the resulted test cases.

Daka’s evaluation in the developer’s understanding found
that in 5 out of 10 optimized test cases, there was no change
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FIGURE 1. Example of optimized test case.

in the accuracy of the developer’s answers compared to test
cases that had not been optimized. They conclude that read-
ability in some test cases correlates with understandability.
But, in other test cases, there are factors instead of readability
that affect the accuracy of the developer’s answers.

Readability optimization generated test cases with a
shorter number of LOC compared to the previous test case
but with the same behavior. For example, a test case for a
ChainBase class consisting of 4 LOCs in the Fig. 1 is an
optimization result of a test case with 13 LOCs. However,
after being evaluated, the level of accuracy of the developer’s
response to the optimized test case tends to decrease because
the developer is unfamiliar with the assertNotSame statement.
Instead of readability, the developer’s background in unit
testing is also an essential factor that must be considered in
improving the automated test case generation approach.

On the developers’ side, their performance when classi-
fying white-box test cases has been investigated in terms of
whether the output is true (pass) or false (fail) [10]. The exper-
iment involved 106 developers who were asked to classify the
outputs of the test cases generated using several methods. The
results showed that the majority of developers misclassified
the test cases, both those that behaved in the expected fash-
ion and those that exhibited faulty behavior (with a median
misclassification rate of 20%).

During the unit testing process, after an error is found in
the PUT that is marked by faulty behavior, the developer must
read and understand the test cases that have been raised. Thus,
it is essential to have a model that can be used to estimate the
effort required to understand a given piece of test code. Such a
model could be implemented concerning automated test case
generation techniques to assess whether or not a generated
test case can be understood.

In the present paper, we propose a new understandability
model that is specifically designed for automatically gen-
erated test cases. The proposed model not only considers
the metrics derived from the test cases but also takes into
account the metrics derived from the developers. The gen-
erated test cases will be adaptive, based on both types of
metrics. We extracted 26 metrics and two understandabil-
ity proxies from a white-box test case classification experi-
ment [11]. We inspected the metrics to examine the degree
to which they were correlated with test code understandabil-
ity. The metrics can be categorized into two types: (i) test-
code-readability metrics, and (ii) developer-related metrics.
The test-code-readability metrics will be extracted based on
the feature selection results derived from the test case read-
ability model [13], while the developer-related metrics will

be constructed based on each respondent’s background and
experience in software testing. There are two models of rele-
vance here, namely the actual binary understandability proxy
model and the time actual understandability proxy model.
The classification model is built using some classification
algorithms: C.45 tree, Bayesian, ANN, and SVM algorithms.
Additionally, the prediction model is constructed based on
the linear regression, random forest, and SVM regression
algorithms.

The remainder of this paper is structured as follows.
Section II presents a review of prior work concerning the use
of understandability models in software engineering, espe-
cially in software testing. Section III outlines our approach
to building an understandability model for test case gen-
eration. Section IV presents the results of the experiment.
Section V discusses the results of the understandability mod-
eling. Finally, section VI draws conclusions based on the
results of our experiment and identifies directions for future
work.

II. RELATED WORK
This research deals with some topics, namely the test case
generation, readability and understandability model in the
context of test case.

A. TEST CASE GENERATION
Software testing consists of four main activities—generation
of test inputs (test cases), determination of expected outputs,
execution of test cases, and verification of test outputs [1].
The execution of test cases is the easiest process to be auto-
mated, and there are already frameworks that support this,
such as Junit, XUnit, and NUnit [12], [13]. The unit-testing
framework can generate a test class skeleton for each class
written by the developer and execute it automatically when
the program is compiled. However, developers must still
complete the contents of the test class by writing the object
initiation and calling methods, as well as specifying inputs to
execute under test (PUT) programs. The greater the size of the
program, the greater the resources needed to write the class
content. Several methods have been proposed of generating
test cases at the unit level automatically, both via black-box
testing, using the random testing method [2], [14], and white-
box testing, involving dynamic symbolic execution (DSE)
[4], [15] and search-based software testing (SBST) [16]:

1) RANDOM TESTING
Random testing is one of the easiest testing techniques to
implement, and it is popular. This method generates ran-
dom test case inputs, and it is independent of program
specifications. However, while random tests are easy to
understand and simple to implement, they tend to produce
illegal inputs (inputs that conflict with the input limits) and
have a low chance of finding a specific input value. There-
fore, Pacheco et al. [2] proposed random testing directed by
feedback from the previous execution results. This method
can provide a better code coverage value than conventional
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random testing does. However, considering the complexity of
the software, this method has a low probability of producing
quality test data.

