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ABSTRACT Advances in Artificial Intelligence and Image Processing are changing the way people interacts
with digital images and video. Widespread mobile apps like FACEAPP make use of the most advanced
Generative Adversarial Networks (GAN) to produce extreme transformations on human face photos such
gender swap, aging, etc. The results are utterly realistic and extremely easy to be exploited even for
non-experienced users. This kind ofmedia object took the name ofDeepfake and raised a new challenge in the
multimedia forensics field: the Deepfake detection challenge. Indeed, discriminating a Deepfake from a real
image could be a difficult task even for human eyes but recent works are trying to apply the same technology
used for generating images for discriminating them with preliminary good results but with many limitations:
employed Convolutional Neural Networks are not so robust, demonstrate to be specific to the context and
tend to extract semantics from images. In this paper, a new approach aimed to extract a Deepfake fingerprint
from images is proposed. The method is based on the Expectation-Maximization algorithm trained to detect
and extract a fingerprint that represents the Convolutional Traces (CT) left byGANs during image generation.
The CT demonstrates to have high discriminative power achieving better results than state-of-the-art in the
Deepfake detection task also proving to be robust to different attacks. Achieving an overall classification
accuracy of over 98%, considering Deepfakes from 10 different GAN architectures not only involved in
images of faces, the CT demonstrates to be reliable and without any dependence on image semantic. Finally,
tests carried out on Deepfakes generated by FACEAPP achieving 93% of accuracy in the fake detection task,
demonstrated the effectiveness of the proposed technique on a real-case scenario.

INDEX TERMS Deepfake detection, generative adversarial networks, multimedia forensics, image
forensics.

I. INTRODUCTION
A digital image can be manipulated with many tools and
software. Everyone with a glimpse of experience in using
Photoshop or GIMP can forge photographs in order to change
their contents, the semantics and - potentially - everything.
However, this kind of forgery has been widely investigated
throughout recent years and commercial tools with the ability
to detect and describe them are also available [1], [2]. The
possibility to detect forgeries made with Photoshop or similar
tools are related to the experience of the image manipulator
being able to hide any kind of unrealistic artifact.

The associate editor coordinating the review of this manuscript and

approving it for publication was Aniello Castiglione .

Advances in Artificial Intelligence, and specifically,
the advent of Generative Adversarial Networks (GAN) [3],
enabled the creation and widespread of extremely refined
techniques able to attack digital data, alter it or create
its contents from scratch. These tools are able to obtain
surprisingly realistic results leading to the birth of the
Deepfake images phenomenon, or simply Deepfakes.

In general, a Deepfake is defined as a multimedia
content synthetically modified or created through automatic
(or barely controlled) machine learning models. Most state-
of-the-art techniques are able to do the face swap from a
source image/video to a target image/video. Recently, faces of
showgirls, politicians, actors, TV presenters and many others
have been the main protagonists of Deepfake attacks: one of
the first example is the famous face swap of Jim Carrey on top

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 165085

https://orcid.org/0000-0001-8315-351X
https://orcid.org/0000-0002-8343-2049
https://orcid.org/0000-0001-6127-2470
https://orcid.org/0000-0003-0571-1074


L. Guarnera et al.: Fighting Deepfake by Exposing the Convolutional Traces on Images

FIGURE 1. Examples of Deepfakes: (a) Jim Carrey’s face transferred to Alison Brie’s body, (b) Mr. Bean is Charlize Theron in a Deepfake version of
J’adore commercial, (c) Jim Carrey instead of Jack Nicholson in Shining and (d) Tom Cruise Replaces Robert Downey Jr. in Iron Man.

of the the body of Alison Brie1 (Figure 1a), or Mr. Bean and
Charlize Theron in the Deepfake version of the commercial
of J’adore2 (Figure 1b), and again Jim Carrey instead of Jack
Nicholson in Shining3 (Figure 1c), or Tom Cruise replacing
Robert Downey Jr. in Iron Man4 (Figure 1d).
Deepfakes are not only involved in face-related tasks but

they could be engaged to swap or generate realistic places,
animals, object, etc. Indeed, this could bring disruptive
innovation in many working areas, such as in the automotive
industry or in architecture, since it is possible to generate a
car or an apartment through dedicated GANs or in the film
industry where it is possible, when necessary, to replace the
face of a stuntman with an actor; but, on the other hand
it could lead to serious social repercussions, privacy issues
and major security concerns. For example, there are many
Deepfake videos connected to the world of porn used to
discredit famous actresses like Emma Watson o Angelina
Jolie, or they can be used to spread disinformation and
fake news. Moreover, the creation of Deepfakes is becoming
extremely easy: widespread mobile apps like FACEAPP,5

are able to produce transformations on human faces such
gender swap, aging, etc. The results are utterly realistic and
extremely easy to produce even for non-experienced users
with a few taps on their mobile phone.

It is clear that the Deepfake phenomenon raises a serious
safety issue and it is absolutely necessary to create new
techniques able to detect and counteract it [1], [4].

1https://www.youtube.com/watch?v=SEar_6UtX9U
2https://www.youtube.com/watch?v=gZVdPJhBkqg
3https://www.youtube.com/watch?v=JbzVhzNaTdI
4https://www.youtube.com/watch?v=iDM69UEyM3w
5https://www.faceapp.com/

While detecting a Deepfake is difficult for humans, recent
works have shown that they could be detected surprisingly
easily by employing Convolutional Neural Networks (CNN)
specifically trained on the task. However, CNN solutions
presented till today, lack of robustness, generalization
capability and explainability. They are extremely specific to
the context in which they were trained and, being very deep,
tend to extract the underlying semantics from images without
inferring any unique fingerprint. A detailed discussion about
such limits will be dealt with in the final part of the paper.

