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ABSTRACT The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation
Satellite (ICESat) was able to capture the full waveform of backscattered laser pulse. However, the accuracy
of the surface information extracted from the waveform was vulnerable to background noise. In this paper,
a piecewise adaptive lq-norm trend filtering method is proposed for the GLAS full waveform denoising on
the basis of trend filtering. To minimize the loss of useful signal while removing the noise, the proposed
method adaptively assigns different norms to the smooth constraints according to the local signal energy.
The filtered results can then be obtained by iteratively minimizing the hybrid-norm loss function. The
proposed method is tested on both the simulated waveforms and real GLAS waveform data. In the simulated
experiments, the quantitative evaluation is conducted with the filtered waveforms, as well as the results
after waveform decomposition. For comparison, the most commonly used waveform filtering methods, i.e.
Gaussian filtering, wavelet transform, Empirical model decomposition and l1 trend filtering, are involved
in the experiments. The results show that the proposed method outperforms the mainstream methods on
waveform filtering, in terms of removing noise and preserving the shape and energy amplitude of the GLAS
waveforms.

INDEX TERMS ICESat/GLAS, full waveform filtering, adaptive norm, signal processing.

I. INTRODUCTION
Ice, Cloud and land Elevation Satellite (ICESat), launched
in 2003 by National Aeronautics and Space Administra-
tion (NASA)was designed tomeasure ice sheet mass balance,
cloud and aerosol heights, as well as land topography and
vegetation characteristics over the Earth’s surface [1]. The
Geoscience Laser Altimeter System (GLAS) onboard ICESat
was the first space-borne laser-ranging instrument for global
surface monitoring and has provided high-quality data relat-
ing to topography and cloud and atmospheric properties [2].
During the seven years on duty, ICESat GLAS has acquired
LiDAR waveforms recording the vertical information of tar-
gets within footprints. The relative accuracy of its elevation
measurement is confirmed to be about 15 cm over most of
the ice sheet [3], [4]. Over land, the accuracy is better than
one meter in low slope regions and up to 10 m in large
slope regions [4]. The ICESat GLAS data has been used in
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a wide range of disciplines, including ice-elevation changes,
sea-ice freeboard, forest canopy height, cloud heights and
land-terrain changes [5]–[9] and still plays a part in the
related researches in recent years [7], [10]–[12]. However,
the shape of backscattered waveforms is vulnerable to back-
ground noise which is mainly composed of dark current
noise and thermal noise [13]. This can lead to uncertainty
in extracting the information of reflecting surface. Waveform
denoising using a filtering method is an effective way to min-
imize the influence of the noise and improve the accuracy of
measurement [14], [15].

At present, many filtering methods have been applied to
GLAS waveform for noise removal, including frequency
domain methods, spatial domain methods, and time-
frequency based methods [13], [14], [16]–[19]. Among
them, frequency domain methods are simple and easy
to implement, which are the most commonly used cate-
gory of methods. Iqbal et al. [20] employed the Fourier
transform to filter GLAS waveform in the frequency
domain. Jutzi and Stilla [14] used Wiener filtering to denoise
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simulated waveform. Qiu et al. [18] performed the GLAS
data filtering based on wavelet transform, and compared the
performance of various wavelet basis on GLAS waveform.
They came to the conclusion that the Symlets wavelet basis
function is more suitable for GLAS data processing than the
Daubechies basis. The frequency domain methods are effec-
tive in suppressing the high-frequency noise given that the
frequency of the signal part in the waveform is typically lower
than that of the noise. However, the performance of the fre-
quency domain methods is not always satisfactory when the
details of signal and noise are difficult to be completely distin-
guished in the frequency domain. Moreover, Wiener filtering
can cause artificial oscillations around sharp edges [13].

There are also several attempts in developing spatial
domain methods for waveform denoising, such as the
Gaussian filtering [13], [21], Savitzky-Golay filtering [19],
moving average filtering [22], exponential smoothing [23],
Hodrick-Prescott (H-P) filtering [24] and l1 trend filter-
ing [25]. Compared with the frequency domain methods,
the spatial domain methods can make more intuitive use of
the characteristics of signal and noise. However, the main
problem of current solutions is that it will smear the wave-
form while removing noise, especially in the signal peaks,
therefore reducing the amplitude of the waveform. In addi-
tion, considering the non-linear and non-stationary property
of Lidar signal, time-frequency based methods are suitable
for its processing, such as Empirical Model Decomposition
(EMD) and Synchrosqueezing trans-form [26]–[28]. Among
them, EMD has been extensively applied in Lidar signal
processing, which is a data-driven method can self-adaptively
decomposes the original signal into several Intrinsic Model
Functions. Noise reduction is achieved by removing the
first few noisy components in the high-frequency com-
ponents. However, this method may lead to obvious sig-
nal loss due to the useful information in the discarded
components, so attempts are needed to further improve its
performance [29], [30].

