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ABSTRACT Fatigue damage in a bone occurs in the form of micro-scale cracks with the lengths as
small as to a few microns. The evaluation of cracks in bones has recently been a hot topic. However,
the current most frequently used method is based on traditional linear ultrasound, which is just sensitive
to gross damages rather than micro cracks. Nonlinear ultrasonic technique, which is capable of detecting
micro-scale damages, has been widely used in metallic structures. However, few study has been directed
to employing second harmonic generation of nonlinear ultrasound to evaluate fatigue damages in bones.
In this study, a preliminary study is conducted on the interactions between nonlinear guided waves and a
single crack in bone materials motivating to the evaluation of micro cracks in long bones. Considering the
symmetry, asymmetry, location, orientation, length and width of the crack in bone materials, their influences
on second harmonic responses are discussed in detail. Our results are presented as follows. Firstly, not only
the primary S0 but also A0 mode Lamb wave generates the second harmonic component of S0 mode after
interacting with a symmetric crack. Secondly, along the thickness direction, the primary S0mode Lambwave
possesses almost the same detection sensitivity, no matter where the crack is located. Thirdly, the amplitudes
of S0 mode second harmonic component are increased slightly when the oblique angle of the crack is set
from 0◦to 45◦, while the amplitudes increase dramatically when the oblique angle changes to 67.5◦ and 90◦.
Lastly, the second harmonic amplitude and the relative acoustical nonlinear parameter are increased with the
length of the crack, while they possess a monotonically decreasing relationship with the width of the crack.
Our preliminary studies will provide priori knowledge when using nonlinear ultrasonic guided waves for
detecting micro-scale cracks in long bones in future clinical inspections.

INDEX TERMS Nonlinear ultrasonic Lamb waves, bone structures, the detection of cracks in bones, second
harmonic component, the relative acoustical nonlinear parameter, ultrasonic signal processing.

I. INTRODUCTION
Fatigue damage in a bone occurs in the forms of micro-scale
cracks with the lengths of 5-500µm [1], [2]. This micro crack
damage contributes to the formation of stress fractures and
acts as a stimulus for bone remodeling [3]. Bones, therefore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Shi .

have an outstanding advantage over most engineering struc-
tures in that they possess an inherent ability to repair damage.
However, if this crack damage accumulates at a rate that
the capacity for repair is exceeded, stress fractures result.
These fractures occurred commonly among the people who
undertake intensity and repetitive activities, such as athletes,
soldiers and gymnasts [4]. If this crack accumulates at normal
rates but the bone’s repair mechanism is deficient, fragility
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factures result, which occur commonly in ageing bone [5].
Consequently, the evaluation and detection of cracks in bones
prior to fracture is of great urgency and importance.

Conventional radiography, e.g., dual X-ray absorptiometry
(DXA), which has been established as a reliable means of
measuring bone density, is one of the most common method
to evaluate bone fracture [6], [7]. Ultrasonic testing tech-
nique has some advantages of non-ionizing radiation, porta-
bility and low cost, which holds a promise to become a
viable alternative for radiography [8], [9]. In the past decade,
the ultrasonic axial transmission technique has been received
considerable interest for the assessment of bones [10]–[12].
The so-called first arriving signal is one contribution to the
ultrasonic axial transmission technique. It has convention-
ally been used to measure the parameters of bones, such
as mineral density and bone geometry [13]–[15]. Besides
of the first arriving signal, bone structures also support the
propagation of ultrasonic guided waves. It has been demon-
strated that ultrasonic guided waves propagating along the
bones provides more comprehensive information on bone
material and structural characteristics [16], [17]. The charac-
teristics of ultrasonic guidedwaves propagating in bones have
been clearly described using theoretical analysis, numerical
and experimental studies [18]–[21]. Furthermore, ultrasonic
guided wave technique has been applied to assess the quality
of bones with significant results [22]–[25].

Almost all of the above studies have been restricted to use
linear ultrasonic technique to evaluate the status of bones.
It is well known that linear ultrasound is mainly dependent
on measuring particular parameters, such as sound velocity,
attenuation, and/or the transmission and reflection coefficient
of propagating waves. These parameters are just sensitive to
gross and macro-scale damages within the bone structures.
Consequently, ultrasonic methods based on linear theory are
not suitable to detect micro-scale cracks in bones.

Nonlinear ultrasonic method is much more sensitive
to micro-scale damages than linear technique [26]–[30].
Recently, nonlinear ultrasonic techniques have been
applied to evaluate bone damage status including nonlin-
ear resonant ultrasound spectroscopy [1], [31], nonlinear
dynamic response [32] and nonlinear modulation measure-
ments [33], [34]. These studies are mainly based on using
bulk waves. Furthermore, in addition to the above mentioned
nonlinear effects, higher harmonics generation (normally
second harmonic generation) as one of the most frequently
nonlinear behaviors in NDE (Nondestructive Evaluation)
community [35]–[37] has seldom been used for the evaluation
of damages in bones. Zhang et al. [38] experimentally studied
nonlinear Lamb waves propagating in long bones and clearly
observed accumulated second harmonic signals from the
primary Lamb waves. The nonlinear ultrasonic guided waves
technique combines the high sensitivity to micro damages of
nonlinear method and the expeditious inspection of guided
waves. It has thus great potential for the assessment of bone
structures. Up to now, according to our literature review,

few study has been directed to employing second harmonic
generation of nonlinear ultrasonic method to evaluate fatigue
damages in bone structures.