In order to find a unique fingerprint related to the
specific GAN architecture that created the Deepfake image,
in this paper an extension of our previous work [5] is
presented. The fingerprint extraction method based on
the Expectation-Maximization Algorithm will be furtherly
discussed focusing on its capabilities to extract the Convolu-
tional Traces (CT) embedded by the generative process. The
CT could be employed in many related classification tasks
but in this paper the finalized pipeline for fakeness detection
is finalized with the adoption of a Random Forest classifier.
Moreover, the method was deeply tested for robustness with
many attacks carried out on images before the extraction
of the CT. Also generalizing was demonstrated by testing
real images against images generated by ten different GAN
architectures, which is the widest test carried out on the
task till today. Comparison with state-of-the-art methods
demonstrated that the overall approach achieves in almost
all cases best classification results. Moreover, we would
like to highlight that different state-of-the-art methods for
Deepfake detection used approaches based on CNN and these
are extremely computationally demanding (both for hardware
and for time needed), while the proposed approach achieves
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excellent classification results using only the CPU power of
a common laptop.

The remainder of this paper is organized as follows:
Section II presents state-of-the-art Deepfake generation and
detection methods. The proposed approach to extract the
Convolutional Trace is described in Section III. Classification
phase and experimental results are reported in Section IV.
In Section V the proposed approach is demonstrated to be
robust to different attacks. Finally, obtained classification
results were compared with recent state-of-the-art methods
in Section VI. Section VII concludes the paper.

II. RELATED WORKS
Deepfakes are generally created by techniques based on
Generative Adversarial Networks (GANs) firstly introduced
by Goodfellow et al. [3]. In [3], authors proposed a new
framework in which two models simultaneously train: a
generative model G, that captures the data distribution, and
a discriminative model D, able to estimate the probability
that a sample comes from the training data rather than
from G. The training procedure for G is to maximize the
probability ofDmaking amistake thus resulting in amin-max
two-player game. Mathematically, the generator accepts a
random input z with density pz and returns an output x =
G(z,2g) according to a certain probability distribution pg
(2g represents the parameters of the generative model).
The discriminator, D(x,2d ) computes the probability that
x comes from the distribution of training data pdata (2d
represents the parameters of the discriminative model). The
overall objective is to obtain a generator, after the training
phase, which is a good estimator of pdata. When this happens,
the discriminator is ‘‘deceived’’ and will no longer be able
to distinguish the samples from pdata and pg; therefore
pg will follow the targeted probability distribution, i.e.
pdata. Figure 2 shows a simplified description of a GAN
framework. In the case of Deepfakes, G can be thought as
a team of counterfeiters trying to produce fake currency,
while D stands to the police, trying to detect the malicious
activity. G and D can be implemented as any kind of

FIGURE 2. Schematic description of a GAN learning framework.

generative model, in particular when deep neural networks
are employed results become extremely accurate. Through
recent years, many GAN architectures were proposed for
different applications e.g., image to image translation [6],
image super resolution [7], image completion [8], and text-
to-image generation [9].

A. DEEPFAKE GENERATION TECHNIQUES FOR FACES
Advances in GAN architectures lead to ifferent works dealing
with human faces. STARGAN, created by Choi et al. [10],
is a method capable of performing image-to-image transla-
tions on multiple domains using a single model (e.g, change
hair color, facial expression). Many methods work in the
latent space representation in order to set constraints to the
attributes to be modified, an example is ATTGAN, created
by He et al. [11]. Cho et al. [12] proposed the ‘‘group-wise
deep whitening-and coloring method’’ (GDWCT) for a better
styling capacity, obtaining a great improvement in the image
translation and style transfer task in terms of computational
efficiency and quality of generated images. The stage changes
when surprising results of Deepfake images were obtained by
Style Generative Adversarial Network (STYLEGAN) [13].
STYLEGAN was used to create the so-called ‘‘this person
does not exist’’ website.6 Moreover, a few imperfect artifact
created by STYLEGAN were fixed by Karras et al. [14]
with improvements to the generator (including re-designed
normalization, multi-resolution, and regularization methods),
creating the even more realistic images with the so called
STYLEGAN2.

B. DEEPFAKE DETECTION METHODS
A starting point to detect Deepfakes is indeed the analysis
in the Fourier domain which is a well known technique
to find anomalies for image forensics experts [15]. Indeed,
some Deepfake images, in the Fourier domain, after being
processed by a Discrete Fast Fourier Transform, show
abnormal frequencies distributions. This preliminary insight
was detected by Guarnera et al. [4] in which the authors tried
to roughly detect Deepfakes by means of well-known forgery
detection tools ( [2], [15], [16]) with only few insights for
future works as results. The analysis in the Fourier domain
was employed by Zhang et al. [17] in a rather naive strategy
which delivered in any case good performances. Later,
an interesting work known as FakeSpotter was proposed by
Wang et al. [18]. They described a new method based on
monitoring neuron behaviors of a dedicated CNN to detect
faces generated by Deepfake technologies. The comparison
with Zhang et al. [17] demonstrated an average detection
accuracy of more than 90%

Wang et al. [19] trained a ResNet-50 to discriminate
real images from those generated by ProGAN [20] and
demonstrated that the trained model is able to generalize for
the detection of Deepfakes generated by other architectures
than ProGAN. They also demonstrate to achieve good

6https://thispersondoesnotexist.com/
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robustness to JPEG compression, spatial blurring and scaling
transformations.