In essence, the filtering of GLAS waveform is consistent
with the problem of 1-D signal denoising. The background
noise should be removed as much as possible, while the
useful signal needs to be preserved. To find the intrinsic
smooth trend in terms of a given series, a large number of
trend filtering methods have been proposed [22]–[25], [31].
Among them, H-P filtering and l1 trend filtering are typical
algorithms, which are developed based on the regularization
theory [32]. The regularized framework aims to regularize the
residual terms and the smoothness measurements of intrinsic
trend, which is flexible and easy to understand. The residual
term usually corresponds to the noise distribution, while the
smoothness term depicts the variations in the trend. The l1
trend filtering used l1-norm to measure the smoothness of the
estimated trend, so the estimated result is piecewise smooth
and allows more signal details preserved [25]. However, the
l1-norm based constraints are prone to preserve unnecessary
noisy signals in the cases with strong noise. On the contrary,
the HP filtering algorithm, which use the constraints with the

sum of squares (l2-norm), usually can effective remove noise
but easy to obtain over-smooth results with signals losses.

There are few studies have successfully employed the
adaptive norms in the field of image denoising, and achieved
desirable results [33], [34]. It could be an ideal solution to
address the problems of the trade-off in the HP and l1 trend
filtering methods, which equips the capacity to balance the
noise removal and signal preserving. However, the applicable
of the adaptive norms in the 1-D trend filtering has not been
proved yet. As a result, in order to overcome the shortcomings
of traditional filtering methods and meet the requirements
of GLAS waveform filtering, a piecewise adaptive lq-norm
trend filtering method is proposed in this paper. To minimize
the loss of effective signal while removing the noise, dif-
ferent norms are assigned to the smooth constraints of the
estimated signal according to the local signal energy. The
filtered results can then be obtained by iteratively minimizing
the hybrid-norm loss function. Simulated experiments and
real data experiments are conducted to validate the effective-
ness of the proposed method in GLAS waveform filtering.
In the simulated experiments, the quantitative evaluation is
obtained with the filtered waveforms, as well as the results
after waveform decomposition.

II. DATA AND METHODOLOGY
In this section, the ICESat/GLAS data and its waveform
simulation for quantitative experiments are first introduced.
Then the structure and differences of HP filtering and
l1 trend filtering methods are presented. The proposed
method is described at last, as well as the analysis about
the relationship between its key parameter and different
waveforms.

A. ICESat/GLAS DATA
GLAS measures the surface and atmosphere by transmit-
ting 1064 nm Gaussian infrared light and 532 nm Gaussian
visible green light respectively, and receiving the reflected
echoes [1]. It provides 16 data products which are distributed
by the National Snow and Ice Data Center (NSIDC) and can
be downloaded freely. Among them, GLA01 is the original
file to record the LiDAR echo, including the original wave-
form signal, noise mean, noise standard deviation, emission
pulse waveform, longitude and latitude coordinates and beam
number. As shown in Figure.1, the sample GLA01 waveform
consists of 544 discrete photovoltaic values.

The waveforms from various surface types have different
characteristics. Figure. 1(a) shows the signal from flat bare
surface, thus there is only one narrow peak. Figure. 1(b)
is a land surface echo with multiple peaks. The echo can
be widened due to rough or inclined surface and multiple
peaks are caused by obvious ground objects, e.g. vegetation
and buildings [35]. The GLAS waveforms can be ideally
decomposed into several signal components to obtain wave-
form parameters, such as the ground position, signal starting
and end position and the effective waveform length [36].
For example, the waveform in Figure. 1(b) can be decom-
posed into three signal components after waveform filtering.
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FIGURE 1. GLAS waveform examples for single peak (a) and multiple peaks (b), with raw
waveform and decomposed signal components.

FIGURE 2. The process of simulating waveform. Step 1: Decompose the GLAS waveform (a) into signal components
(b) and residual part (c). Step 2: Replace the part of residual part (c) which may contain effective signal to obtain
simulated noise (d). Step 3: Superpose signal components (b) and simulated noise (d) to obtain simulated
waveform (e).

B. DATA SIMULATION
Background noise is ubiquitous in the ICESat/GLAS data
products, so it is necessary to remove its impacts. However,
due to the absence of true data without noisy impacts,
the filtering performance is hard to be quantitatively eval-
uated. The common ways to obtain the true values mainly
include field measurement [20], extracting the elevation
values from other sources of DEMs [37] and simulating
GLAS waveforms [6], [14]. Among them, the evaluation
by waveform simulation is easier to implement and gener-
ally applicable. Jutzi and Stilla [14] obtained the reference
backscattered pulse by emitting pulse to a modeled surface.
Duncanson et al. [6] used airborne discrete return LiDAR
data to simulate GLAS waveforms.