The objective of this study is to investigate the feasibility
and the effectiveness of using nonlinear ultrasonic guided
waves for the evaluation of micro-scale cracks in bone mate-
rials. The characteristics of second harmonic generation from
the primary S0 and A0 mode Lamb waves interacting with a
single crack in bonematerials are investigated. The influences
of the symmetry, asymmetry, location, orientation, length and
width of the crack in bones on the second harmonic genera-
tion are studied, respectively. Our study provides motivation
to the evaluation of micro cracks in long bones. The rest of
this article is organized as follows. Theoretical fundamentals
are briefly introduced in section II. Numerical setups are
presented in section III. Results and discussions are illustrated
in section IV. Conclusions and future work are illustrated at
last in section V.

II. THEORETICAL FUNDAMENTALS
A. DISPERSION CURVES IN A PLATE WITH
BONE MATERIALS
Previous studies [16], [17], [24], [38] have demonstrated
that bone structures support the propagation of ultrasonic
guided waves. Long bones are treated as circular hollow pipe
structures and ultrasonic guided waves propagating in long
bones are studied by Ta et al. [16], [17]. It is found [16]
that when the ratio of inner radius to thickness of a circular
hollow pipe is increased, the propagation characteristics of a
pipe are becoming similar to those of a plate-like structure.
Recently, more and more researchers [14], [25], [38]–[40]
have directed to use plate-like structure model for numerical
study of bones instead of circular tube structure. In this study,
two dimensional plate structure model with bone materials is
employed for numerical simulations.

Ultrasonic guided waves propagating in a solid plate are
known as Lamb waves. They are commonly grouped as
symmetric and asymmetric modes according to the dif-
ferent vibrations features, governed by the Rayleigh-Lamb
frequency equations [41]–[43]. From the Rayleigh-Lamb
equations, phase and group velocities dispersion curves can
be derived.

The density, the velocities of longitudinal and shear waves
of a cortical bone are 1500 kg/m3, 4060 m/s and 1840 m/s,
respectively [39]. The obtained dispersion curves of a bone
plate with the thickness of 4mmare presented in Figure 1. It is
found that Lamb waves are composed of two modes (S0 and
A0 modes) within the low frequency range (0-200 kHz). It is
know that [44] the zero-order modes (S0 andA0modes) carry
more energy than high-order modes, with a smaller energy
attenuation during the propagation distance compared to
high-order modes. Therefore, S0 and A0 modes are selected
as the primary waves to investigate second harmonic genera-
tion effect from the interactions between the Lamb waves and
a crack.
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FIGURE 1. Dispersion curves of a bone plate with the thickness of 4 mm:
(a) Phase velocity dispersion curves; and (b) Group velocity dispersion
curves.

B. ACOUSTICAL NONLINEAR PARAMETER
A large number of previous studies have shown that nonlinear
ultrasonic technique based on second harmonic generation
is effective to detect the microstructural changes in metallic
materials. The second harmonic waves are generated when
the fundamental ultrasonic waves pass through a material
with micro-scale damages. The micro-scale damage can
be quantitatively evaluated by acoustic nonlinear parameter
which is involved by the amplitude of the second harmonic
waves.

Physically, the phenomenon of second harmonic gener-
ation is related to nonlinearity in the elastic behavior of
the material, which indicates that the relationship between
stress σ and strain ε is nonlinear. For one dimensional case,
the nonlinear stress-strain relationship can be expressed as

σ = Eε (1+ βε) (1)

where E is the linear elastic modulus of materials and β
denotes the second-order classical nonlinearity parameter.

By combining the wave motion equation with Eq. (1), one
dimensional nonlinear wave motion equation of longitudinal
waves can be obtained. The second-order nonlinear parame-
ter in terms of the amplitude of second harmonic waves can

be derived and expressed as [35]

β =
8A2
A21xk

2
(2)

where A1 refers to the amplitude of fundamental waves, A2
is the amplitude of the second harmonic waves and k denotes
the wave number of the fundamental waves.

Considering the propagation of Lamb waves, a relative
acoustical nonlinearity parameter β ′ is used to characterize
the damage state of a wave guide. In the previous studies, two
different definitions are employed. The first definition con-
siders the slope of the amplitude’s ratio with the propagation
distance

β ′ =
1
x
A2
A21

(3)

and the second considers the amplitude’s ratio at a fixed
propagation distance at a specimen

β ′ =
A2
A21

(4)

C. CONTACT ACOUSTICAL NONLINEARITY CAOUSED BY
CRACKS
When an ultrasonic wave excited by a large amplitude is
incident to an imperfect interface, higher harmonic waves
are generated. This phenomenon is known as CAN (Con-
tact Acoustic Nonlinearity), and has attracted increasing
amounts of attention for its potential to characterize closed
cracks or imperfect bond interfaces.

The basic physical mechanism of CAN is that a crack
driven by longitudinal acoustic traction causes clapping of
the crack interface. This clapping nonlinearity originates
from asymmetrical dynamics of the contact stiffness which
is higher in the compression phase than in the tensile phase.
As a result, the compressional part of the waves can penetrate
it, but their tensile part cannot. Therefore, after penetrating
the interface, the waves exhibit half-wave rectification, which
means that they have obvious nonlinearity. This nonlinearity
can then be detected by second harmonics [35].

The CAN is generated at the crack. Unlike the material
nonlinearity which is distributed across the whole waveguide,
it is a kind of localized nonlinearity. Therefore, the Eq. (4)
which does not include the propagation distance is employed
to quantify the CAN.

