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ABSTRACT The structure of blood vessels play a crucial role in diagnoses of the various vision threatening
diseases including Glaucoma and Diabetic Retinopathy (DR). The correct segmentation of retinal blood
vessels is a crucial step in the study of retinal fundus images. We proposed a simple unsupervised approach
by using a combination of Hessian based approach and intensity transformation approach. We have applied
CLAHE for enhancing the contrast of the retinal fundus images. An enhanced version of PSO algorithm is
applied for contextual region tuning of CLAHE. Morphological filter and Wiener filter are used to de-noise
the enhanced image. The eigenvalues are obtained from the Hessian matrix at two different scales to extract
thick and thin vessel enhanced images separately. The intensity transformation approach is separately applied
to the enhanced image to maximize the vessel details. Global Otsu thresholding is applied on intensity
transformed image and thick vessel enhanced image whereas ISODATA local thresholding is applied on thin
vessel enhanced image. Finally, a simple post-processing step based on the region parameters such as area,
eccentricity, and solidity is used. The region parameters are obtained for each connected component in input
binary images. The threshold values of region parameters are empirically investigated and applied to each
of the three binary images to remove the non-vessel components. The thresholded images are combined by
applying logical OR operator, which resulted in the final segmented binary image.We assessed our developed
framework on the open-access CHASE_DB1 and DRIVE datasets, achieving a sensitivity of 0.7776 and
0.7851, and an accuracy of 0.9505 and 0.9559 respectively. These results outperform several state-of-the-
art unsupervised methods. The reduced computational complexity and significantly improved evaluation
metrics advocates for its use in the automated diagnostic systems for retinal image analysis.

INDEX TERMS Machine learning, vessel segmentation, CLAHE, morphology, Wiener filter.

I. INTRODUCTION
The long term diabetes leads to Diabetic retinopathy (DR).
The DR is one of the main sources of blindness in work-
ing age populations. The preliminary symptoms of this
disease are lesions which, is a general term connect-
ing different terminologies including hard/soft exudates,
microaneurysms (MA), dot/blot hemorrhages, inter retinal
microvascular abnormalities and leakages. The ophthalmol-
ogists grade the disease by evaluating the number, types and
severity of the various kinds of lesions on retina. This growths
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of the DR towards blindness is gradual and the main issue is
that the individual does not feel the signs in the initial phases.
The DR is considered as one of the main cause of vision loss
specifically in the young peoples with diabetes [1].

For an ophthalmologist, one of the initial symptom of
DR is MA that mainly happen due to leakage from blood
vessels on the retinal surface. The MAs are circular in shape
and red in color and appear as small circular dots on the
retinal surface. When the walls of MAs are broken then
the hemorrhages are formed on the retinal surface. When
the blood which leak from retinal blood vessels contains
proteins and lipids then the exudates are formed, which can
lead to full blindness if it is accumulated near the macula. The
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exudates are bright lesions while the MAs and the haemor-
rhages are usually the dark lesions [2]. The internal structure
of human-eye is composed of various parts such as iris, ves-
sels, macula, vitreous, optic cup, optic disc, pupil, cornea etc.
Among the various parts of eye, the vessels are significantly
important for analysing and grading various diseases such as
DR [3], [4].

The fundoscopy is usually applied for capturing images
of the internal structure of the eye (retina). The images
captured by using the fundoscopy plays an important role
in diagnosing various eye diseases. The complex optical
system of fundoscopy is composed of many lenses which
provides a telescopic view of the retinal structure [5]. Usu-
ally, the ophthalmologists manually grade the retinal fun-
dus images which, is a time consuming and cumbersome
task. Additionally, the manual analysis of the retinal fundus
images by the ophthalmologist may contain substantial vari-
ations because of the interference and exhaustion. Contrarily,
machine learning based automated approaches for retinal
analysis have the potential for higher accuracy in addition
to capability for large scale public screening. Mainly, there
two types of machine learning methods which are supervised
and unsupervised. The unsupervised approaches utilize the
hidden features in the images for retinal image segmentation
and their most favourable advantage is that such methods do
not require the manually marked huge database for training.
These approaches classify the pixels of an image into ves-
sels or non-vessels without any priori knowledge. Contrarily,
the supervised approaches learns based on the features in
the input images and the associated manually marked gold
standard images.