In this paper, we obtain simulated waveforms by reform-
ing GLAS waveform. The data simulation process is given
in Figure. 2. Firstly, we decompose the GLAS waveform
(Figure. 2(a)) into signal components (Figure. 2(b)) and resid-
ual part (Figure. 2(c)). Then, the signal components are used
as the true value to generate the simulated waveform, and

the residual part is regarded as background noise. However,
part of the residual in Figure. 2(c) might contain part of
effective signal. Thus, we use the residual in the flat part of
waveform to replace the signal part with high amplitude, and
construct the simulated noise (Figure. 2(d)). Finally, the sig-
nal components and simulated noise are superposed to obtain
simulated waveform, as shown in Figure. 2(e). In this way,
the simulated waveforms have the similar characteristics with
the real GLAS waveforms, and the quantitative evaluation
can be conducted using the waveform composed of the signal
components (Figure. 2(b)) as the reference.

C. HP FILTERING AND l1 TREND FILTERING
The piecewise adaptive-norm trend filtering method we pro-
posed is on the basis of the idea of HP filtering and l1 trend
filtering [30, 31]. In trend filtering, the given scalar time series
yt (t = 1, 2, . . . , n), can be regarded as a composition of an
underlying trend xt and a randomly fluctuating component.
The goal is to estimate the underlying trend and random
component. The trend estimates xt in H-P filtering is obtained
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by minimizing the following function:

min
x

{
(1/2)

n∑
t=1

(yt−xt )2+λ
n−1∑
t=2

(xt−1−2xt+xt+1)2
}

(1)

where yt is the obtained time series contaminated with noise,
and xt is the ideal smooth trend. The first term in Equation (1)
is the data fidelity termmeasuring the residual, and the second
term is a regular term depicting the smoothness of trend. The
regularized parameter λ controls the trade-off between them.
Kim [31] substituted the sum of absolute values for the sum
of the squares of the quadratic difference of trend xt and
proposed l1-norm regularized trend filtering, as below:

min
x

{
(1/2)

n∑
t=1

(yt−xt )2+λ
n−1∑
t=2

|xt−1−2xt+xt+1|

}
(2)

The difference between HP filtering and l1 trend filtering is
that they use l2 norm and l1 norm in the regularization term
respectively, which corresponds to different data character-
istics in denoising. The main superiority of l1-norm trend is
that it produces piecewise linear result. Therefore, the signals
expressed as abrupt changes in the estimated trend can be
interpreted, while they tend to be smeared by HP filtering.
However, HP filtering usually obtain a smooth result with
noise clearly removed, while many unwanted noisy changes
may also be reserved in the l1 trend filtering. The performance
varies with different norms assigned to the regularization
term. The l2 norm is prone to obtain over-smoothed results
with smeared signal peaks, and the l1 norm can maintain
the feature points well together with some unnecessary noisy
signals.

D. PROPOSED PIECEWISE ADAPTIVE-NORM TREND
FILTERING
According to l1 trend filtering and HP filtering, different
norms can be used to constrain the smoothness variation
of the estimated signal, and obtain results with different
characteristics. These two methods can neither deal with the
noise in the GLAS waveform, where the effective signals
are concentrated in some parts and the other parts are basi-
cally noise. In order to address this problem, the adaptive
norm is employed to balance the performance of results in
smoothness and feature retention. We propose to adaptively
assign different norm values for different parts of waveform,
to combine the advantages of hybrid norms. We rewrite the
HP filtering and l1 trend filtering as one regularization model,
which is:

min
X
{‖Y − X‖pp + λ ‖DX‖

q
q} (3)

where Y is a time series or raw waveform in this paper,
and X is the trend estimate or the filtered result. D is the
second-order difference matrix, which results in a piecewise
linear fitting. It has been proved that the second order differ-
ence regularization terms is more suitable for trend filtering,
which is superior in maintaining the peak and valley than the

third order difference regularization term [25]. λ is the reg-
ularization parameter used to control the smoothness of the
results, and the results will be more smooth with a greater λ.
For the data fidelity term, the l2 norm-based (p= 2) linear
least squares term is set in this study, due to that previous
studies have manifested that the l2 norm is effective for noise
with Gaussian distribution [38]. It is therefore suitable for the
noise distribution in GLAS waveform. For the regularization
term, different q values (q ∈ [1, 2]) are applied according
to the local signal energy. As illustrated before, l2-norm
has good performance in suppressing noise, and l1-norm is
superior to retaining the effective signal fluctuations [39]. For
theGLASwaveforms, we employ the l2-norm to constrain the
smooth measures for the local parts with low signal strength,
while a smaller norm is set for the local parts of the waveform
superposed by noise and signal. A threshold tq is defined to
determine whether the local waveforms are mainly composed
of background noise or effective echo energy, according to the
previous studies [40]. The threshold tq is calculated by the
sum of the mean of background noise and the two standard
variance noise:

tq = m+ 2 ∗ σ (4)

where m and σ represents the mean value and the standard
deviation of the noise, respectively. These two variables are
determined by the first or the last 100 values in the waveform,
which usually contain little effective signal fluctuations in the
waveforms [40]. The determination of the two parameters
vary with the specific shape of GLAS waveforms. Such as
the last 100 values in Figure. 1, it can be observed that these
values generally do not contain effective information, so the
tq can represent the background level of the waveform. If the
value in waveform is lower than tq, it is the parts with low
signal strength and is mainly composed by noise. Otherwise,
if the value is higher than tq, it is the parts superposed both
by noise and effective echo energy. As a result, different norm
can be assigned based on threshold tq, which can effectively
reflect the characteristics of GLAS waveform.

To further determine the optimal values of lq-norm for the
echoes containing signal of interest, we investigate the rela-
tionship between q values and the characteristics of GLAS
waveform. The goal is to achieve the balance of removing
the background noise and preserving the useful information.
The root mean square errors (RMSEs) between the filtered
results and the reference are used to evaluate the quality of
the results.

1) THE RELATIONSHIP BETWEEN q AND WAVEFORM WIDTH
Due to the fact that waveform width of peak signal in GLAS
data is varied depending on the surface features, it is nec-
essary to explore the optimal q value for the data with dif-
ferent widths. Firstly, seven groups of single-peak data with
different widths were simulated to explore the performance
of different q values dealing with waveforms with different
pulse widths. Each group contained 10 data composed of
signal component with similar widths, and contaminated with

168968 VOLUME 8, 2020



L. Li et al.: Piecewise Adaptive-Norm Trend Filtering Method for ICESat/GLAS Waveform Data Denoising

different levels of noise. From group 1 to group 7, the wave-
form widths become larger with the group number, and the
mean group width of the signal peak ranged from about
25 to 107. The average RMSE are then obtained for each of
the group test.

The results for data with different widths are shown in
Figure.3. When the l1-norm is adopted (q = 1), the smaller
average RMSE values are obtained with smaller signal
widths. As the value of q become larger (≥1.4), we can get
better denoising performance with large waveform widths.
Moreover, the results are obviously unsatisfactory when the
waveform width is relatively narrow. Overall, the filtering
method can obtain the best performance when q ∈ [1.1, 1.3],
and the waveform width has little influence on the denoising
effect.

FIGURE 3. The relationship between q and waveform widths.

2) THE RELATIONSHIP BETWEEN q AND ENERGY INTENSITY
Ten groups of single-peak data were simulated to explore the
properties of different q norms dealing with waveforms with
different peak amplitude. The higher peak amplitude of the
waveform indicates the higher energy of the return echo. Each
group contained 10 single-peak data with similar peak ampli-
tudes and different levels of noise, and the average RMSEs
are then obtained. From group 1 to group 10, the signal energy
increases with the group number.

The results are shown in Figure. 4. In general, the statistical
results show that for the low-energy waveforms, better filter-
ing results can be obtained with lager q. This is consistent
with the previous description that smooth waveforms prefer a
larger value of q to remove noise and avoid the artificial oscil-
lations around the sharp edges. However, for the high-energy
waveforms with large peak amplitude, the results show the
opposite trend, where large values of q result in high RMSEs.
For example, the RMSE values of data group 10 with q = 2
are much higher than the results with a relatively smaller
value of q, such as the case of q = 1.5. The reason might be
that l2-norm results in the loss of useful signal energy, so the
sharp peaks of waves are inclined to be preserved in those
cases. In general, when q ∈ [1.2, 1.5], the filtering method
can balance the performance and obtain a pretty good result
among all the waveform data with different energy intensity.

FIGURE 4. The relationship between q and the peak amplitude of
waveforms.

3) THE RELATIONSHIP BETWEEN q AND GLAS WAVEFORM
To further test the robustness of q, 100 multi-peak data are
simulated with different characteristics, including the num-
bers of wave peaks, amplitudes, and range distances. The sim-
ulated waveform data are contaminated with random noise
with similar strength. Due to it is impossible to show a vast
results, so only the average RMSEs are shown in Figure. 5.
It can be observed that the adaptive-norm filtering method
performs more robustly with a smaller value of q (≤1.2) for
multi-peak waveforms with different shapes and amplitudes.