III. NUMERICAL SETUPS
A. THE ALID TECHNIQUE
In this study, long bone is simplified to two dimensional plate
model as discussed in section II. Lamb waves propagating
in long bones and interacting with micro cracks to generate
nonlinear effect of second harmonic are studied. In order to
eliminate unwanted boundary reflections, ALID (Absorbing
Layer using Increasing Damping) technique is applied to two
dimensional bone plate finite element models. In addition to
ALID, the infinite elements method is another approach to
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remove the unwanted reflections. However, previous stud-
ies [45], [46] have concluded that infinite elements are not
suitable for high accuracy removal of unwanted reflection
of bulk waves and ultrasonic guided waves. The ALID tech-
nique is thus employed in this study.

The ALID is an absorbing layer that is made of a material
with the same properties with those of the area of study except
for having a gradually increasing damping.

The equation of dynamic equilibrium in the time domain
is expressed as

[M ] ü+ [C] u̇+ [K ] u = f , (5)

with [M], [C] and [K] denoting the mass, damping and stiff-
ness matrices.

Stiffness or mass proportional damping can be introduced
in time domain finite element models and it is generally
termed as Rayleigh damping. Consequently, the damping
matrix [C] can be expressed as

[C] = α [M ]+ β [K ] , (6)

where α and β denote the mass and stiffness proportional
damping coefficients.

In an ALID with a boundary perpendicular to the x axis,
the value of α and β are gradually increased in the x direction.
The following formulations are set.

α (x) = αmaxX (x)m and β (x) = βmaxX (x)m , (7)

where αmax and βmax are positive real numbers and X (x)
varies from 0 at the interface between the ALID and the area
of study to 1 at the end of the ALID following a power law
whose order is defined by m.

It is noted that the introduction of damping decreases with
the value of the stable time increment when solving the finite
element model with central difference explicit scheme [47].
The damping value at the end of an ALID is usually very
large compared to the values commonly used in the structures.
A high value of α causes a relatively small decrease in the
stable increment whereas a value of β usually has a very
strong effect leading to a great loss in computational effi-
ciency. Therefore, it is preferable to avoid using β to define
ALID with an explicit scheme. In this article, we only have
α for numerical studies. The Eq. (7) changes to the following
formulation

α (x) = αmaxX (x)m and β (x) = 0. (8)

It is obvious to see that proper definition of the layer
parameters, i.e., the length of the layer La, variation of the
attenuation parameter α and the power law m is essential to
achieve an efficient and accurate model. In Finite element
models, as the space is discretized, the gradual increase of
α occurs by steps. An ALID is defined as a series of sub
layers having the samematerial properties but different values
of α. It is preferable to minimize the change of α between two
adjacent sub layers. It is recommended to have one element
thick sub layers.

Suppose an ALID with the length La has n sub layers, and
the length of each sub layer is la, the attenuation parameter of
ith sub layer α (i) is defined as.

α (i) = αmax

(
ila
La

)m

, (9)

where i varies from 1 to n. The value of i equals to 1 corre-
sponding to the sub layer next to the interface and n corre-
sponding to the sub layer at the end of the ALID. According
to the reference [45], in order to achieve an efficient and
accurate model, these parameters can be selected as follows.
Normally, αmax is selected to larger than 10 f0, where f0
denotes the excitation frequency. La is set to larger than 2λ,
in which λ refers to the wavelength. To eliminate the reflec-
tions of second harmonics, αmax is set to larger than 20 f0 and
La to 4λ, The length of the sub layer la equals to element size.
The value of m is set to 2 or 3.

B. FINITE ELEMENT MODEL
Numerical simulations for studying nonlinear ultrasonic
Lamb waves interacting with a single crack in a plate bone
structure are performed by using ABAQUS software. The
schematic of two dimensional finite element model is illus-
trated in Figure 2 (a). The length and thickness of the bone
plate is set to 500 mm and 4 mm, respectively. Two ALID
regions are applied at both ends with a length of La. In this
study, the value of La is set to more than 4λ, where λ referring
the length wave of the excitation signal. The crack region
is located at distance of 100 mm from the excitation. Verti-
cal, horizontal and oblique crack models are established and
integrated in the finite element model. They are presented at
Figures 2 (b), (c) and (d), respectively. The shape of the crack
is modeled as an ellipse [37], [48]. The surfaces of the crack
are simulated by hard contact with a frictionless model. The
major and minor axis of the ellipse are defined as the length lc
andwidthwc of the crack, respectively. It is noted that in order
to acquire obvious second harmonic generation, the crack
with millimeter level of the length and micron grade of
width is introduced to the finite element model. The traction
excitation is located at 50 mm from the left end of the bone
plate. Symmetric and anti-symmetric excitations are applied
to generate the primary S0 andA0mode Lambwaves, respec-
tively. They are clearly illustrated in Figures 2(e) and 2(f),
respectively.

C. ELEMENT SIZE AND TIME STEP
In general, a higher-order element type, a denser mesh and
smaller time step will result in a more accurate result, but
will also cost more in terms of calculation time and computer
resources. In order to obtain adequate accuracy and high
efficiency, a second-order rectangular element type is used
to discrete the bone plate and the maximum element size and
time step is adopted according to the references [49], [50].

1I =
λmin

20
, (10)
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FIGURE 2. Schematic model for the numerical study of the primary
S0 and A0 mode Lamb waves interacting with a single crack in a plate
bone structure: (a) overall finite element model with ALID regions;
(b) vertical crack model; (c) horizontal crack model; (d) oblique crack
model; (e) symmetric excitation; and (f) anti-symmetric excitation.