The accuracy of the automated approaches for retinal ves-
sels segmentation is substantially improved based on the
unparallel advancement in artificial intelligence (AI) and
supervised as well as unsupervised machine learning (ML).
Furthermore, the machine learning based approaches for reti-
nal vessels segmentation has the potential to be employed in
the automated system for large scale deployment. The large
scale deployment of the machine learning based automated
system is substantially crucial for timely detection of eye
sicknesses [6].

The researchers have recently developed many automated
system for large scale deployment in public screening pro-
grams. The efficient implementation of these automated sys-
tem is crucial for the early detection of numerous diseases.
The implementation of these automated system involves var-
ious tasks such as the detection of optic disc/cup [7], [8]
and retinal vessels [9], [10]. The performance and reliability
of the automated public screening system is substantially
important because of the health of the general public. For
aiming to develop an efficient and effective automated system
for eye diseases, the developed machine learning models
should be investigated appropriately and their robustness in
mimicking the skills of the expert ophthalmologists must be
ensured. This imply proper investigation of efficient methods
for vessels and optic disc/cup segmentation [7]–[10].

The performance of developed automated system for eye
disease classification is directly depended on the performance
of the selected machine learning method for detecting the
vessels, the lesions and the optic cup/disc. Among these
detection tasks, the vessels segmentation has been widely
accepted as a challenging problem and is the highly important
part of the eye sickness diagnosis system [11]. The various
attributes of the retinal vessels including the density, the tor-
tuosity, the size and the length are significantly important and
affects the performance of the developed method. Addition-
ally, the centerline reflex, the branching, the crossing and the
changing direction of the vessels adds to the complexity of the
vessel segmentation problem. Moreover, the numerous parts
of the retina including the macula, optic cup, the optic disc,
the vitreous, the iris and the different kinds of lesions such as
the soft exudates, hard exudates also significantly increase
the complexity of the automated eye disease classification
system. These set of factors stances many defies for the
automated eye disease classification system.

The focus of this work is retinal vessels segmentation
and we have selected the unsupervised category due to their
many advantages including reduced computational complex-
ity, no hyper parameters tuning, lower memory requirements
and most importantly the specialized hardware is not needed
for the training the developed algorithm. The unsupervised
methods classify the pixels in a retinal image without any
ground truth images, which is a huge plus point, as such a
large database is usually not available for large scale screen-
ing program. The techniques in the unsupervised category
learns based on the vessels attributes hidden in the retinal
images.

The following are the main contributions of our work.

• The contrast of the retinal fundus images is enhanced
by applying the PSO based technique for tuning the
contextual region of CLAHE.

• The Top-Hat transformation and the Wiener filter are
applied for de-noising the enhanced image image.

• Intensity transformation is applied for maximizing the
vessel details.

• Thick and thin vessels are extracted from the enhanced
images by utilizing eigenvalues from Hessian matrix.
Two different sigma’s are selected for obtaining images
with thin and thick vessels.

• Global Otsu thresholding and ISODATA thresholding
are applied for binarizing the enhanced images obtained
through different methods.

• The threshold values of region parameters (area, eccen-
tricity and solidity) are empirically investigated and
applied to remove the non-vessel components.

The remaining manuscript is divided into various sections
as follows. The section 2 provides the literature review and the
section 3 explains the proposed unsupervised vessel detection
approach. The experimental results along with a compari-
son (comprehensive) with existing representative methods in
the field are provided in section 4. Some of the important
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results are discussed in section 5. Lastly, the conclusion is
presented in section 6.