FIGURE 5. The relationship between q and complex waveforms.

Combining the optimal ranges of q value in the previous
two experiments, we can conclude that the optimal q value
is 1.2 for different GLAS waveform data with varied char-
acteristics. The fractional norm applied here can obtain a
moderate result, by clearly removing noise and minimizing
the loss of useful signal simultaneously. As a result, the
value of adaptive norm q can be finally determined. If the
waveform value is lower than the threshold tq, it is the parts
with low signal strength and is mainly composed by noise,
so the l2-norm is used to smoothmeasures and suppress noise.
Otherwise, if the value is higher than the threshold tq, it is the
parts superposed both by noise and signal, so a smaller norm
of 1.2 is set to balance the noise removal and signal losses.
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It can be expressed as:

qi =

{
2.0 yi ≤ tq
1.2 yi > tq

(5)

where yi is the photovoltaic value for each point, and qi is
the local norm assigned according to the threshold set in
Equation (4). Therefore, the minimization function (3) can
be rewritten as:

min
x

{∑n

i=1
(yi−xi)22+

∑n−1

i=2
(|xi−1−2xi+xi+1|)qi

}
(6)

where xi is the filtered result for the corresponding
local point. In this paper, the hybrid-norm minimization
function is solved by utilizing the iteratively reweighted
norm (IRN) algorithm [41], which is easy to implement and
efficient. For more details, it can be referred to the related
materials [31], [39].

III. RESULTS
In the experiments, both simulated data and real GLAS
waveforms are used to test the effectiveness of the proposed
filtering algorithm. Four commonly used waveform filter-
ing methods are chosen for the comparison, including the
l1 trend filtering, wavelet transform-based filtering, EMD and
Gaussian filtering method.

A. EVALUATION INDEX
In order to quantitatively evaluate the denoising effect in the
simulated experiments, evaluation indexes should be defined.
In this paper, we evaluated the performance of the filtering
methods not only by the filtered waveforms, but also by the
components after decomposition to explore how denoising
process will affect the subsequent information extraction.

1) EVALUATION FOR THE FILTERED WAVEFORM
Two indexes are used to evaluate the filtered waveforms, i.e.
signal-to-noise ratio (SNR) and RMSE. The SNR is calcu-
lated as follows:

SNR = 10 lg

[ ∑n
i=1 f

2
i∑n

i=1 (si − fi)2

]
(7)

where s is the filtered waveform to be evaluated, and f is the
noise-free waveform used as the reference. More details are
described in the section of data simulation. The higher SNR
and lower RMSE values indicate better performance of the
filtering method.

For GLAS waveform, the most significant part is the
effective echo signal. Therefore, in addition to analyzing the
SNRs and RMSEs of the whole waveform, we also focus
on the indexes of the partial wave containing effective echo
energy. Therefore, there are four indicators employed to eval-
uate the filtering effect, including global RMSE (RMSE_G),
global SNR (SNR_G), partial RMSE (RMSE_P) and partial
SNR (SNR_P). The partial indexes are applied to evaluate the
waves containing strong echo signal, which is determined as
illustrated in Section II-D.

2) EVALUATION FOR THE COMPONENTS AFTER
DECOMPOSITION
The goal of GLAS waveform filtering is to improve the
accuracy of waveform decomposition and information
extraction [36]. Thus, the RMSE statistics of the decomposed
Signal components are used to evaluate the potential influ-
ence of the wave filtering to the component decomposition,
which are defined as:

RMSED =
∑t

i=1
RMSE_di (8)

where RMSE_di is the RMSE value calculated by the ith
signal component extracted from filtered waveform and the
corresponding signal component of the reference waveform,
and RMSED is the sum of RMSE_di for the multi-peak wave-
forms with t signal components.

Gaussian decomposition is applied in this step to keep
consistent with the decomposition method in data simulation
(Section II-B), which is implemented with the Curve Fitting
Tool in Matlab.

B. SIMULATED EXPERIMENTAL RESULTS
There are 10 single-peak data and 10 multi-peak data sim-
ulated to test the filtering methods. Except for the pro-
posed piecewise adaptive-norm trend filtering method, four
commonly used denoising methods for waveform data are
incorporated for comparison. The parameters of each fil-
tering method are adjusted to obtain the best error indexes
through simulation experiments. For the wavelet transform,
different wavelet bases were compared, and we adopted
bior1.3 wavelet base to decompose the signal into 5 levels,
and soft threshold to remove noise for each level. For Gaus-
sian filtering, the different value of window width and the
variance sigma were tested, and they are finally set as 5 and 2,
respectively. For the EMD method, only the first noisy com-
ponent is removed after the self-adaptively decomposing,
to avoid more signal losses. For the regularized filtering
methods, we have tuned lambda parameter to obtain the best
quantitative or visual results in the experiments, both for the
proposed method and the l1 trend filtering method.