1t =
1

20fmax
, (11)

where 1I is the element size and 1t the time step; λmin
and fmax are shortest wavelength and highest frequency of
interest, respectively.

To ensure the adequate accurate accuracy of second har-
monic responses, fmax is referred to the upper limit of the
frequency bandwidth of the second harmonic. In this study,
the primary centre frequency of excitation signal f0 is set
to 100 kHz. According to Eq. (11), the element size setting to
0.2 mm for the normal region of the model is sufficient to
ensure accuracy. The value of time step setting to 5e-8 s
is also adequate. The crack zone is more densely meshed,
with much smaller elements to accommodate the complicated
mechanical response. The element size at the crack is set
to 0.02 mm. The meshing results at the normal and cracked
regions are presented in Figure 3.

FIGURE 3. Meshing results in normal and cracked regions.

D. SCHMETIC DIAGRAM FOR DERIVING THE RELATIVE
ACOUSTICAL NONLINEARITY PARMATER β′

In this study, the primary Lamb wave modes are S0 and A0 at
low frequency range. Due to their dispersive characteristics,
there is always a difference of the velocities (phase and group
velocities) between the fundamental and the second harmonic

components. There will be a time flight gap between the fun-
damental and second harmonic components in the received
time domain waveforms. Applying FFT (Fast Fourier Trans-
form) directly to the received temporal waveforms to derive
the amplitudes of the fundamental (A1) and second harmonic
(A2) components will result in a poor accuracy of the relative
acoustical nonlinearity parameter β ′. Therefore, a schematic
diagram for deriving accurate relative acoustical nonlinear-
ity parameter β ′ is proposed. The proposed idea is that we
firstly extract time domain waveforms of the fundamental
and second harmonic components from the received signal,
and then apply FFT to the temporal waveforms of fundamen-
tal and second harmonic components to get the corresponding
amplitude, respectively. The schematic flowchart is shown in
Figure 4 and explained in detail as following steps.

Step 1: Numerical simulations are conducted under the
excitations with both positive and negative polarities of the
tone burst as illustrated in Figures 4 (a) and (b). The cor-
responding received waveforms denoted by x (t,F0) and
x (t,−F0) are shown in Figures 4 (c) and (d), respectively.
For the cracked plate bone structure, in addition to the fun-
damental components, the received signals also include the
waveforms of nonlinear responses which are the static dis-
placement component [29], [51] and high harmonic compo-
nents (mainly second harmonic component).

Step 2: The equation x02 (t) = 1
2 (x (t,F0)+ x (t,−F0))

is used to remove the fundamental component of the received
signal, and derive the signal which just includes the static
and second harmonic components [52], [53]. An example
illustrating the superimposition of the static and second har-
monic components is presented in Figure 4 (e). The equation
x1 (t) = 1

2 (x (t,F0)− x (t,−F0)) is employed to elimi-
nate the static and second harmonic components, and the
fundamental component in the received signal is obtained.
An example of the obtained fundamental component is shown
in Figure 4 (f). x02 (t) refers to the derived waveforms of
the superimposition of static displacement and second har-
monic component. x1 (t) denotes the extracted fundamental
component.

Step 3: The EMD (Empirical Mode Decomposition)
method [54], [55] is used to decompose the signal of x02 (t)
into a series of IMFs (Intrinsic Mode Function) and a residue.
The residue represents the temporal waveform of the static
component. The red curve in Figure 4 (g) demonstrating an
example of extracted static displacement component. The
sum of the IMFs is the results of the extracted time domain
waveform of the second harmonic component with an exam-
ple shown in Figure 4 (i).

Step 4: By applying FFT to the extracted time domain
waveforms of the fundamental and second harmonic com-
ponents, respectively, the frequency spectrums of the fun-
damental and second harmonic components are obtained.
The corresponding examples are illustrated in Figures 4 (h)
and (j). From these two spectrums, the amplitudes of the
fundamental (A1) and second harmonic (A2) components can
be derived.
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FIGURE 4. Schematic flowchart for deriving accurate relative acoustical nonlinearity parameter.

Step 5: By using the formulation β ′ = A2
/
A21, the relative

acoustical nonlinearity parameter β ′ can be derived.

IV. RESULTS AND DISCUSSIONS
In this section, nonlinear effect of second harmonic genera-
tion from the primary Lamb waves interacting with a crack
in a plate with bone material is investigated. The dependence
of second harmonic generation on the symmetry, asymme-
try, location, orientation, length and width of a crack in the
bone plate is discussed, respectively. The proposed schematic

diagram in Figure 4 is used to extract the time domain wave-
forms of the fundamental and second harmonic components
in the receivedwaveforms and to derive the relative acoustical
nonlinearity parameter.

A. SECOND HARMONIC GENERATION FROM THE
PRIMARY LAMB WAVES INTERACTING WITH A
SYMMETRIC CRACK
In this subsection, the primary S0 and A0 mode Lamb waves
at the center frequency of 100 kHz interacting with a vertical
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symmetric crack in a bone plate are studied. The length and
width of the crack are set to 2 mm and 0.1 µm, respectively.
As illustrated in Figure 2 (a), along the thickness direction,
the center of the crack is at the middle of the bone plate.
It means that the center of the crack is located at 2 mm
from the top surface. The crack is thus symmetric. Along
the length direction, the crack locates between the excitation
and the monitoring points. The monitoring point at a distance
of 150 mm from the crack is used to acquire the received
waveforms.