Jain et al. [21] proposed a work known as DAD-HCNN,
a new framework based on a hierarchical classification
pipeline composed of three levels to distinguish respectively
real Vs altered images (first level), retouched Vs GAN’s
generated images (second level) and finally, the specific
GAN architecture (third level). From the conducted tests,
the framework can detect retouching and GANs generated
images with high accuracy.

A reference dataset was introduced by Rossler et al. [22] as
a benchmark for fake detection. It is called FaceForensics++,
and is based mainly on four manipulation methods: two com-
puter graphics-based methods (Face2Face [23], FaceSwap7)
and 2 learning-based approaches (DeepFakes,8 NeuralTex-
tures [24]).

By roughly considering literature in the field, it seems
like that Deepfake detection is an easy task, already
solved. However, analytical techniques based on frequency
domain still lack of accuracy and CNN techniques while
achieving good results tend to discriminate semantics more
than GAN-specific traces. Moreover CNN techniques are
computationally intensive and difficult to be understood
or controlled [25]. To overcome this, Guarnera et al. [5]
proposed a new analytical solution to extract an unique
fingerprint from images that was demonstrated to be specific
to the GAN that generated the image itself. In this paper,
the technique will be presented in the mathematical details
with furtherly discussion on robustness and generalization,
by means of the many carried out experiments: the widest
test cases, as today, in the Deepfake detection task will
be presented. For this purpose we employed ten of the
most famous and effective Deepfake generation architec-
tures: CYCLEGAN [6], STARGAN [10], ATTGAN [11],
GDWCT [12], STYLEGAN [13], STYLEGAN2 [14], PRO-
GAN [20], FACEFORENSICS++ [22], IMLE [26] and
SPADE [27]. Figure 3 resumes the differences of these
techniques in terms of image size, datasets used as input,
goal and examples of generated images. For each architecture
2000 images were generated.

III. EXTRACTING CONVOLUTIONAL TRACES
Generative Adversarial Networks (GAN) are used to generate
Deepfakes. Once trained, the fundamental element involved
in the image creation is the generator G which is composed
of Transpose Convolution layers [28]. They apply kernels to
the input image, similarly to kernels in Convolutional Layer
but they act inversely in order to obtain an output larger
but proportional to the input dimensions. Thus, the image
creation pipeline is different from the pipeline commonly
used in a camera device in which each step introduces typical
noise that is then used for naive image forgery detection [15].
However, the image creation process related to the Transpose

7https://github.com/MarekKowalski/FaceSwap/
8https://github.com/deepfakes/faceswap/

Convolution layers of GAN should be consistent and identi-
fiable in local correlations of pixels in the spatial RGB space.
To find these traces, an Expectation-Maximization (EM)
algorithm [29] was employed in order to define a conceptual
mathematical model able to capture the pixel correlation
in the images (e.g. spatially) and discriminate between two
distributions: the expected one (natural) and others (possibly
Deepfake). The result of EM is a feature vector representing
the structure of the Transpose Convolution Layers employed
during the generation of the image, encoding in some sense
if such image is a Deepfake or not, thus it can be called
Convolutional Trace (CT).
The CT extraction techniques works as follows. The initial

goal is to extract a description, from input image I , able
to numerically represent the local correlations between each
pixel in a neighbourhood. This can be done by means of
convolution with a kernel k of N × N size:

I [x, y] =
α∑

s,t=−α

ks,t ∗ I [x + s, y+ t] (1)

In Equation 1, the value of the pixel I [x, y] is computed
considering a neighborhood of size N × N of the input data.
It is clear that the new estimated information I [x, y] mainly
depends on the kernel used in the convolution operation,
which establishes a mathematical relationship between the
pixels. For this reason, our goal is to define a vector k of size
N × N able to capture this hidden and implicit relationship
which characterizes the forensic trace we want to exploit.

Let’s assume that the element I [x, y] belongs to one of the
following models:
• M1: when the element I [x, y] satisfies Equation 1;
• M2: otherwise.
The EM algorithm is employed with its two different steps:
1) Expectation step: computes the (density of) probabil-

ity that each element belongs to model (M1 or M2);
2) Maximization step: estimates the (weighted) parame-

ters based on the probabilities of belonging to instances
of (M1 or M2).

Let’s suppose that M1 and M2 have different probability
distributions with M1 Gaussian distribution with zero mean
and unknown variance and M2 uniform. In the Expectation
step, the Bayes rule that I [x, y] belongs to the model M1 is
computed as follows:
Pr{I [x, y] ∈ M1 | I [x, y]}

=
Pr{I [x, y] | I [x, y] ∈ M1} ∗ Pr{I [x, y] ∈ M1}

2∑
i=1

Pr{I [x, y] | I [x, y] ∈ Mi} ∗ Pr{I [x, y] ∈ Mi}

(2)

where the probability distribution ofM1 which represents the
probability of observing a sample I [x, y], knowing that it was
generated by the modelM1 is:

Pr{I [x, y] | I [x, y] ∈ M1} =
1

σ
√
2π

e−
(R[x,y])2

2σ2 (3)

where

R[x, y] =

∣∣∣∣I [x, y]− α∑
s,t=−α

ks,t I [x + s, y+ t]

∣∣∣∣. (4)
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FIGURE 3. Details for each image set used in this paper. On the right of each deep architecture’s name is reported a brief description. Input represents
the dataset used for both training and test phase of the respective architecture. Image size describes the image size of the generated Deepfakes dataset.
As regards FACEFORENSICS++ is concerned that for each video frame, the patch referring to the face, is detected and extracted automatically. This patch
could have different sizes. #Images Generated describes the total number of images taken into account for the considered architecture. Finally, image
examples are reported.