2) SYMBOLIC EXECUTION
The symbolic execution method is a test case generation
method that executes a program based on symbolic val-
ues. Symbolic executions were introduced in the mid-70s,
by King [17], Boyer [18], and Howden [19]. Although it
can increase the value of code coverage [25] and localization
of errors [20], this method still has limitations in the form
of an exponential increase in the execution path, as in the
case of loops and the completion of complex objects, such as
arrays. Therefore, a dynamic symbolic execution is proposed
that combines program execution using concrete values and
symbolic execution for the specified path [4].

3) MUTATION TESTING
The mutation testing concept was reported by
DeMillo et al. [21] and Hamlet [22] in late 1978. Muta-
tion testing is an error-based testing technique using testing
criteria called mutation score adequacy [23]. This criterion
is used to measure the effectiveness of the test case set in
detecting errors. Syntactic modifications are made to the
original program to create a wrong set of programs (mutants).
To assess the quality of the given test cases, these mutants
are executed against the test cases, and whether the resulting
output is different from the original program is observed.
If different outcomes are found, it is concluded that the test
case can detect errors in the mutant. The biggest obstacle to
adapting mutation testing in unit testing practices is the large
computational resources needed to generate and execute qual-
ity mutants. Therefore, predictive mutation testing techniques
have been developed that can predict the results of mutation
testing without executing mutants [24].

4) SEARCH-BASED TESTING
Search-based testing was first published by Miller and
Spooner [25] in 1976, which implemented numeric max-
imization techniques and produced real number values to
complete an execution path. In 1990, Korel developed a
search algorithm to search for test case inputs by measuring
the distance between the target branch and the input exe-
cution [26]. Search based software testing is the process of
generating test cases using a search-based algorithm based on
a particular fitness function. The fitness function is part of the
algorithm that guides the search to find the optimal solution.
Search-based testing has been compared experimentally with
other techniques. The results obtained that this technique has
several advantages, namely being able to achieve high levels
of coverage and being able to represent various types of inputs
(for example, input in the form of vectors) as individuals who
are candidates for the solution.

B. READABILITY MODEL
Developers read more program code than writing program
code itself [27]. To modify, improve, or add a feature in the
software, the developer must read and understand the pro-
gram code. Therefore, the evaluation of whether the program
code is readable or not is critical, especially in the software
evolution phase. At present, there are four readability mod-
els [28]–[32] have been proposed for predicting whether the
program code is readable or unreadable. Code readability is
defined as a quality of the code to measure how easy the code
is being read and interpreted by the developers.

Buse and Wimer’s code readability model [28] is a binary
logistic regression classifier, whichwas built from 120 human
evaluation in 100 snippet code. Totally, they have 12000
rows of dataset constructed from 25 structural features of the
code and binary assessment about the readability of the code.
This model reached more than 80% accuracy in classifying
snippet code as ‘‘readable’’ or ‘‘not readable’’. There are
three features with high strength in distinguishing code that
is readable and not readable: average number of identifiers,
average line length, and average number of parantheses.

Posnett, et. al. [29] argued that Buse’s may not appropriate
with code reading activity in a certain context and they rate
on limited size of code. So, they proposed a simpler model
to improve upon Buse, et. al model by employing Halstead’s
metrics and entropy calculation in Buse dataset. They found
that code readability is directly proportional to the value of its
entropy. So, it’s possible to determine the code readability by
using only three features: line of code, entropy measurement,
and Halstead’s metrics. It’s supported by the better accuracy
of Posnett model than Buse’s.

Different from the previous model that relied on syntactic
features on code, Dorn [30] proposed another approach based
on the assumption that code is read by humans on the screen.
Hence, aspects of standard identifier naming, indentation, and
syntax highlighting were considered as influencing factor in
code readability. Dorn’s proposed three new group of metrics:
visual, spatial, and linguistic features as addition to structural
features. These metrics succeed reach 2.3 times better agree-
ment than previous metrics.