1) SINGLE-PEAK WAVEFORM
Table 1 shows four average evaluation indexes of the results
obtained by five filtering methods in 10 single peak wave-
forms. It can be observed that the proposed filtering method
has the best performance regarding all the indexes, with
the highest SNR and lowest RMSE values. From the global
indexes SNR_G and RMSE_G, the performance of wavelet
transform is the second-best, followed by that of l1 trend
filtering, Gaussian filtering, and EMD. In terms of the partial
indexes SNR_P and RMSE_P, l1 trend filtering is slightly
better than wavelet transform, and EMD still the last choice to
use. Moreover, we give the error statistics of the decomposed
waveforms, which imply the influence of the filtering process
to the accuracy of decomposition. The differences between
the two regularized trend filtering methods are relatively
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FIGURE 6. Results of four filtering methods applied to a sample single-peak waveform. (a)-(e) show the filtering results of the lq trend filtering,
wavelet transform, l1 trend filtering, EMD, and Gaussian filtering method, respectively; and (f) and (g) are the zoomed view of the results to
show the details of the peak and the flat parts in the waveform.

TABLE 1. Statistics of the evaluating indicators of 10 single-peak
waveforms.

ignorable in this test for single-peak data. It indicates that both
the l1 and lq trend filtering methods can obtain measurements
with good quality on the flat terrain (with only one peak).

The visual performance of five methods applied to a sam-
ple single-peak waveform was also presented in Figure. 6,
and the evaluation indexes of this data are shown in Table 2.
It can be observed that Gaussian filtering and EMD causes
significant energy loss for the wave peak, while retaining
much noise for the low-energy part of the waveform. This is

TABLE 2. Statistics of the evaluating indicators of the sample single-peak
waveform.

the reason for the unsatisfied quantitative statistics of the
Gaussian filtering and EMD methods. The main advantage
of l1 trend filter is the preservation of peak energy, but it
also preserves too much noise. Both wavelet filter and the
proposed lq trend filter can well suppress the background
noise. However, energy loss at the wave peak can be observed
in the results of wavelet filter.

Combining the quantitative and the qualitative results,
we can come to the conclusion that the proposed lq trend
filtering is superior than other four methods in the processing

VOLUME 8, 2020 168971



L. Li et al.: Piecewise Adaptive-Norm Trend Filtering Method for ICESat/GLAS Waveform Data Denoising

FIGURE 7. Results of four filtering methods applied to a multi-peak waveform. (a)-(e) show the filtering results of the lq trend filtering, wavelet
transform, l1 trend filtering, EMD and Gaussian filtering method, respectively; (f)-(j) are the zoomed view of the five results in the peak.

of the single peak waveform. The threshold tq can distin-
guish the different parts of the waveform, and the adaptive
norm can achieve the goal of removing the noise with little
energy loss and preserving the waveform’s shape. However,
the EMD, Gaussian and wavelet based filtering are prone to
significantly underestimate the peak amplitude, and obtain
the oversmoothed waveform. As the peak amplitude is one
of the key parameters for ground peak location and cover
classification [42], [43], the capability to preserve the echo
energy is significant to judge a filtering method. Both the
l1 trend filter and the proposed lq trend filter obtain results
with sharp peaks. However, the resulting signal of l1 trend

filter remains too much noise, especially over the low-energy
parts.

2) MULTI-PEAK WAVEFORM
ICESat GLAS waveforms are classified according to the
characteristics of the terrain and surface coverage within
the footprints. The single-peak data generally represent the
waveforms over flat barren land. However, in the general
cases, there are more than one echoes from the ground with
rugged topography and objects (e.g. vegetation and build-
ings) covered [6]. For waveforms with three or more peaks,
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FIGURE 8. Results of decomposed multi-peak waveforms, the red line is the signal component of different results and the blue line is the true value.
(a)-(e) show the decomposed results of the lq trend filtering, wavelet transform, l1 trend filtering, EMD and Gaussian filtering method, respectively.

as shown in Figure. 1(b), the filtering become more complex.
In this section, we test the performance of the methods on
complex GLAS waveforms on 10 simulated multi-peak data.

The mean quantitative results are given in Table 3. It can
be found that EMD and Gaussian filtering method is not
capable of processing data with complex shapes, where large
RMSEs and low SNRs are obtained. Wavelet-based filter
has better performance than l1 trend filtering in this case,
in terms of both the global indexes (SNR_G and RMSE_G)
and the partial indexes (SNR_P and RMSE_P). The proposed
piecewise adaptive-norm trend filtering is still the best among
the five filtering methods. Due to the varied peak numbers,
the mean statistics after waveform decomposition are not
presented here.