II. RELATED WORK
The existing state of the art on retinal vessel segmentation is
categorised into supervised and unsupervised machine learn-
ing approaches [12]. In this section, the most recent and
relevant vessels segmentation approaches separated in these
two categories are briefly discussed. For a recent detailed
review of retinal vessel segmentation techniques please refer
to [13].
Unsupervised methods utilize the hidden features in the

images for retinal image segmentation. The most favourable
benefit of unsupervised machine learning techniques is
their functionality without the requirement for the man-
ually marked huge database for training. The unsuper-
vised methods classify the pixels of an image into vessels
or non-vessels without any priori knowledge. Recently,
numerous researchers have explored different unsupervised
machine learning approaches for retinal vessels segmenta-
tion. The unsupervised machine learning approaches com-
monly have three stages: pre-processing; the main techniques
(segmentation algorithm); the post-processing. A detailed
review of these vessels segmentation methods is provided
by the authors in [14], where they divided these techniques
into six categories: (1) kernel based approaches; (2) track-
ing (vessel) approaches; (3) morphological; (4) multiscale;
(5)adaptive local thresholding (6) model based. They also
divided these techniques into two major classes generally
known as rule based (also called unsupervised techniques)
and machine learning. The methods in the rule based class
obey some rules and regulations for separating the retinal ves-
sels in retinal images. Contrarily, the methods in the machine
learning class, are trained using a large database of ground
truth retinal fundus images.

The idea of a kernel-based approach (also called the
matched filtering approach) is to apply a 2D filter ker-
nels for mapping the vessels in the retinal image. Usually,
the Gaussian-shaped filters are applied for modeling the reti-
nal vessels. In [15], the authors proposed a method using a set
of twelve directional kernels along with a threshold probing
technique to segment the retinal vessels. The main issue with
the kernel-based filtering approaches is their tendency to
highlight the non-blood vessel section of the images, which
significantly degrade the overall performance of the system.

Different variants of matched filtering approach are pro-
posed in [16]–[18], and [19]. In [16], a hybrid matched fil-
tering technique was proposed. In the matched filter phase,
symmetric Gaussian kernel was used to detect the vessels
whereas, in the thresholding phase, the first-order derivate of
Gaussian was used to establish a dynamic threshold. Most of
the matched filtering approach variants focus on improving
the thresholding technique rather than improving the matched
filter kernel. One of the major limitations of the matched
filtering approach is based on an assumption that along with a
certain distance, the width of retinal vessels is constant. This

assumption limits the adaptability of the matched filtering
approach to the variation in retinal vessel width and orien-
tation. In [20], the authors combine the responses of many
shifted filters and obtained substantially better evaluation
metrics. However, their segmentation method may present
limitations on images with pathologies.

The tracking-based approaches trace the ridges of the reti-
nal images with the help of a set of starting points [21]. The
ridge detection requires a pre-processing step to enhance ves-
sels of different width and orientations. The main issue with
tracking-based approaches is the high dependency of ridge
detection on the pre-processing steps. Another limitation of
tracking-based approaches is that it requires user intervention
for choosing the starting and endpoints, thus they are not fully
automatic.

The morphology approaches apply the mathematical equa-
tions for retinal vessel segmentation. Generally, the Top-hat
operators are applied for detecting the retinal vessels. In [22],
authors used curvelet transform and morphological operators
to enhance the edges and ridges of the retinal images respec-
tively. The method was only tested on a single database.
In [23], the authors used a combination of morphological and
topological operators to segment the retinal vessels.

The diameter of the blood vessels is bigger at the origin
(Optic Disc) and slowly decreases outward. For extracting the
size, the width, and the orientations of the retinal vessels in
retinal images, multi-scalemethods are better options as these
methods can analyze the shape and intensity of the blood
vessels at various scales [24], [25]. In [25], the authors used
Gabor wavelet and multi-scale line detector for retinal vessel
segmentation. The method performed well in segmenting the
thick vessels. However, for fine vessel segmentation, it results
in over-segmentation. In general, the multi-scale methods are
faster but their accuracy is degraded by the non-vessel parts
in the images.