Scalabrino [32] argued that source code lexicon also has
impact on code readability beside structural metrics. They
proposed a set of textual metrics that measure the consistency
between source code and comments, the specificity and the
completeness of identifiers. Their finding presents that the
combination of structural and textual metrics resulted higher
accuracy of code readability models than single metrics. This
finding is validated by replicating Buse and Weimer’s study
and it’s confirmed that an increase in readability prediction
capability correlates with an increase in the accuracy of Find-
Bugs warning [33].

These previous models focus on predicting readability
for source code. In the other side, automatically genera-
tion test case is also need to be estimated its readability
because they are more difficult for developers to understand
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and manage [6], [7] than manually written test cases [8].
Although the test case is written in the form of code, it has
specific criteria that make it different from the general source
code, such as it contains assertion statement.

Recently, Daka et al. [6] researched building readability
model specific for the test case. In the study of Daka et al. [6],
optimization of test cases in terms of readability is evaluated.
The objects of this research are 100 classes under test in
Java program. Test cases are generated automatically based
on a heuristic approach, and test code metrics are computed.
Developers are asked to assess test case readability by using
a Likert value 1-5. By using feature selection techniques, 20
test code metrics are selected. Then, the readability model
is built based on these selected features to estimate test case
readability value. The readability model is utilized to opti-
mize previous test cases through minimization techniques.

C. UNDERSTANDABILITY MODEL
Although readable code may relate to its understanding by
developer, code readability metrics are not enough to predict
whether developers can understand program output, code
entities relationships, code semantic and structure. The extent
to which the program code can be understood by the devel-
oper is influenced by many things because understanding the
program is a developer’s mental process that requires a high
level of code abstraction [137, 24]. Boehm defined software
understandability as the quality of software systems for being
ease to understood. At present, there have been some metrics
proposed to estimate software understandability at the source
code level.

The concept of how humans understand entities and prod-
ucts in the field of informatics is explained in cognitive infor-
matics. From this concept, there is derived a cognitive weight
of software as a measurement to estimate human efforts in
understanding software products based on input, output and
internal architecture. Misra and Akman [34] found that only
CWCM (Cognitive Weight Complexity Measure) which is
modeled by basic control structure is able to meet Weyuker’s
properties [35] compared with other similar metrics. Besides
being simple and language independent, CWCM also pro-
vides information about the quality of program design. High
complexity indicates that program code is difficult to under-
stand and maintain.

Lin et al. [36] proposed a unified understandability model
based on Halstad complexity, data spatial complexity, cogni-
tive functional size, number of components, comments ratio
and quality of documentation. They used PCA and factor
analysis to get the row weight vector, then multiplied the
result with the understandability matrix. The complete model
understandability model is calculated by using fuzzy integral.
Lin et al. didn’t implement and evaluate the proposed model
on an empirical case study.

Different from two previous understandability models
that focus on independent language and platform, Thong-
mak [37] proposed seven objective metrics to estimate

TABLE 1. Understandability model.

understandability value that specific for aspect-oriented soft-
ware. These metrics are derived from three levels dependency
graph mapping of aspect-oriented program code: module-
level, class/aspect-level, and system-level. The understand-
ability value resulted as summarization all dependency type
that multiplied with expert-determined weights. The thresh-
old of each metrics as a guideline to understandability assess-
ment has not yet been explored.

To conduct research on understandability empirically,
some researchers involved programmer or students as their
respondents. Shima [38] asked five engineering students (one
graduate and four undergraduates) to reconstruct the system
and the understandability is evaluated based on their perfor-
mance. Kasto [39] analyzed the factors that influenced the
level of difficulty of code comprehension and code tracing
in Java programming exam. The participants were 93 first
year students. It was found that cyclomatic complexity, nested
block depth and the two dynamic metrics, are significantly
correlated to the student performance in code tracing.

Recently, [31] presented an empirical study involving
46 developers and 50 java code. Developers were asked
to answer some question related to the code. Correla-
tion analysis was carried out between the understandability
and 121 metrics related to source code, documentation and
developer profiles. An important finding from this research
is effort estimation metrics that has been associated with
understandability has a low correlation with real understand-
ability. Therefore, this model cannot be used practically in
code understandability improvement.

As shown in Table 1, there are several studies that try
to model the understandability software by using readability
metrics from code and documentation.