The variance value σ 2, which is still unknown, is then
estimated in the Maximization step. Once defined if I [x, y]

belongs to model M1 (or M2), the values of the vector
Ek are estimated using Least Squares method, minimizing
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FIGURE 4. Overall finalized Deepfake detection pipeline. The dataset block represents an overview of input data used in this work (Real and Deepfake
images). For each image we apply EM algorithm on every channel (R,G,B) obtaining KR , kB, KG feature vectors; the concatenation of them gives the final
representation (K ) of the input image: the so called Convolutional Trace (CT). Finally, the CT is employed to discriminate real from Deepfake images by
means of Random Forest.

the following:

E(Ek)=
∑
x,y

w[x, y]
(
I [x, y]−

α∑
s,t=−α

ks,t I [x+s, y+t]
)2

(5)

where w ≡ Pr{I [x, y] ∈ M1 | I [x, y]} (2). This error
function (5) is minimized by computing the gradient of vector
Ek . The update of ki,j is carried out by computing the partial
derivative of (5) as follows:

∂E
∂ki,j
= 0 (6)

Hence, the following linear equations system is obtained:
α∑

s,t=−α

ks,t

(∑
x,y

w[x, y]I [x + i, y+ j]I [x + s, y+ t]
)

=

∑
x,y

w[x, y]I [x + i, y+ j]I [x, y] (7)

The two steps of the EM algorithm are iteratively repeated.
The algorithm is applied to each channel of the input image
(RGB color space).

The obtained feature vector Ek is the desired CT and
has dimensions dependent on parameter α. Note that the
element k0,0 will always be set equal to 0 (k0,0 = 0). Thus,
for example, if a kernel k with 3 × 3 size is employed,
the resulting Ek will be a vector of 24 elements (since the
values k0,0 are excluded). This is obtained by concatenating
the features extracted from each of the three RGB channels.

The computational complexity of the EM algorithm can
be estimated to be linear in d (the number of characteristics
of the input data taken into consideration), n (the number of
objects) and t (the number of iterations) making it easily to
be computed in seconds on a common laptop.

Two aspects are of extreme importance: (i) the proposed
CT extraction technique does not need training, it is applied
on images and extracts a discriminative feature vector; (ii)
the CT extraction is not a deep learning architecture, thus it
is not able to encode high level information such semantics.
This will be demonstrated in the following Sections with
experimental tests.

IV. CLASSIFICATION OF DEEPFAKES
In this Section, the Convolutional Trace (CT) extracted by
means of the technique presented in Section III, will be
demonstrated to have great discriminative power for the
Deepfake detection task. Moreover, the independence on
image semantics will be demonstrated in this Section by
testing against Deepfakes not representing merely faces.

Experiments were carried out considering images cre-
ated by STARGAN [10], ATTGAN [11], GDWCT [12],
STYLEGAN [13], STYLEGAN2 [14] and FACEFORE-
NSICS++ [22] for Deepfake of faces in conjunction
with other four Deepfake architectures not dealing with
faces: CYCLEGAN [6], PROGAN [20], IMLE [26] and
SPADE [27]. Figure 3 shows a brief presentation of
the employed images, the techniques, targets, semantics,
etc. by reporting also details about training and testing
purposes. All images employed in this study are available at
https://iplab.dmi.unict.it/mfs/FightingDeepfake

STYLEGAN images9 and STYLEGAN2 images10 were
downloaded from the official websites, while, for images of
the other architectures, the pre-trainedmodels were employed
to generate them. The CT was extracted from all the images

9https://drive.google.com/drive/folders/STYLEGAN
10https://drive.google.com/drive/folders/STYLEGAN2
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TABLE 1. Overall accuracy between CELEBA vs. each of the considered GAN. Results are presented w.r.t. all the different kernel sizes (3× 3, 5× 5, 7× 7)
and with different classifiers: KNN, with k ∈ {3, 5, 7, 9, 11, 13}; Linear SVM, Linear Discriminant Analysis (LDA).

with kernels of increasing sizes (3, 5 and 7). The CT
obtained was employed as input feature vector for different
naive classifiers (K-NN, SVM, LDA) with different tasks:
(i) discriminating an authentic image from one generated by
a specific GAN and (ii) discriminating authentic images from
Deepfakes (binary classification - Real Vs Deepfake images
generated by all the 10 techniques). We achieved the best
classification solution by employing Random Forest as a final
binary classifier, thus finalizing the pipeline (Figure 4).
Let’s first analyse the discriminative power of the CT in

order to distinguish authentic images from each of the consid-
ered GAN. Figure 5 shows a visual representation by means
of t-SNE [30]: it is possible to notice how Deepfakes can
be ‘‘linearly’’ separable from authentic samples. Moreover,
in most cases the separation is utterly clear. Figure 5 visually
demonstrates the discriminative power of the extracted CT
which, if used as feature vector in a classification task, obtains
excellent results as expected. All the classification results are
reported in Table 1. In particular, it is possible to note that:
• CELEBA Vs ATTGAN the maximum classification
accuracy of 92.99%, was obtained with KNN (with
K = 5, 7), and kernel size of 3× 3.

• CELEBA Vs CYCLEGAN the maximum classifica-
tion accuracy of 93.59%, was obtained with KNN (with
K = 3), and kernel size of 3× 3.

• CELEBA Vs FACEFORENSICS++ the maximum
classification accuracy of 97.31%, was obtained with
KNN (with K = 3), and kernel size of 3× 3.

• CELEBA Vs GDWCT: the maximum classification
accuracy of 91.58%, was obtained with KNN (with
K = 9) and kernel size of 3× 3.