The authors in [26] explored an adaptive thresholding
based technique for segmenting retinal vessels. A drawback
of adaptive thresholding based technique is that it sometimes
results in unconnected vascular structure.

Model-based approaches segment the vessel in the retinal
images by considering them as flexible curves using curve
evolution [27]. This method performs poorly due to unseg-
mented thin vessels resulting in low sensitivity (0.6634).
In [28], the authors proposed a segmentation method based
on multiconcavity modeling. The method is too sensitive to
intra-image contrast variation. In addition, the authors didn’t
evaluate various performance metrics such as sensitivity and
specificity. The authors in [29] also applied a hybrid region
(model-based) approach for separating retinal vessels from
retinal images. Their approach performed better for fine
vessel detection that is a highly challenging task. However,
the computational complexity of the method is very high.

The above mentioned unsupervised retinal vessel segmen-
tation methods revealed their novel performances. However,
the existing techniques may face challenges in accurately
detecting the retinal vessels from the fundus images when
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there is uneven illumination, intensity inhomogeneity, image
blurring, and low contrast. Recently proposed unsupervised
techniques have achieved significant progress in vessel seg-
mentation. However, there are a few aspects that need to
be addressed to further improve segmentation accuracy. For
example, vessel connectivity, thick and thin vessel class
imbalance, intra-image contrast variability, and fine vessel
segmentation. The proposed segmentation method should
ensure high vessel connectivity with less computation as well
as high segmentation accuracy in detecting the thick and thin
vessels.
Semi-supervised methods
Some researchers have even applied hybrid approaches

by combing two methods for achieving better evaluation
metrics. One example is [30], in which the authors proposed
a hybrid approach based on a combination of GMM and
morphological method. Their hybrid method is comprised
of three steps. Initially, they used the green channel for
extracting the binary image. Then high pass filters in com-
bination with morphology are applied on the binary image.
In the second stage, the major vessels were extracted. Then
the GMM classifier and a set of eight features are used for
pixel classification. In the final stage of the hybrid approach,
the extracted major vessels are combined with the classified
vessel pixels (GMM based pixel classification). The hybrid
technique achieved better evaluation metrics on both normal
and pathological retinal images and it is also computationally
efficient.

The authors [31] also adopted a hybrid machine learning
approach, in which they used AdaBoost classifier in com-
bination with matched filtering for retinal vessel segmenta-
tion. For contrast enhancement of the images, they used the
CLAHE. Then the morphological filter were applied on the
contrast enhanced images. They applied the Frangi filters and
B-COSFIRE for improving the detected vessels. They fed
a number of statistical features to the AdaBoost classifier
in order to extract the vessel. Finally, some post-processing
operations were also performed for neglecting the incorrectly
detected pixels.
Supervised machine learning models learns based on the

attributes and features in the input images and the asso-
ciated manually graded golden images manually graded
by experienced optometrists/ophtalmologists. The developed
models are trained and tested using the manually graded
retinal fundus image datasets. The developed and trained
models are applied for the classification of the retinal ves-
sel. Recently, various researchers have implemented super-
vised machine learning models for segmenting vessels for
diagnosing different diseases. Some notable examples are
diagnoses of the glaucoma, the retinal vascular occlusions
and the DR [4], [32]–[35]. Although the supervised machine
learning approaches have achieved significantly better evalu-
ation metrics for various tasks such as vessels detection and
optic cup/disc detection [7]–[10] but unsupervised machine
learning approaches are still being explored and preferred
because of their lower computational complexity and no

requirement of manually marked retinal image databases,
in addition to many constraints of the supervised machine
learning approaches.