The correlation readability and understandability based on
the understandability definition from Boehm as ‘‘a character-
istic of software quality which means ease of understanding
software systems’’. Specific in code understandability as part
of a software system, we can define it as a non-trivial mental
process that requires building high-level abstractions from
code statements or visualizations/models. To understand the
source code, the developers need to read it so we can assume
that readability is one of the factors affecting code under-
standability.
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D. TEST CASE UNDERSTANDABILITY
Test cases must meet several criteria, such as the size of test
case sets [40], and ease of understanding (understandabil-
ity) [8] to support effectiveness in unit testing. The under-
standability criterion is important because test cases that are
generated automatically have a very long format and are
difficult to read [6]. Several studies have proposed improving
the understanding of test cases by generating documentation
in the form of natural language that contains summaries of
test cases [41], simplifying test cases from the size of the
LOC[40], and giving the name of the identifier that describes
contents of test cases [42].

Understandability measurement is often associated with
readability criteria because it is assumed that code is easy to
read will be easy to understand. Therefore, a test case read-
ability model has been developed using features extracted
from the measurement of several program metrics such as
line of code, number of assertions, identifier length, and
availability of documentation [6]. The readability assessment
was carried out by the survey method to developers who were
asked to provide a readability scale for test cases ranging
from 1 to 5.

To improve automated test case presentation, Daka opti-
mized the search-based generation test case by using read-
ability evaluation as a secondary fitness function []. Daka
has also evaluated whether the readability optimized test case
can be better understood by the developer or not [6], [42].
Evaluation of the model was conducted by giving some ques-
tions related to the understanding of test cases to 30 students.
In terms of time, respondents need a faster time in identifying
test cases. However, the level of correctness of respondents’
answers to the outcome of the test cases did not change.
Therefore, we need a model that describes the test case
understandability evaluation as a substitute for the secondary
fitness function in the search-based test case generation.

Honfi et al. [11] present an exploratory study of how
developers classify the resulting white-box tests. The study
and its replication were carried out in a laboratory environ-
ment by involving graduate students who have understand-
ing and experience in unit testing and programming. They
act as junior developers who are testing several classes on
unknown large projects with the help of the test case generator
tool. They asked to classify The developer’s performance is
assessed by the accuracy of the test case classification by the
developer and the time needed by the developer to classify
the test case. These two things are the basis for deriving
two understandability proxies to assess the developer’s under-
standing of test cases, namely Actual Binary Understandabil-
ity and Timed Actual Understandability.

Honfi’s research results provide facts that participants tend
to misclassify tests, both encoding expected and unexpected
behaviors, even if they don’t find the task difficult. Develop-
ers need time to understand the PUT specifications, test cases,
and their execution. Also, it turns out that the classification
may require quite a long time, which can slow down the

software testing process. Therefore, it is crucial to improve
the technique for generating test cases so that they are more
easily understood by developers. The first step that must be
done is to determine a way to predict whether a test case is
easy to understand or not.

Previously, it has been proposed an understandability
model for program code, but we need a specific model for
the code in the form of generated test cases. This encourages
us to conduct the study for building understandability model
to decide whether the test case is understandable or not. This
research will answer the questions below:

1) RQ1: WHAT IS UNDERSTANDABILITY PROXIES AND
METRICS THAT APPROPRIATE FOR CONSTRUCTING A
MODEL IN GENERATED TEST CASE?
By considering the collection of proxies measured in terms of
code understandability, the purpose of this research question
is to give understanding to the research community about the
appropriate proxies and metrics that able to assess test case
understandability.

2) RQ 2: IS IT POSSIBLE TO DEFINE UNDERSTANDABILITY
MODELS ABLE TO PREDICT OR CLASSIFY TEST CASE
UNDERSTANDABILITY?
Given a specific test case for a method under test, we want
to determine whether the metrics in a model can effectively
capture the level of test case understandability.

III. METHODOLOGY
This research was conducted in five steps. First, we extracted
the dataset to get test case and developer metrics. We derived
the test case understandability proxies from the developers’
answers and required time. Then, we prepare the dataset in
the form of a matrix as input for classification and regression
algorithms. Last, we conduct a model evaluation using some
measurements.