• CELEBA Vs IMLE: the maximum classification
accuracy of 97.76%, was obtained with KNN (with
K = 3) and kernel size of 3× 3.

• CELEBA Vs PROGAN: the maximum classification
accuracy of 95.85%, was obtained with KNN (with
K = 5) and kernel size of 3× 3.

• CELEBA Vs SPADE: the maximum classification
accuracy of 96.72%, was obtained with KNN (with
K = 3) and kernel size of 3× 3.

• CELEBA Vs STARGAN: the maximum classification
accuracy of 90.55%, was obtained with linear SVM, and
kernel size of 7× 7.

• CELEBA Vs STYLEGAN: the maximum classifica-
tion accuracy of 99.48%, was obtained with KNN -
K = 3, and kernel size of 5× 5.

• CELEBA Vs STYLEGAN2: the maximum classifica-
tion accuracy of 99.64%, was obtained with linear SVM,
and kernel size of 5× 5.

This leads to an empirical hypothesis: the kernel size used
by output layers in Deepfake generation techniques is related
to the kernel size parameter employed by the CT extraction
approach. However, it has to be noted that, on average the
kernel size of 3 × 3 achieves best results among all the
classification tests.

Another interesting insight is that the extracted CT is
able to discriminate between images from STYLEGAN and
STYLEGAN2: a binary test carried out to discriminate
between images from the two ‘‘similar’’ techniques achieved
a maximum accuracy of 99.31% (Table 2). As stated
by the authors of the STYLEGAN2 architecture, they
have only updated parts of the generator G, in order to
remove imperfections of the original STYLEGAN. This
further confirms the former hypothesis, since even a slight
modification of G, leaves different traces in the images
generated and the CT is able to extract such fingerprint.

We also employed binary classification between real
images and Deepfakes coming from all the 10 architectures

VOLUME 8, 2020 165091
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FIGURE 5. Two-dimensional t-SNE representations (CELEBA: red; DeepNetwork: blue) of all kernel sizes for each
classification task: (a) CELEBA – ATTGAN; (b) CELEBA – STARGAN; (c) CELEBA – GDWCT; (d) CELEBA – STYLEGAN;
(e) CELEBA – STYLEGAN2; (f) CELEBA - SPADE; (g) CELEBA - PROGAN; (h) CELEBA - IMLE; (i) CELEBA - CYCLEGAN;
(j) CELEBA - FACEFORENSICS++.

FIGURE 6. Two-dimensional t-SNE representation (CELEBA: red; All 10 DeepNetworks: blue) of a binary
classification problem (with different kernel size): CELEBA Vs All 10 DeepNetworks.

TABLE 2. Accuracy values for binary test between STYLEGAN and
STYLEGAN2 with different classifiers and kernel sizes (3× 3, 5× 5, 7× 7).

taken into account. At first, another t-SNE representation
was built in order to understand sample separability and

distribution in two-dimensional plane. Figure 6 shows that,
in this case, samples cannot be linearly separated thus we
carried out tests looking for non-linear classifiers. Indeed,
final results demonstrated and confirmed such insights. Best
accuracy score was obtained by employing Random Forest
properly chosen as the final step of the Deepfake detection
pipeline (Figure 4) with a solid 98% of accuracy (Table 3)
obtained in our tests.

In this Section, experimental results and t-SNE visual-
izations demonstrated the discriminative power of the CT
extracted from Deepfakes. Moreover, the CT achieves good
results in detecting Deepfakes not representing faces, hence
demonstrating CT being independent to semantics. To further
evaluate the proposed pipeline we employed an additional
classification test: detecting Deepfakes created by the famous
mobile app FACEAPP.

165092 VOLUME 8, 2020
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FIGURE 7. (a) Example of images generated by FACEAPP with correct classification (deepfake) (b) Example of
images generated by FACEAPP with incorrect classification (real).

TABLE 3. Accuracy values obtained in the binary classification task
between Real images vs. images generated by 10 Deepfake architectures.
Results are reported with different kernel sizes (3× 3, 5× 5, 7× 7) and
classifiers trained on 70% of the dataset and tested on the remaining
part. Results are the average accuracy value obtained on a 5-fold cross
validation test.

Recently, the mobile application called FACEAPP is
having a lot of success due to the ability to change features
of the input image of a face such as gender, age, hair
style, etc. The images thus produced are utterly realistic.
Hence, a test for automatic detection of Deepfakes produced
by FACEAPP has been carried out employing the CT
extraction method and the Random Forest classifier already
trained for the test previously described. No further training
was done on FACEAPP images. For experiments a dataset
of Deepfake images was created starting from CELEBA
images by using the Android version of FACEAPP (we
employed the paid version that does not introducewatermarks
on images): 471 images were generated with FACEAPP
by applying gender swap on original images. CTs were
extracted with kernel size 3 × 3 and employed as input
for the pre-trained Random Forest classifier. Among the

471 images, 437 were correctly classified as Deepfakes while
34 images were classified as real faces. Figure 7a shows two
examples of correct classifications while Figure 7b shows two
examples of misclassification. It has to be noted that incorrect
classifications are probably due to low light conditions or
too few changes in the original images thus making difficult
to extract a discriminative CT. According to the reported
results we proved the effectiveness of the proposed Deepfake
detection technique in a real-case scenario.