Though some machine learning models have achieved
marginally better accuracy compared to that of the unsu-
pervised approaches but they do have many constraints
which limit their applicability. The main limitations of the
supervised machine learning models is that their classi-
fication accuracy is proclaimed by the availability of a
manually graded publicly available database, its size and
features. Most importantly, the substantially higher compu-
tational complexity linked with the training and testing of
the multi-layered deep model in addition to hyper param-
eter tuning and large memory overhead hinder its feasibil-
ity for deployment in public screening program. Contrarily,
the unsupervised machine learning approaches do not require
database of ground truth images and most importantly their
computational complexity is significantly low. Furthermore,
no model training and hyper parameter tuning is involved.
Due to these attributes of the unsupervised machine learning
models, researchers show keen interest in their explorations
for various applications.

III. PROPOSED METHOD
In current section of the manuscript, we will elaborate
our developed unsupervised vessel segmentation approach.
Figure 1 presents the flowchart of developed framework.
We split RGB retinal image into green, red, and blue parts and
extract the green image. In our proposed method, we perform
the following noteworthy steps;
• Improved PSO technique is used for the contextual
region tuning of CLAHE for retinal vessel contrast
enhancement.

• Top-Hat transformation is applied on inverted CLAHE
image for the removal of noisy objects.

• Wiener filter is applied for de-noising the image.
• Intensity transformed image is obtained by applying
gamma correction to maximize the vessel details.

• Thick and thin vessels enhanced images are obtained by
utilizing eigenvalues fromHessian matrix. Two different
sigma’s are selected for obtaining images with thin and
thick vessels.

• Global Otsu method is selected for thresholding the
intensity transformed image and thick vessel enhanced
imagewhereas ISODATA thresholding is applied on thin
vessel enhanced image.

• Region parameters such as area, eccentricity and solidity
are obtained for each connected component in input
binary images. The threshold values of region param-
eters are empirically investigated and applied to remove
the non-vessel components. This step is repeated for all
the three binary images, i.e. intensity transformed binary
image, thick vessel binary image and thin vessel binary
image. The logical OR operation is performed on the
thresholded images for obtaining the final segmented
image.
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FIGURE 1. Flowchart of the proposed vessel segmentation algorithm.

A. PRE-PROCESSING
Three pre-processing steps including contrast enhancement
using PSO based CLAHE, morphological Top-Hat trans-
formation and Wiener filtering are performed, which are
explained with details below.

1) PSO–CLAHE FOR CONTEXTUAL REGION TUNING
Contrast enhancement is a fundamental pre-preprocessing
step to improve the details in the captured image. The
CLAHE is a well-known local contrast enhancement tech-
nique that requires rectangular contextual region defined

as (Rx, Ry) and a clip limit (Cl) as parameters. In [36]
and [3], authors have used CLAHE for vessel contrast
enhancement with default parameters i.e. contextual region
as (8, 8) and clip limit as 0.01. However, the retinal images
often exhibit contrast variability within and across images.
Thus, it is not appropriate to use the default parameters
of CLAHE for each retinal image. Instead of using a
fixed window size, we have used our modified PSO algo-
rithm from [37] as an optimizer to adaptively select the
contextual region of CLAHE for retinal image contrast
enhancement

165060 VOLUME 8, 2020



M. Alhussein et al.: Unsupervised Retinal Vessel Segmentation Using Hessian and Intensity Based Approach

FIGURE 2. Algorithm: PSO applied to Contextual Region Tuning of CLAHE for Retinal Image Enhancement.

The PSO is a optimization (population based) heuristic
algorithm where the particles move around and change their
spatial position with the passage of time. The particles are
composed of a velocity vector and a position vector and fly
in amulti-dimensional search-space. These particles adjust its
position based on its personal experience as well as neighbor-
ing particles experience. These particles have their individual
fitness parameter that is assessed based on the objective func-
tion. In each iteration, particles local best as well as swarms
global best is updated. The local and the global best help
particles to move to a better solution.