Figures 5 (a) and (b) illustrate the extracted temporal
waveforms of the fundamental and second harmonic com-
ponents from the received signal after the primary S0 and
A0 mode Lamb waves interacting with a symmetric ver-
tical crack, respectively. The blue and red curves denote
the corresponding fundamental and second harmonic com-
ponents, respectively. In Figure 5 (a), it is clearly observed
that the time domain wave packet of second harmonic lags
a little behind the fundamental component. The fundamen-
tal component wave packet appears at 7.99e-5 s, and it
propagates 250 mm. Therefore, the calculated group veloc-
ity is 250 mm / 7.99e-5 s = 3129 m/s. It is quite close
to the theoretical group velocity of S0 mode at 100 kHz
with the value of 3190 m/s as illustrated in Figure 1 (b).
The primary S0 mode Lamb wave at the center frequency
of 100 kHz propagates 100 mm in the long bone and encoun-
ters a vertical crack. It then interacts with the crack. After
interaction, the second harmonic component is generated.
The second harmonic appears at 8.55e-5 s in the time domain
waveform. Suppose the group velocity of the second har-
monic component is V2g1, 100 mm / 3190 m/s + 150 mm /
V2g1 = 8.55e-5 s. By solving this formulation, V2g1 equals to
2770 m/s, which is in accordance with the theoretical group
velocity of S0 mode at 200 kHz with the value of 2808 m/s
as also shown in Figure 1 (b). The error is relative quite small
and acceptable. It is reasonable and thus verified that the pri-
mary S0 Lamb wave generates the S0 mode second harmonic
component.

In Figure 5 (b), it is obviously found that the wave packet
of second harmonic component appears ahead of the wave
packet of the fundamental component. The fundamental com-
ponent is appeared at 1.34 e-4 s. Its group velocity is thus
calculated as 250 mm / 1.34e-4 s = 1866 m/s, which is close
to the theoretical group velocity of A0 mode at the frequency
of 100 kHz with the value of 1808 m/s. Similar to the primary
S0 mode, the mode of the second harmonic generated from
the primary A0 mode interacting with the crack is identified
as follows. The wave packet of second harmonic component
appears at 1.013e-4 s, and its group velocity is supposed
to be V2g2. The calculated formulation is V2g2 = 150 mm /
(1.08e-4 s – 100 mm / 1808 m/s) = 2847 m/s. This value is
also accord with the theoretical group velocity of S0 mode
at the frequency of 200 kHz with the value of 2808 m/s.
The error is also quite small and acceptable. Therefore, it is
verified that the primary A0 mode Lamb waves interacting a
symmetric crack in a bone plate generates S0 mode second

harmonic component. This finding accords to the results
reported in previous published reference [56] that second
harmonic of S0mode is generated when the primaryA0mode
Lamb waves propagating in a carbon steel plate with consid-
ering evenly distributed material nonlinearity.

FIGURE 5. Extracted time domain waveforms of the fundamental and
second harmonic components from the received signal after the primary
Lamb waves interacting with a symmetric vertical crack: (a) the primary
S0 mode Lamb waves; and (b) the primary A0 mode Lamb waves.

B. SECOND HARMONIC GENERATION FROM THE
PRIMARY LAMB WAVES INTERACTING WITH AN
ASYMMETRIC CRACK
In this subsection, the primary S0 and A0 mode Lamb waves
at the center frequency of 100 kHz interacting with an asym-
metric crack in a bone plate are investigated. The length and
width of the crack are 1.6 mm and 0.1 µm, respectively.
As illustrated in Figure 2 (c), along the thickness direction,
the center of the crack is located at 1 mm from the top
surface. Therefore, the crack is thus asymmetric. Along the
length direction, the monitoring point locating at a distance
of 300 mm from the crack is employed to acquire the received
waveforms.

Figures 6 (a) and (b) show the extracted time domain wave-
forms of the fundamental and second harmonic components
from the received signal after the primary S0 and A0 mode
Lamb waves interacting with an asymmetric vertical crack,
respectively. In Figure 6 (a), there are two wave packets for
time domain waveforms of both the fundamental and sec-
ond harmonic components. For the fundamental component,
the first wave packet appears at 1.253e-4 s. The propagation
distance is 400 mm. Therefore, the calculated group velocity
is 400 mm / 1.253e-4 s = 3192 m/s, which is in accordance
with the theoretical group velocity value of S0 mode at
100 kHz. It is thus proved that the first wave packet of the
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FIGURE 6. Extracted temporal waveforms of the fundamental and second
harmonic components from the received signal after the primary Lamb
waves interacting with an asymmetric vertical crack: (a) the primary
S0 mode Lamb waves; and (b) the primary A0 mode Lamb waves.

fundamental component is the direct S0 mode. Similarly, the
second wave packet with a small amplitude of the funda-
mental component is identified as the A0 mode, which is
converted from the primary S0 mode due to the asymmetry
of the crack. Regarding to the time domain waveform of
the second harmonic component, there are also two wave
packets. The first wave packet lags a little behind the first
corresponding wave packet of the fundamental component.
Its calculated group velocity is close to the theoretical group
velocity of S0 mode at 200 kHz. Therefore, the first wave
packet of second harmonic is S0 mode. It is generated due to
the primary S0 mode interacting with the asymmetric crack.
As the group velocity of S0 mode Lamb waves at 100 kHz
is larger than at 200 kHz, the second harmonic wave packet
lags a little behind the fundamental wave packet in the time
domain waveforms. Furthermore, the second wave packet
of the second harmonic component almost coincides with
the corresponding second wave packet of the fundamental
component. It is identified that the second wave packet of
the second harmonic component is A0 mode. It is converted
from the second harmonic of S0 mode due to the asymmetry
of the crack.