V. ROBUSTNESS EXPERIMENTS
Finally, we introduce further tests about overall robustness.
A series of attacks were made at different Deepfake images
of faces generated by ATTGAN, GDWCT, STARGAN,
STYLEGAN and STYLEGAN2 and real images (CELEBA).
In particular, the following attacks were carried out:

1) Adding one rectangle with different sizes, positions
and colors at random: in this way details are
removed. Since the CT extracts information from
pixel correlations, the addition of this rectangle could
lead to errors. This could happen specifically for
STARGAN or ATTGAN considering that they change
only few elements in a face (e.g. hair color) and
if these elements are removed by the rectangle low
classification accuracy values are expected;

2) Adding Gaussian Blur with different kernel sizes (3×3,
9 × 9, 15 × 15): the noise added to the images could
destroy the pixels correlation created by Deepfake
architectures and remove the CT;

3) Rotating images by 45, 90, 180 degrees: rotations could
lead to interpolation transformation with modification
on CTs similar to the Gaussian blur attack;

4) Scaling images (+50%, −50%): due to the interpola-
tion operations carried out, information will be added
or removed. CT extracted from imageswith high details

VOLUME 8, 2020 165093



L. Guarnera et al.: Fighting Deepfake by Exposing the Convolutional Traces on Images

FIGURE 8. Examples of real (CELEBA) and deepfake images of faces (ATTGAN, GDWCT, STARGAN, STYLEGAN, STYLEGAN2) with six different
kind of attacks: Random Square, Gaussian Blur, Rotation, Scaling and JPEG Compression.
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TABLE 4. Robustness to attacks: table reports accuracy values obtained (percentage) for the binary classification task (real vs. Deepfakes) employing the
final classification solution for each different kernel size (3× 3, 5× 5. 7× 7). The final classifier was trained on the augmented dataset (70% of data for
the training set) and 5-fold cross-validated. The first row represents the accuracy obtained by the trained robust classifier without any attack.

(such as those of STYLEGAN and STYLEGAN2)
would be more robust to this type of operation;

5) JPEG compression with quality factor equal to 50:
in general, a compression operation (such as JPEG)
removes high frequency information which could be
of major importance for the CT discriminative power.
Moreover, a JPEG compression with Quality Factor
50 is similar to those applied by social networks such
as Facebook or Instant Messengers likeWhatsapp [31],
making this test another real-case scenario.

Once the above mentioned filters are applied individually
to images, the CT extraction method was applied and
Real Vs Deepfake classifications carried out against each
GAN (e.g. CELEBARandomSquare Vs GDWCTRandomSquare,
CELEBAGaussianBlur Vs STARGANGaussianBlur, etc.).
The classification results are reported in Table 4.11

Figure 8 shows an example of images obtained after
operations listed before. It is possible to observe that the
dataset plays a fundamental role: the output of ATTGAN,
STARGAN and GDWCT and the output of STYLEGAN
and STYLEGAN2 after the Gaussian Blur operation: images
from ATTGAN, STARGAN and GDWC show a greater visi-
ble blur (and therefore a worse visual quality with greater lack
of details) respect to STYLEGAN and STYLEGAN2 images.
This is mainly determined by the capability of STYLEGAN
and STYLEGAN2 to create images of a bigger size.

Results reported in Table 4 show that the CT extracted is
robust to almost all considered attacks.

11We report in this table the maximum accuracy classification value
obtained through k-NN (with k = {3, 5, 7, 9, 11, 13}), LDA (Linear
Discriminant Analysis), SVM (Support Vector Machine) with linear kernel
and Random Forest

In particular, as stated before, STYLEGAN and STYLE-
GAN2 images obtained the best classification accuracy
values (Real Vs Deepfake) due to their bigger original size.
GDWCT, which creates the smallest images (Figure 3),
is the least robust to attacks and maintains a proper accuracy
result comparable with results without attacks only for JPEG
compression.

However, another interesting insight comes from the
rotation attacks: a rotation of 90 degrees anticlockwise,
which is a rotation that does not introduce interpolation,
unexpectedly produces better classification results for each
of the consideredDeepfake architecture. This could be related
to a specific major direction of the CT and should be better
investigated in future works.

VI. COMPARISONS WITH DEEPFAKE DETECTION
METHODS
Section II presented a detailed discussion of the state-
of-the-art in the field of Deepfakes and specifically in
Section II-B the detection methods available as today were
discussed.

While analytical techniques based on frequency domain
still lack of accuracy, CNN based techniques seems to
achieve good results but tend to be context-dependent,
prone to overfitting and provably depending to high-level
semantics extracted from images.Moreover, CNN techniques
are computationally intensive and difficult to be explained
or controlled. In [25] the authors discussed this limit about
CNN. We carried out tests with a deep neural network
VGG-1612 - on spatial and frequency domains - to solve
the binary classification task (Real Vs All 10 Deepfakes)

12https://github.com/1297rohit/VGG16-In-Keras
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FIGURE 9. Comparison of the proposed approach (Our) vs. FakeSpotter [18] and AutoGAN [17].

FIGURE 10. Comparison of the proposed approach (Our) vs. Wang et al. [19].

on the datasets described above, obtaining the best result
equal to only 53% of accuracy (similar to the random
classifier). Better results are achievable by only a complex
deep neural network architecture, is what done by recent
state-of-the-art methods. The more complex the architecture,
the more computing power is required along with the need to
understand what high level features the network has used to
distinguish Real VS Deepfakes images.

In this Section a detailed discussion is carried out,
comparing results obtained by the proposed approach with
the best literature methods: Wang et al. [18] (the authors of
FakeSpotter), Zhang et al. [17] (the authors of AutoGAN) and
Wang et al. [19] were taken into account for comparisons in
the Real Vs. Deepfake binary classification task.