TABLE 3. Statistics of decomposition results of 10 multi-peak waveforms.

The visual comparison results for a sample of four-peak
waveform are presented in Figure. 7. The third and the fourth
peak are close to each other and have similar amplitudes,
which makes it easy to be smeared after filtering. It can be
observed from Figure. 7 (c) that the signal form between the
closely neighboring peaks is failed to retain the original wave
structure in l1 trend filter. This is probably caused by the strict
constraints of l1-norm. Due to the last two peaks are too close,

the one with lower amplitude are scarified by the l1 trend
filter to get the sharp features. Moreover, EMD and Gaussian
filter significantly over smooth the peak of the waveform,
which is similar with the single-peak data tests. From the
zoomed view shown in Figure. 7 (f-j), more details can be
observed. The wavelet filtering and the proposed method
can preserve the basic form of the waveform. However, the
wavelet transform-based method apparently underestimates
the peak amplitudes, which resulted in unsatisfactory quanti-
tative results.

For complex waveforms, the loss of peak energy and signal
distortion in denoising might lead to decomposition errors.
Therefore, the results after decomposition were compared
in Figure. 8. It can be seen that the waveform filtered by EMD
and Gaussian filtering even causes one signal component
lost, and all the components of EMD results have obviously
shift to the true value. In addition, the amplitude of the
corresponding Signal component of the results of l1 trend
filtering is much smaller than that of the other two methods.
Moreover, we calculate the quantitative evaluation results
for both the filtered waveforms and the decomposed Signal
components, as shown in Table 4. It can be analyzed that the

TABLE 4. Statistics of decomposition results of a sample multi-peak
waveforms.
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FIGURE 9. Filtering results of the real GLAS waveform. (a)-(e) show the filtering results of the lq trend filtering, wavelet transform, l1 trend filtering,
EMD and Gaussian filtering method, respectively.

lq trend filtering outperforms the wavelet-based algorithm in
terms of the preservation of peak amplitude and waveform
structure.

Considering the experiments on both single-peak and
multi-peak waveforms, the results show that the piecewise
adaptive-norm trend filtering exhibits a better performance
compared to other four methods. The advantages of the pro-
posed method in maintaining peak amplitude are vital to
extract the reflective information. Moreover, the ability to
keep waveform structure can lead to more accurate identifi-
cation of peak number for complex signals.

C. REAL DATA EXPERIMENTS
To verify the performance of the proposed method on real
data, we also conduct experiments on real GLAS waveforms.
In Figure. 9, we present the filtering results for a sample
multi-peak waveform. This is a four-peak waveform retrieved
from GLA01 product list, where the distances between the
neighboring peaks are very close. Moreover, the amplitude
of the third peak is much smaller than the other three peaks.
Therefore, the filtering is a difficult task as the structure of the
sample waveform is very complex. From the results, it can
be seen that the Gaussian filter smear the third peak, and
the EMD result even smear two peaks. Although the wavelet
transform and l1 trend filtering method preserves all the
peaks, the amplitudes are obviously underestimated. In the
results of the proposed method, the peak amplitudes are well
retained and the background noise is effectively suppressed.
The filtered waveform is smooth and the shape structure is
clear.

FIGURE 10. The filtering performance for the waveforms with different
widths. The waveform widths increase from group 1 to group 7. (a) and
(c) show the mean partial evaluation indexes for the results of different
methods, while (b) and (d) present the mean global SNRs and RMSEs.

IV. DISCUSSION
The results above indicate that the proposed method can
obtain much better results than the other four comparison
methods, both in the qualitative and quantitative evaluations.
The threshold tq can also well identify the different parts in
waveform, and the adaptive norm could effectively remove
noise and avoid loss of signal details. In order to explore
the denoising characteristics of filtering methods on different
waveform features, the influence of waveform width and
energy intensity are further discussed.
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FIGURE 11. Filtering results of a narrow waveform. (a)-(e) show the filtering results of the lq trend filtering, wavelet transform, l1 trend filtering, EMD
and Gaussian filtering method, respectively.

FIGURE 12. Filtering results of a wide waveform. (a)-(e) show the filtering results of the lq trend filtering, wavelet transform, l1 trend filtering, EMD
and Gaussian filtering method, respectively.

A. WAVEFORMS WITH DIFFERENT WAVEFORM WIDTHS
Similar with the settings in Section 2-D-1, seven groups
single-peak waveforms are simulated. Each group contains
10 waveforms composed of the same Signal component, and
contaminated with different levels of noise. From group 1 to
group 7, the waveform widths become larger with the group

number. The average RMSE are then obtained for each of the
group test.