In Figure 6 (b), for the fundamental component, the first
and second wave packets are identified as the S0 and
A0mode, respectively. The presence of S0mode wave packet
of the fundamental component is due to the conversion from
the primary A0 mode. As the group velocity of S0 mode
at 100 kHz is much larger than A0 mode at 100 kHz,
the S0 mode wave packet appears head of A0 mode wave
packet. The first and second wave packets of the second

harmonic components are also identified as S0 and A0 mode,
respectively. The primary A0 mode Lamb waves interact-
ing with the crack generates the second harmonic S0 mode
Lamb waves. Meanwhile, due to the asymmetry of the crack,
the phenomenon of mode conversion takes place. Part of
the second harmonic of S0 mode converts to A0 mode.
Consequently, the wave packet of A0 mode Lamb waves
are in presence in the extracted time domain waveform of
the second harmonic component.

From the above analysis, it is inferred that the asymmetry
of the -scale crack in a bone plate will result in the mode
conversion of both the fundamental and second harmonic
components. The presence of mode conversion phenomenon
in the time domain waveforms for both the fundamental
and second harmonic components denotes the asymmetry of
the crack.

C. SECOND HARMONIC GENERATION FROM THE
PRIMARY LAMB WAVES INTERACTING WITH A
HORIZONTAL CRACK AT DIFFERENT LOCATIONS
ALONG THE THICKNESS DIRECTION
In this subsection, the primary S0 and A0 mode Lamb waves
at the center frequency of 100 kHz interacting with a horizon-
tal crack at different locations along the thickness direction
is studied. The length and width of the horizontal crack are
2mmand 0.1µm, respectively. Along the thickness direction,
the distance from the center of the crack to middle plane of
the bone structure h0 is set to 0, 0.3 mm, 0.6 mm, 0.9 mm,
1.2 mm, 1.5 mm and 1.8 mm, respectively. The degree of the
asymmetry of the crack is increased. Along the length direc-
tion, the monitoring point locating at a distance of 300 mm
from the crack is used to record the received waveforms.

Figures 7 (a) and (b) show the extracted time domain wave-
forms of the second harmonic component from the received
signal after the primary S0 and A0 mode Lamb waves inter-
acting with a horizontal crack at different locations along
the thickness direction, respectively. The blue, red, green and
black waveforms correspond to horizontal crack located at h0
equal to 0, 0.6mm, 1.2mm and 1.8mm, respectively. h0 equal
to 0 represents that the crack is symmetric, while h0 equal to
other values denotes the asymmetric crack. In Figure 7 (a), the
low right part shows the local enlargement of the secondwave
packets with small amplitudes. The first wave packets are
the second harmonic of S0 mode generated from the primary
S0 mode. It is observed that the generated S0 mode second
harmonic displacements are close when h0 is equal to 0,
0.6mm, 1.2mm and 1.8mm. From the local enlargement, it is
obviously found that the secondwave packets appear when h0
equals to 0.6 mm, 1.2 mm and 1.8 mm. They are the second
harmonic components of A0 mode, which are converted from
the second harmonic of S0 mode due to the asymmetry of the
crack.

In Figure 7 (b), the first wave packets denote the extracted
second harmonic of S0 mode generated the primary A0 mode
Lamb waves when h0 equals to 0, 0.6 mm, 1.2 mm and
1.8 mm. Similar to the primary S0 mode, the second wave
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packets are the converted A0mode from the second harmonic
of S0 mode. It is illustrated that when h0 is equal to 0, there
is no converted second harmonic of A0 mode. The converted
second harmonic of A0 mode are negligible when h0 equals
to 0.6 mm. However, when h0 equals to 1.2 mm and 1.8 mm,
the displacements of the convertedA0mode second harmonic
components are greatly increased.

FIGURE 7. Extracted temporal waveforms of second harmonic
components from the received signals after the primary Lamb waves
interacting with a horizontal crack at different locations along the
thickness: (a) the primary S0 mode Lamb waves; and (b) the primary
A0 mode Lamb waves.

Maximum displacement of second harmonic component
of S0 mode generated the primary S0 and A0 mode Lamb
waves with the horizontal crack at different locations are
derived. Figure 8 illustrates the trend of the obtained maxi-
mum displacement with the h0 with varied values from 0 to
1.8 mm with a step of 0.3 mm. It is shown that the maximum

FIGURE 8. The trend of maximum displacement of second harmonic
component of S0 mode generated the primary S0 and A0 mode Lamb
waves with h0.

displacement of S0 mode second harmonic generated from
the primary S0 mode is much larger than that generated
from the primary A0 mode. This result is in accordance
with the time domain waveforms presented in Figure 7. Fur-
thermore, it is also found that the maximum displacement
of S0 mode second harmonic component from the primary
S0 mode is slightly declined with increased value of h0, while
the maximum displacement from the primary A0 mode is
increased as h0 increases. This finding is reasonable. For
the primary S0 mode Lamb waves, the horizontal displace-
ment field across the thickness direction is almost uniform
as shown in Figure 9 (a). The displacement amplitude of
the generated second harmonic component is thus dependent
on the wave structure of S0 mode at 200 kHz. The slightly
declined trend of the maximum displacement with h0 coin-
cides with the lightly deceased horizontal wave structure of
S0mode Lambwaves at 200 kHz as illustrated in Figure 9 (c).
The quite slightly change in the displacement amplitude of
the second harmonic component can always be negligible.
Therefore, the horizontal amplitudes of the second harmonic
S0 mode generated from the primary S0 mode Lamb waves

FIGURE 9. Wave structures of Lamb waves propagating in a bone plate:
(a) S0 mode at 100 kHz; (b) A0 mode at 100 kHz; and (c) S0 mode at
200 kHz.
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interacting with cracks at different locations along thickness
direction can be regarded the same. For the primary A0 mode
Lamb waves, as illustrated in Figure 9 (b), the increasing
trend of the wave structure at 100 kHz from the middle
plane to the upper surface contributes to the trend that the
maximum displacement from the primary A0 mode increases
with h0.