A. FEATURE EXTRACTION
The first step in this research is the extraction of Honfi’s
dataset. We use a subset of the dataset as the main result
of Honfi’s experiment. This dataset is produced from the
experiment of classifying white box generated test cases
involving 30 developers and 15 test cases. There are two
collections in this dataset, the set of test case files and the
results of the experimental evaluation of test cases from the
developer. Honfi generates test cases for each class under test
by using the Intellitest tool. Evaluation of test cases to the
developer is measured by the time needed to understand the
test cases and the results of the developer’s answers.

The first step in our methodology is extracting these gen-
erated test cases to obtain 20 test case metrics, as shown
in Table 2. For example, we calculate the method name
metric from test case in Fig 2 by counting the number of
characters in the test method name: CalculateSumTest284,
which is 19 characters. Line of code metrics are measured
by counting the number of rows in the test method, which is
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FIGURE 2. Test case example.

TABLE 2. Test case metrics.

five lines. The constructor metric is measured by counting the
number of constructors calling that is indicated by the ‘‘new’’
call, which is one calling (new int).

Then, we derived developer-related metrics from the col-
lection of developer profile data as described in Table 3.
The first until fifth metrics are collected by using the survey
method. The last developer metric, quiz metric, represents the
score of quiz containing several questions about unit testing
and programming.

TABLE 3. Developer related metrics.

B. DATA PREPARATION
After 26 metrics from test case files and developer profiles
are extracted, the next step is merging these two collections
into a matrix m x n. Number of rows, m, shows the count
of the test case classification result made by the developer.
Thirty developers assess 15 test cases, then m = 450 rows.
Whereas n is the number of metrics calculated from test cases
and developers, where the total is 26.

C. TEST CASE UNDERSTANDABILITY PROXY
In the previous model, the developer understandability is
measured by using actual and perceived understandability
presented in six understandability proxies [31]. Six proxies
are derived in the following context: the developer is given
a piece of code, they asked to read the code and answer the
question: whether or not understanding the code. Last, they
are given some questions related to the code.

In the context of test case understandability, we use two
proxies which are derived from two aspects of test code
understanding: the correctness of the developer’s response in
understanding evaluation of the test case, and the time needed
to understand the test code. There are two proxies that able to
be extracted from Honfi’s et al. dataset:
• Actual Binary Understandability (ABU). ABU is a
binary type variable that is true if the developer can clas-
sify the test case output correctly, and false otherwise.

• Time Actual Understandability (TAU). TAU is a contin-
uous variable based on the measurement of time spent to
classify a given test case (on seconds) by following (1)

TAU =
1

classification_time
(1)

D. CLASSIFIER AND REGRESSION
To build a model for predicting ABU, and TAU we use
various classifiers and regression options that are defined
in the literature to compare their performance. Specifically,
we use the classifier algorithm for modeling ABU with
binary class: (i)Decision Tree C.45 (j48), (ii) Bayes Net-
works, (iii) Supporting Vector Machines (SMO algorithm),
and (iv)Multilayer Perceptron Networks.We use a regression
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algorithm for modeling TAU and NTAU with numeric class:
(i)Random Forest, (ii) Linear Regression (iii) Supporting
Vector Machines (SMO algorithm), and (iv) Multilayer Per-
ceptron Networks.

ABU data were unbalanced, 75% of data presented the
correct answer from the respondent. We use the SMOTE
filter [43] on the training sets to get a balanced model by
generating artificial instances represent the incorrect answer
data. It is crucial to have a compact subset feature, so we
used principal component analysis to construct a set of values
of linearly uncorrelated features. ABU model is evaluated by
using AUC and F-measure for combined metrics, developer-
relatedmetrics, and test codemetrics. TAUmodel is evaluated
by using Mean Absolute Error and correlation value because
the predicted attribute is a numeric type.

To train and test classification and regression models,
10-cross validation techniques are used. It aims to avoid
overfitting, the model is only suitable for specifics and cannot
be generalized. Data is divided into ten partitions. iteratively,
nine partitions are used to build the model, and one partition
is used to evaluate the model. Therefore, for each model that
is built, it will be tested using data that is always different
from the training data.