Figure 2 shows the algorithm applied to contextual region
optimization of CLAHE for retinal image enhancement.
In this work, we are optimizing the contextual region of
CLAHE so our search space is 2D, i.e. each particle XJ =
(Rx,Ry). In the first iteration, for each particle J, the position

vector XJ and the velocity vector VJ is randomly initialized
within the search space (Rmin,Rmax). We then generate an
enhanced image IeJ for each particle using CLAHE as a
transformation function. Initially, we have adaptively selected
the clip limit along with the contextual region using modified
PSO. We found that the clip limit for all the fundus images
lies in the range of (0.0196, 0.0198). Therefore, a clip limit
of 0.0198 is fixed for reducing the execution time of the
algorithm. The quality of enhanced image for each particle
is evaluated by a fitness parameter which is calculated by
applying equation (1) [38].

F(Ie) = log(log(E(Is))).
nedges(Is)
M ∗ N

.H (Ie) (1)

In equation 1, Ie represents improved image obtained
through CLAHE as transformation function, Is is the edge
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image after applying Sobel edge detection method, nedges is
the edges count the image (edge), E(Is) represents accumu-
lated value of the pixel intensities in the edge image, and
H (Ie) represent enhanced image’s entropy. The objective of
applying the modified PSO technique is to obtain the opti-
mum window/tile size of CLAHE by maximizing the fitness
function (1). The personal best and the global best for every
particle and for the whole the swarm are saved in Pbest and
Gbest respectively. The velocity vector is then updated based
on the value of the local best (every particle) along with the
global best (whole swarm) by applying equation (2).

V (iter+1)
J = wV iter

J

+c1r1(Piterbestj − X
iter
J )

+c2r2(Giterbest − X
iter
J ) (2)

In equation (2), c1 is the the cognitive constant while c2
is the social acceleration constants, w is the inertial weight
which is calculated using equation (3), and r1 and r2 are
random numbers (uniformly distributed).

w = wmax −
wmax − wmin

FE
∗ currentFE (3)

where wmax , wmin, FE and currentFE denotes the max-
imum inertial weight, the minimum inertial weight, the
function evaluations and the current function evaluations
respectively. The inertial weight is iteratively decreased to
gradually reduce the impact of particle’s previous velocity
and to increase the impact of local and global search. The new
position of each particle is then calculated using equation (4).

X (iter+1)
J = X iterJ + V (iter+1)

J (4)

In [37], we proposed particle penalization to ensure that
the particles do not fly outside the search space. In this work,
we check if for each particle, the new position vector is
within the search space. If any of the dimension is out of the
search space then we randomize that particular dimension to
update the position vector. For the remaining iterations, for
each particle, the updated position vector is passed to the
transformation function to obtain the enhanced image and
then evaluate the fitness value based on the objective function.
The local best and the global best parameter are updated
after each iteration. The stopping criteria for the optimization
problem is the function evaluations expressed as equation (5)

FE = P ∗ Ite (5)

where P and Ite are number of particles and number of iter-
ations respectively. Figure 3 presents a comparison (visual)
between CLAHE with default contextual region and CLAHE
with PSO based optimized contextual region which can be
observed in Figure 3 (b) and (c) respectively. The Figure 3 (a)
is the green channel image of test Image1 from DRIVE
database. In Figure 2 (c), it can be seen that the retinal
vessels (specifically the ones near the optic disk and the thin
vessels) are more enhanced from the background as compare
to Figure 3 (b).

FIGURE 3. Test Image1 from DRIVE database. (a) Green Channel Image.
(b) CLAHE with default contextual region. (c) CLAHE with PSO based
contextual region optimization.

FIGURE 4. Image from DRIVE database. (a) Original RGB Image. (b) Green
Channel Image. (c) Enhanced Image using PSO-CLAHE. (d) Morphological
Top-Hat on Inverted CLAHE image.

2) MORPHOLOGICAL TOP-HAT TRANSFORMATION
Our next pre-processing step is applying the Top-Hat trans-
formation to inverse image generated in the previous step.
The mathematical equation for the Top-Hat transformation is
given in equation (6).