From the above analysis, it is inferred that the primary
S0 mode Lamb wave possesses almost the same detec-
tion sensitivity, no matter where the crack is located along
the thickness direction. Regarding that the maximum dis-
placement of second harmonic generated from the primary
S0 mode is much larger than that generated from the primary
A0mode, it is recommended that using the nonlinear S0mode
Lamb waves for the detection of cracks in bone structure is
preferable.

D. SECOND HARMONIC GENERATION FROM THE
PRIMARY LAMB WAVES INTERACTING WITH A CRACK
WITH DIFFERENT ORIENTATIONS
In the previous subsections, horizontal and vertical cracks are
considered. In this subsection, the primary S0 mode Lamb
waves at the center frequency of 100 kHz interacting with a
crack with different orientations are investigated. The oblique
angle of the crack θ is set to 0◦, 22.5◦, 45◦, 67.5◦ and 90◦.
θ setting to 0◦ and 90◦ refers to the horizontal and vertical
crack, respectively. The length and width of the horizon-
tal crack are 2 mm and 0.1 µm, respectively. Along the
length direction, the monitoring point locating at a distance
of 300 mm from the crack is employed to acquire the received
waveforms.

Figure 10 illustrates the extracted temporal waveforms of
the second harmonic component from the received signal
after the primary S0 mode Lamb waves interacting with a
crack with different orientations. The blue, red, green, yellow
and black curves the crack with the oblique angle of 0◦, 22.5◦,
45◦, 67.5◦ and 90◦, respectively. In Figure 10, when θ is set to
0◦ and 90◦, the crack is symmetric. There is one wave packet
of S0 mode second harmonic in the waveform. On the other
hand, there are two wave packets in the waveforms when θ
is equal to 22.5◦, 45◦ and 67.5◦. The first and second wave
packets denote the second harmonic components of S0 and
A0 mode, respectively. The second harmonic components of
A0mode are converted from the second harmonic of S0mode
due to the asymmetry of the crack. It is found that the ampli-
tudes of S0 mode second components are increased slightly
when θ is set from 0◦ to 45◦, while the amplitudes increase
dramatically when θ changes to 67.5◦ and 90◦. Furthermore,
the amplitudes of the A0 mode second harmonic components
are also increased with θ . This results from the dominant
horizontal displacement filed of S0 mode Lamb waves.

E. THE INFLUENCE OF THE LENGTH OF THE CRACK ON
THE SECOND HARMONIC GENERATION
In this subsection, the dependence of the second har-
monic generation on the length of the crack is investigated.

FIGURE 10. Wave structures of Lamb waves propagating in a bone plate:
(a) S0 mode at 100 kHz; (b) A0 mode at 100 kHz; and (c) S0 mode at
200 kHz.

The primary S0 mode Lamb waves at 100 kHz interacting
with a symmetric vertical crack with varied length and con-
stant width are studied. The width of the crack is set to
0.1 µm. The length of the crack is set to 0.5 mm, 1 mm,
1.5 mm, 2mm, 2.5 mm and 3mm. Along the length direction,
the monitoring point locating at distance of 300 mm from the
crack is used to acquire the received waveforms. Following
the schematic diagram presented in Figure 4, the amplitude
of the second harmonic component and the relative acoustical
nonlinear parameter β’ are derived.

The amplitudes of the second harmonic components gen-
erated from the primary S0 mode Lamb waves interacting
with the -scale crack with different length and constant width
are illustrated in Figure 11 (a). It is found that the second
harmonic amplitude has a monotonically increasing relation-
ship with the crack’s length. The longer the crack, the larger
amplitude of the second harmonic component becomes. Our
findings are consistent with the results reported in the pre-
vious reference [57], in which nonlinear longitudinal waves
were employed to detect cracks in steel structures. Further-
more, our results are also in accordance with the observation
presented in the reference [37], in which nonlinear Lamb
waves were used for the detection buried cracks in metallic
structures. A straightforward explanation is that second har-
monic component is generated due to the contact acoustical
nonlinearity which is increased with the length of the crack.
As the crack is increased, the contact stiffness of the interface
of the crack is declined. According to the theory reported
in the previous references [58]–[60], as the contact stiffness
of the interface is decreased, that is, as the crack becomes
longer, the acoustical nonlinearity is increased. Consequently,
the increased second harmonic amplitude with the length
of the crack conforms to this theory. The derived relative
acoustical nonlinear parameter β’ with the length of the crack
is shown in Figure 11 (b).It is clearly observed that the relative
acoustical nonlinear parameter β’ possesses a similar mono-
tonically increasing trend with the crack’s length. This results
from the quite small changes of fundamental amplitude at
different crack’s length.

169178 VOLUME 8, 2020



Y. Xie et al.: Preliminary Numerical Study on the Interactions Between Nonlinear Ultrasonic Guided Waves

FIGURE 11. The influence of the length of the crack on the second
harmonic generation from the primary S0 mode Lamb waves: (a) the
amplitude of the second harmonic components with the length of the
crack; and (b) the relative acoustical nonlinear parameter β’ with the
length of the crack.