For FakeSpotter and AutoGAN, Deepfakes from STYLE-
GAN, STYLEGAN2, STARGAN, PROGAN and FACEFO-
RENSICS++ architectures were taken into account. Results
of this comparison are reported in Figure 9. It is possible
to note that, not only we obtained accuracy values of over
90% in all cases, but we overcame FakeSpotter on the
average accuracy evaluation. Only in the case of PROGAN
and FACEFORENSICS++ we obtained a slightly lower
value.

In Wang et al. [19], the following seven Deepfake archi-
tectures were taken into account for a fair comparison: PRO-
GAN, STYLEGAN, CYCLEGAN, STARGAN, SPADE,
IMLE, FACEFORENSICS++. Wang et al. reported results
in the binary classification task as Average Precision between
different datasets: images with no data augmentation; images
with Gaussian blur added; images JPEG compressed; images

both blurred and JPEG compressed. Figure 10 shows the
comparison results obtained by Wang et al. and the proposed
approach, reporting the Average Precision (AP) and mean
Average Precision (mPA) values for each different Deepfake
architecture. It is possible to note that the proposed method
obtains better results specifically on Deepfakes of SPADE,
IMLE and CYCLEGAN: architectures that do not produce
images of faces, furtherly demonstrating the robustness of the
extracted CT and classification pipeline to semantics of the
image.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, a finalization of a former work on analysis
of Deepfake images was presented. An algorithm based
on Expectation-Maximization was employed to extract the
Convolutional Traces (CT): a sort of unique fingerprint
useable to identify not only if an image is a Deepfake but also
the GAN architecture that generated it. The CT extracted is a
fingerprint demonstrated to have high discriminative power,
robustness to attacks and independence to high-level concepts
of images (semantics). Obtained results demonstrate also to
overcome the state-of-the-art with a technique simple and fast
to be computed. Indeed the CT is related to the generation
process of images and further better results can be obtained
by rotating input images in order to find the most important
direction. This particular hint will be investigated in future
works in conjunction with analysis on famous forensics
datasets of real images (like DRESDEN, UCID or VISION)
which do not focus their contents on human faces.

165096 VOLUME 8, 2020



L. Guarnera et al.: Fighting Deepfake by Exposing the Convolutional Traces on Images

REFERENCES
[1] L. Verdoliva, ‘‘Media forensics and DeepFakes: An overview,’’

IEEE J. Sel. Topics Signal Process., vol. 14, no. 5, pp. 910–932,
Aug. 2020.

[2] A. Piva, ‘‘An overview on image forensics,’’ Int. Scholarly Res. Notices,
vol. 2013, 2013.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[4] L. Guarnera, O. Giudice, C. Nastasi, and S. Battiato, ‘‘Preliminary foren-
sics analysis of DeepFake images,’’ 2020, arXiv:2004.12626. [Online].
Available: http://arxiv.org/abs/2004.12626

[5] L. Guarnera, O. Giudice, and S. Battiato, ‘‘DeepFake detection by
analyzing convolutional traces,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 666–667.

[6] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired Image-to-Image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[7] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic
single image super-resolution using a generative adversarial network,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4681–4690.

[8] S. Iizuka, E. Simo-Serra, andH. Ishikawa, ‘‘Globally and locally consistent
image completion,’’ ACM Trans. Graph. (ToG), vol. 36, no. 4, pp. 1–14,
2017.

[9] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
‘‘Generative adversarial text to image synthesis,’’ 2016, arXiv:1605.05396.
[Online]. Available: http://arxiv.org/abs/1605.05396

[10] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, ‘‘StarGAN:
Unified generative adversarial networks for multi-domain Image-to-Image
translation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8789–8797.

[11] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, ‘‘AttGAN: Facial attribute
editing by only changing what you want,’’ IEEE Trans. Image Process.,
vol. 28, no. 11, pp. 5464–5478, Nov. 2019.

[12] W. Cho, S. Choi, D. K. Park, I. Shin, and J. Choo, ‘‘Image-to-image
translation via group-wise deep whitening-and-coloring transformation,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10639–10647.

[13] T. Karras, S. Laine, and T. Aila, ‘‘A style-based generator architecture for
generative adversarial networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4401–4410.

[14] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
‘‘Analyzing and improving the image quality of StyleGAN,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 8110–8119.

[15] S. Battiato, O. Giudice, and A. Paratore, ‘‘Multimedia forensics: Discover-
ing the history of multimedia contents,’’ in Proc. 17th Int. Conf. Comput.
Syst. Technol. (CompSysTech), 2016, pp. 5–16.

[16] O. Giudice, F. Guarnera, A. Paratore, and S. Battiato, ‘‘1-D DCT domain
analysis for JPEG double compression detection,’’ in Proc. Int. Conf.
Image Anal. Process. Springer, 2019, pp. 716–726.

[17] X. Zhang, S. Karaman, and S.-F. Chang, ‘‘Detecting and simulating
artifacts in GAN fake images,’’ in Proc. IEEE Int. Workshop Inf. Forensics
Secur. (WIFS), Dec. 2019, pp. 1–6.

[18] R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang, and
Y. Liu, ‘‘FakeSpotter: A simple yet robust baseline for spotting AI-
synthesized fake faces,’’ 2019, arXiv:1909.06122. [Online]. Available:
http://arxiv.org/abs/1909.06122

[19] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, ‘‘CNN-
generated images are surprisingly easy to spot. . . for now,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1–10.

[20] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive growing
of GANs for improved quality, stability, and variation,’’ 2017,
arXiv:1710.10196. [Online]. Available: http://arxiv.org/abs/1710.
10196

[21] A. Jain, P. Majumdar, R. Singh, and M. Vatsa, ‘‘Detecting GANs and
retouching based digital alterations via DAD-HCNN,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 672–673.