Figure. 10 shows the evaluation for the results of five
filtering methods. It can be seen that EMD, Gaussian and l1
trend filtering are sensitive to impulse width. The effects of
the three methods are mostly positively correlated with the
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FIGURE 13. Effect of waveform energy on denoising. The wave energy
intensity increases from group 1 to group 10. (a) and (c) show the mean
partial evaluation indexes for the results of different methods, while
(b) and (d) present the mean global SNRs and RMSEs.

waveform widths. It means that they obtain better filtering
results for the waveforms with larger widths. Especially the
EMD could get a better result than the Gaussian filtering in
the data with large widths, but with poorer results in the data
with small widths. Comparatively, the wavelet-based and the
lq trend filtering are robust in processing waveforms with
different widths.

To explore the reasons for this phenomenon, the filtering
results for a narrow waveform and a wide waveform are
presented in Figure. 11 and Figure. 12, respectively. It can be
found that the peak underestimation of EMD and Gaussian
filter significantly degrades the quality of filtered result. The
EMD is even poorer than Gaussian filter in the narrow sample
waveform, but it is much better in the wide sample waveform.
The simple filteringmethod based onGaussian smooth kernel
and self-adaptively decomposition has difficulty in process-
ing the waveform with a sharp echo peak, which results in
poor assessment. In terms of the l1 trend filtering, the remain-
ing background noise in the low-energy part of the waveform
is the main reason for the unstable evaluation results. The
wavelet transform-based filter and the lq trend filtering are
not sensitive to the waveform width. Moreover, the lq trend
filtering outperforms the wavelet filtering both in the noise
suppression and the details preservation.

B. WAVEFORMS WITH DIFFERENT ENERGY INTENSITY
Finally, the filtering performance regarding the energy inten-
sity is discussed. Ten groups of single-peak waveforms are
simulated. Each group contains 10 waveforms composed of
the same signal component, and contaminated with different
levels of noise. The wave energy intensity increases from
group 1 to group 10. The results are shown in Figure. 13.

The SNR values should be increased along with the energy
intensity. However, the gently varied values of SNR_P for
the results of Gaussian filter imply the significant loss of
signal energy, and the SNR of EMD result even decreased
in the data with high energy intensity. The RMSE values

FIGURE 14. Denoising results of low peak energy data. (a)-(e) show the filtering results of the lq trend filtering, wavelet transform, l1 trend filtering, EMD
and Gaussian filtering method, respectively.
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FIGURE 15. Denoising results of high peak energy data. (a)-(e) show the filtering results of the lq trend filtering, wavelet transform, l1 trend filtering,
EMD and Gaussian filtering method, respectively.

further verify the poor performance of EMD and Gaussian
filtering method, especially the result of EMD in data with
high energy intensity. Among the other three methods, the
l1 trend filtering can obtain good results for the peak part;
unfortunately, it remains too much noise, thus affects the
overall evaluation results. Similar with the previous cases,
the proposed adaptive-nor lq trend filtering achieves best SNR
and RMSE values. Furthermore, the RMSE values demon-
strates the robustness of the proposed method for waveforms
with different peak amplitudes.

Figure. 14 and Figure. 15 show the denoising results of
five filtering methods on data with low and high peak ampli-
tudes, respectively. From the visual results, the properties
of different methods can be clearly observed. Generally, the
l1 trend filtering can obtain good results in the cases where the
peak amplitude is far larger than the noise level. However,
it might fail to process the waveforms with relatively low
peak amplitude. Combining the advantages of hybrid norms
using the adaptive strategy, the proposed lq trend filtering
overcomes the problem of l1 trend filtering and improves the
filtering performance.

V. CONCLUSION
To improve the accuracy of waveform filtering, we propose
a piecewise adaptive-norm trend filtering method to take
advantages of different norms (lq-norm, q ∈ [1, 2]) in the
regularized framework. The goal of the adaptive-norm filter-
ingmethod is to reduce the smoothness of the effective signal,
while suppressing background noise as much as possible. The
effectiveness of the proposed method is tested with simulated
data and real data. In the simulated experiments, the filtered

results are evaluated after denoising and waveform decom-
position. The results verify that the method was superior to
the other three commonly used GLAS waveform filtering
methods, i.e. Gaussian filtering, wavelet transform, EMD
and l1 trend filtering methods. It is also indicated that the
proposed method performs well in retain the peak amplitude
and the structure of the waveform while removing noise,
even for the waveforms with complex shapes. Thus, it can
improve the potential accuracy of GLAS-derived parameters,
e.g. ground peak location, reflective information, and range
distance, which makes significant sense in the related geo-
science applications.
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