F. THE INFLUENCE OF THE WIDTH OF THE CRACK ON THE
SECOND HARMONIC GENERATION
In this subsection, the influence of the crack’s width on
the second harmonic generation is discussed. The primary
S0 mode Lamb waves at 100 kHz interacting with a sym-
metric vertical crack with varied width and constant length
are investigated. The length of the crack is selected as 2 mm.
The width of the crack is set to 0.1 µm, 1 µm, 3 µm, 5 µm,
8µm and 10µm, respectively. The monitoring point locating
at a distance of 300 mm from the crack is used to record
the received waveforms. Similarly, following the schematic
diagram illustrated in Figure 4, the amplitude of the second
harmonic component and the relative acoustical nonlinear
parameter β’ with the width variation are obtained..
The amplitude of the second harmonic component and the

relative acoustical nonlinear parameter β’ with the width of
a crack are illustrated in Figures 12 (a) and (b), respectively.
Unlike the positive relationship between the second harmonic
amplitude and the length of the crack, the second harmonic
amplitude and the relative acoustical nonlinear parameter β’
both have a monotonically decreasing relationship with the
crack’s width. The wider the crack is, the smaller second
harmonic amplitude becomes. As the crack becomes wider,
the gap between the two interfaces of the crack becomes
larger. Consequently, some area of the interfaces may not
be in contact during the compressional phase of incident
wave, and the contact area is reduced [37]. The amplitude of

the second harmonic component is thus reduced with the
width of the crack. It is noted that the trends of the second
harmonic amplitude and β’ with the crack’s width are sim-
ilar. The reason is that the fundamental amplitude is almost
unchanged with the increment of the crack’s width.

FIGURE 12. The influence of the width of the crack on the second
harmonic generation from the primary S0 mode Lamb waves: (a) the
amplitude of the second harmonic components with the width of the
crack; and (b) the relative acoustical nonlinear parameter β’ with the
width of the crack.

V. CONCLUSIONS AND FUTURE WORK
In this study, the second harmonic generation from the inter-
actions between the ultrasonic guided waves and the crack
in bone material is studied. The influences of the symmetry,
asymmetry, location, orientation, length and width of the
crack in bones on the second harmonic generation are investi-
gated, respectively. Finite element model of a bone plate with
ALID regions is built. Schematic flow chart to extract the
time domainwaveforms of fundamental and second harmonic
components and to derive the relative acoustical nonlinear
parameter based on EMD method is proposed. Several con-
clusions are drawn and stated as follows.

Firstly, second harmonic responses from the primary
S0 and A0 mode Lamb waves interacting with a symmetric
and asymmetric cracks are discussed. It is found that not
only the primary S0 but also the primary A0 mode Lamb
wave generates the second harmonic component of S0 mode
after interacting with the symmetric crack. This finding is
in accordance with the previous published results that sec-
ond harmonic of S0 mode is generated when the primary
S0 and A0 mode Lamb waves propagating in a carbon steel
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plate with considering evenly distributed material nonlinear-
ity. Furthermore, when the primary S0 and A0 mode Lamb
waves interact with an asymmetric crack, part of the gener-
ated S0 mode second harmonic component will converted to
A0 mode due the asymmetry of the crack. The wave packet
of A0 mode is thus appeared in the extracted time domain
waveform of the second harmonic component.

Secondly, second harmonic generation from the primary
S0 and A0 mode Lamb waves interacting with a crack at
different locations along the thickness direction is inves-
tigated. It is observed that along the thickness direction,
the primary S0 mode Lamb wave possesses almost the same
detection sensitivity, no matter where the crack is located.
Further regarding that the maximum displacement of second
harmonic generated from the primary S0mode is much larger
than that generated from the primary A0 mode, it is preferred
to use the nonlinear S0 mode Lamb waves for the detection
of cracks in bone structures.

Thirdly, the primary S0 mode Lamb wave interacting with
a -scale crack at different orientations is studied. It is shown
that when the oblique angle is set to 22.5◦, 45◦ and 67.5◦,
A0 mode wave packet appears in the temporal waveforms
of the second harmonic component. It is converted form the
S0 mode second harmonic component. Furthermore, it is
illustrated that the amplitudes of S0 mode second compo-
nents are increased slightly when the oblique angle is set
from 0◦ to 45◦, while the amplitudes increase dramatically
when the oblique angle changes to 67.5◦ and 90◦.

Lastly, the dependences of second harmonic generation on
the crack’s length and width are explored. It is illustrated
that the second harmonic amplitude and the relative acous-
tical nonlinear parameter are increased with the length of
the crack, while they possess a monotonically decreasing
relationship with the width of the crack.

Nonlinear effect of second harmonic component gener-
ation from the primary ultrasonic Lamb waves interacting
with a crack under different circumstances, i.e., the symmetry
and asymmetry, the location, the orientations, the length and
the width are investigated in detail. Our study results have
shown that the use of nonlinear ultrasonic Lambwaves for the
detection of cracks in bone materials is feasible and effective.
Our results will provide some priori knowledge when using
nonlinear ultrasonic guided waves for the evaluation of micro
cracks in bones in future clinical inspection. In future work,
more accurate model of long bone will be built. Platforms
for detecting fatigue damages in bones by using nonlinear
ultrasonic guided waves will also be set up. The related exper-
imental studies and practical inspections will be conducted.
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