E. EVALUATION METRICS
For measuring the performance of the classification model,
we used AUC and F-measure values. AUC value represents
the area under the ROC curve. ROC curves described the
performance of models in classifying at different thresh-
old settings. Model performance is represented by the true
positive rate (sensitivity) values plotted on the y-axis, and
false-positive rate values plotted on the x-axis. AUC values
are computed by using integral operation on RUC curves
whose values range in 0-1. The higher the AUC value, the
better the performance of themodel in distinguishing whether
a test case can be understood or not. F-Measure is one of
the evaluation methods in the classification model that com-
bining recall and precision value. The value of recall and
precision in a situation can have different weights. F-measure
in (2) presents the reciprocity between Recall and Precision
by weighting the harmonic mean of recall and precision.

Fmeasure =
2× Recall × Precision
Recal + Precision

(2)

We used the Pearson Correlation and MAE (mean absolute
error) in (3) for evaluating the performance of the prediction
model. The MAE value represents the average absolute error
between the predicted value and the actual value [1].

MAE is mathematically defined as follows:

MAE =
1
n

∑n

i=1
|fi − yi| (3)

fi: predicted value
yi: actual value
n: number of data.

TABLE 4. Classification using combined metric.

TABLE 5. Classification using test case metrics.

Based on formula 1 above, MAE intuitively calculates
the average error by giving equal weight to all data (i =
1, . . . , n).
Besides error measurement, we also used the correlation

coefficient (R2) as model performance evaluation. It demon-
strates to what extent the model explains the variance of the
dataset. So, if the R2 of a model is 0.50, then approximately
half of the observed variation can be explained by the model’s
inputs.

IV. RESULTS
A. CLASSIFICATION
To evaluate the classification model for ABU proxy, we use
combined metrics, test code metrics, and developer-related
metrics. Table 4 shows the F-Measure and AUC of the classi-
fication of ABU when using combined metrics. Surprisingly,
all classification models produce better performance when
not using PCA. It should be noted that the AUC achieved
by J48 and Bayesian Net in classifying test case understand-
ability reached the ’Good’ range (0.8-0.9). In other words, J4
and Bayesian Net can distinguish test cases as actually under-
standable or not understandable. By considering F-measure,
it is clear that we can use both models practically for classi-
fying test cases based on its understandability.

However, the results for the test case understandability
classification model that uses only test case metrics (Table 5)
or developers (Table 6 ) are generally no better than the
combined metrics model. The model built by the metric test
code can reach F-measure 0.721 and AUC 0.756 by using
the C.45 algorithm. This value is slightly lower when com-
pared to a developer metric model that can reach 0.796 for
F-measure and 0.850 for AUC by utilizing the Bayesian Net
algorithm. In detail, there is no striking difference in the
model’s ability to classify test cases into understandable and
not understandable test cases. This is indicated by the average
TP Rate for the two classes in the range of 0.7-0.8.
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TABLE 6. Classification using developer metrics.

TABLE 7. Regression evaluation.

B. REGRESSION
To evaluate the regression model for TAU proxy, we use
combined metrics, test code metrics, and developer-related
metrics. Table 7 shows the Correlation and MAE of the TAU
model when using combined metrics. It should be noted that
the correlation achieved by Random Forest when predicting
TAU value is in ’moderate’ range (0.5 -0.7). By considering
MAE value that only 0.0003, it is possible for us to use this
model practically for computing the understandability of the
generated test case by using combined metrics.

V. DISCUSSION
In the previous study, Daka [6] showed the readability
improvement by constructing the model based on the test
code metrics. This readability improvement aims to optimize
test case understandability. However, based on the evaluation,
it was concluded that the test cases that have been optimized
for its readability are not always associated with the increas-
ing of test case understandability. In this research, we conduct
the model understandability construction by using two met-
rics: test code and developer-related metrics. We use test code
metrics from Daka [6] and new developer-related metrics.
By combining these metrics, we build the regression model to
predict the TAU value and classificationmodel for classifying
ABU value.

We achieved a higher AUC for the ABU classification
model (0.859) when using combined metrics and comparable
to the model using developer metrics (0.850) or test code
metrics (0.756). When looking at the F-Measure (0.838), it is
clear that the ABU model can be used for classifying test
cases based on its understandability. This positive result is
supported by the fact that the classifier has good results for

TABLE 8. Test case metrics.

TABLE 9. Developer metrics.

both positive and negative instances. The precision and recall
for the positive class are fairly good (0.827 for precision
and 0.846 for recall). When classifying negative instances,
this model is also achieving good performance, 0.849 for
precision and 0.831 for recall. We present the snippet of the
J.48 tree as the ABU classification model in Fig. 3.