[22] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, andM. Niessner,
‘‘FaceForensics++: Learning to detect manipulated facial images,’’ in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1–11.

[23] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Niessner,
‘‘Face2Face: Real-time face capture and reenactment of RGB videos,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2387–2395.

[24] J. Thies, M. Zollhöfer, andM. Nießner, ‘‘Deferred neural rendering: Image
synthesis using neural textures,’’ ACM Trans. Graph., vol. 38, no. 4,
pp. 1–12, Jul. 2019.

[25] N. Hulzebosch, S. Ibrahimi, and M. Worring, ‘‘Detecting CNN-generated
facial images in real-world scenarios,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 642–643.

[26] K. Li, T. Zhang, and J. Malik, ‘‘Diverse image synthesis from semantic
layouts via conditional IMLE,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 4220–4229.

[27] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, ‘‘Semantic image synthesis
with spatially-adaptive normalization,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2337–2346.

[28] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’ 2015,
arXiv:1511.06434. [Online]. Available: http://arxiv.org/abs/1511.06434

[29] T. K. Moon, ‘‘The expectation-maximization algorithm,’’ IEEE Signal
Process. Mag., vol. 13, no. 6, pp. 47–60, Nov. 1996.

[30] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[31] O. Giudice, A. Paratore, M. Moltisanti, and S. Battiato, ‘‘A classification
engine for image ballistics of social data,’’ in Proc. Int. Conf. Image Anal.
Process. Springer, 2017, pp. 625–636.

LUCA GUARNERA (Student Member, IEEE)
received the master’s degree (cum laude) in
computer science from the University of Catania,
in 2017. He is currently an Executive Ph.D.
Student in computer science with the University
of Catania, where he works for the spin off of the
University of Catania ‘‘iCTLab s.r.l.’’, a company
operating in the field of digital forensics, privacy
and security consulting and software development.
He joined IPLab in 2015. In 2017 and 2019,

he participated at the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC), an international robotics competition. He participated in four
editions (2016-2017-2018-2019) of the International Computer Vision
Summer School (ICVSS), an edition (2018) of Medical Imaging Summer
School (MISS), and an edition (2018) of Summer School on Signal
Processing (S3P). His research interests are computer vision, machine
learning, multimedia forensics and its related fields with a particular focused
on Deepfake phenomenon.

VOLUME 8, 2020 165097



L. Guarnera et al.: Fighting Deepfake by Exposing the Convolutional Traces on Images

OLIVER GIUDICE received the degree in com-
puter engineering (summa cum laude) from the
University of Catania, in 2011, and the Ph.D.
degree in mathematics and computer science,
in 2017, defending a thesis entitled ‘‘Digital
Forensics Ballistics: Reconstructing the source of
an evidence exploiting multimedia data’’. From
2011 to 2014, he was involved in various research
projects at the University of Catania in collabora-
tion with the Civil and Environmental Engineering

Department and the National Sanitary System. In 2014, he started his job as
a Researcher at the IT Department of Banca d’Italia. For various years since
2011, he collaborated with the IPLabworking onmultimedia forensics topics
and being involved in various forensics cases as a Digital Forensics Expert.
Since 2016, he is co-founder of ‘‘iCTLab s.r.l.’’, spin-off of University of
Catania, company that works in the field of digital forensics, privacy and
security consulting and software development. His research interests include
machine learning, computer vision, image coding, urban security, crypto-
currencies, and multimedia forensics.

SEBASTIANO BATTIATO (Senior Member,
IEEE) received the degree (summa cum laude)
in computer science from the University of
Catania, in 1995, and the Ph.D. degree in
computer science and applied mathematics from
the University of Naples, in 1999. From 1999 to
2003, he was the Leader of the ‘‘Imaging’’
Team, STMicroelectronics, Catania. He joined
the Department of Mathematics and Computer
Science, University of Catania, as an Assistant

Professor, an Associate Professor, and a Full Professor, in 2004, 2011,
and 2016, respectively. He has been the Chairman of the Undergraduate
Program in Computer Science, from 2012 to 2017, and a Deputy Rector for
education (Postgraduates and Ph.D.) from 2013 to 2016. He is currently a
Full Professor of computer science with the University of Catania, where
he is also the Scientific Coordinator of the Ph.D. Program in Computer
Science and a Deputy Rector for Strategic Planning and Information
Systems. He is involved in the research and directorship with the Image
Processing Laboratory (IPLab). He coordinates several large scale projects
funded by national and international funding bodies and private companies.
He has edited six books and coauthored about 250 articles in international
journals, conference proceedings, and book chapters. He is a co-inventor
of about 25 international patents. His current research interests include
computer vision, imaging technology, and multimedia forensics. He has
been a regular member of numerous international conference committees.
He was a recipient of the 2017 PAMI Mark Everingham Prize for the
series of annual ICVSS schools and the 2011 Best Associate Editor
Award of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY. He has been the Chair of several international events, including
INTELLISYS 2020, SIGMAP 2019-2020 ICIAP 2017, VINEPA 2016,
ACIVS 2015, VAAM2014-2015-2016, VISAPP2012-2015, IWCV2012,
ECCV2012, ICIAP 2011, ACM MiFor 2010-2011, and SPIE EI Digital
Photography 2011-2012-2013. He has been a Guest Editor of several special
issues published in international journals. He is an Associate Editor of SPIE
Journal of Electronic Imaging and IET Image Processing journal. He is
the Director and Co-Founder of the International Computer Vision Summer
School (ICVSS).

165098 VOLUME 8, 2020