The maximum correlation achieved by the TAU regression
model when using combined metrics and the Random Forest
algorithm. This combination of features achieves a correla-
tion of 0.59 with a root-relative squared error rate of 64.76%
and mean absolute error 0.0003. It’s comparable to the model
constructed by test code metrics that achieve a correlation of
0.582 with a root-relative squared error rate of 64.32%.

Using combined metrics for constructing the understand-
ability model gives the consequence that we must collect
data from two different sources: test cases and developers.
Of course, it takes more effort than just using a single metric.
However, the effort is not too great because it is enough to
conduct a questionnaire to the developer once before using
this model. To compensate for the computational costs in
calculating the test case metric is not too difficult because the
file is only traversed once.

To explain examples of using the model, we use the test
case in Fig. 2. Decision tree model is used to classify whether
the developer with the profile described in will be able to
understand the test case or not. The test case feature is
extracted to obtain the test case metrics as shown in Table 8
and the developer profile is shown in Table 9. Next, the test
case is classified by using the decision tree according to the
name of the metric stored in the node and the metric value
of the example. The classification process of the test case
can be seen in Fig. 4 based on the C.45 model in Fig 3.
We can conclude that these test cases will be classified by
the developer correctly.
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FIGURE 3. Snippet of C.45 classification model.

FIGURE 4. Classification execution.

Our research is about proposing the test case under-
standability model by reanalyzing Honif’s experiment result.
Honfi’s research tried to investigate the developer’s perfor-
mance when asked to classify the output of test case execu-
tion. This experiment found several factors that influence the
developer’s success when determining whether the behavior
of the testing execution is faulted or expected. Measurement
of test case quality in the understandability aspect is needed as
one of the prerequisite information in optimizing the test case
presentation. We extracted Honfi’s data to obtain readability
metrics from test cases and developer metrics from the ques-
tionnaire results. Expecting that understandability is better
captured by a combination of multiple features, we present
an analysis of the data from the Honfi study, in which we use
different modeling techniques. Further, we construct a binary
classifier of understandability based on various interpretable
test case features and developer profiles. From this study,
there is new knowledge that to estimate whether a devel-
oper can understand a test case, we can use a combination
of 20 metrics of test cases and six metrics from developers
in a random forest-based model. Practically, this model can
be used to measure the quality of test cases in the test case
generation techniques.

VI. CONCLUSION
We conducted empirical research to analyze test case under-
standability by exploiting the subset of test case evalua-
tion result (450 instances) from Honfi’s study [44] that
involved 30 developers and 15 white box generated test

cases. We extracted 20 test code metrics from the generated
test case and six developer-related metrics from the prelim-
inary survey. We used two understandability proxies, ABU
(Actual Binary Understandability) obtained from respondent
answers and TAU (TimedActual Understandability), which is
inversely proportional to the time required by respondents to
provide answers. To handle the unbalanced data problem (the
dataset contained almost 75% positive instances), we utilized
SMOTE filtering.

By applying C.45, Bayesian Net, ANN, and SVM algo-
rithm, we build and evaluate classification model to classify
the test cases based on its ABU value. We also employed the
regression techniques (Random Forest, Linear Regression,
ANN, and SVM) to construct a prediction model for the TAU
value. Combined metrics always give a better discriminatory
performance in the classification model and a higher corre-
lation in the regression model compared to a single metric.
Classification model can achieve reliable performance while
the regression model gained a moderate performance.

We have presented that our research success in answering
the questions that stated previously:

1) RQ1: WHAT IS UNDERSTANDABILITY PROXIES AND
METRICS THAT APPROPRIATE FOR CONSTRUCTING A
MODEL IN GENERATED TEST CASE?
From the experiment, we can conclude that actual binary
understandability is the most appropriate proxy, and com-
bined metrics (readability test case and developer) are the
most relevant metrics for constructing the model.

2) RQ 2: IS IT POSSIBLE TO DEFINE UNDERSTANDABILITY
MODELS ABLE TO PREDICT OR CLASSIFY TEST CASE
UNDERSTANDABILITY?
We can conclude that the model can be used practically in
classifying the test case based on the combination of test
code metrics and developer-related metrics. In the future,
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we will employ the classification model as an additional
fitness function in white box test case generation to refine
the test case understandability.
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