ITH = IC − (IC ◦ S) (6)

where ITH is the Top-Hat transformed image, IC is the com-
plementary image,and S is the structuring element. In this
paper, we have considered a disk type structuring element
with a radius of eleven pixels. The morphological top-hat
transformation extracts the object that is smaller than the
structuring element. The width of other structures such as
exudates and the optic disk is usually more than the width of
the widest retinal vessel. Therefore, the top-hat will enhance
only the retinal vessels and suppresses the intensity varia-
tion due to possible exudates and optic disk. Compared to
the red and blue image components, the blood vessels are
more clearer in the green channel.Therefore, in this work,
we selected the green image. Figure 4 (d) shows the Top-Hat
transformed image where the retinal blood vessels are more
prominent than the optic disk and the background and possi-
ble exudates are removed.

3) WIENER FILTER
We have applied wiener filter as our final step (pre-
processing). It is noise-removal (adaptive) low-pass filtering
technique that is based on statistical estimation of neighbor-
hood pixels of size M-by-N. The wiener filter calculates the
local mean and variance of a neighborhood. If the variation
is high, the filter applies weaker smoothing whereas if the
variation is low, the filter applies stronger smoothing. In this
work, we have used the default parameters of wiener filter.
As shown in Figure 5 (b), wiener filter suppresses the noise
in the enhanced image.
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FIGURE 5. Morphological operator and Wiener Filter responces
(a) Top-Hat Transformation on inverted CLAHE image. (b) Wiener filter
enhanced image.

FIGURE 6. Images at various stages of the algorithm. (a) Wiener filter
enhanced image. (b) Intensity transformed image. (c) Intensity
transformed binary image. (d) Thick vessel enhanced image. (e) Thick
vessel binary image. (f) Thin vessel enhanced image. (g) Fused Image of
thin and thick vessel enhanced image. (h) Thin vessel binary image.

B. SEGMENTATION
In the last pre-processing stage, we have applied Wiener
filtering for obtaining enhanced image which is passed as
input to the segmentation step for further processing as shown
in Figure 6 (a).

We have segmented the retinal vessels in two distinct meth-
ods as shown in Figure 1. The first method is to obtain the
intensity transformed image by applying power-law transfor-
mation on the input image to the segmentation step, to high-
light the retinal vessels. The second method is to apply
eigenvalues transformation and hessian matrix approach at
two different scales to compute the second derivative for
the enhancement of thick and thin vessels. We have applied
global Otsu algorithm (for thresholding) on the intensity
transformed image and thick vessel image (enhanced) to
obtain the binary images. For thin vessel enhanced image
local ISODATA thresholding is applied.

1) INTENSITY TRANSFORMED IMAGE
In the pre-processing stage, we have applied PSO-CLAHE
for enhancing the contrast of images by tuning the contextual
region of CLAHE. In the segmentation stage, we first obtain
the intensity transformed image by applying power-law trans-
formation to further enhance the retinal vessels and suppress
the background. The power-law transformation is also known
as gamma correction, mathematically expressed equation (7).

T = Iη (7)

In equation (7), the I denotes input image that must be
scaled from the range [0, 255] to [0, 1], T is the transformed
image and η is a parameter that represents gamma factor
that must be positive. The η > 1 and η < 1 repre-
sents the mapping towards darker and brighter output values
respectively.

For enhancing the vessels and suppressing the background,
we set a constant gamma factor to 1.5 for all the retinal
images. Figure 6 (b) shows the intensity transformed image.
We can see that the vessels are enhanced in transformed
image whereas the background is suppressed. We have
applied Otsu global thresholding on the transformed image
to get binary image in Figure 6(c).

2) EIGENVALUES TRANSFORMATION AND HESSIAN MATRIX
APPROACH
In the second method, we have obtained improved images
of thick and thin retinal vessels by applying Hessian func-
tion and finding its eigenvalues. For a grayscale image
with intensity values represented in 2-D, the Hessian is a
second-order partial derivative square matrix computed as
equation (8).

H (x, y) =
[
hxx hxy
hyx hyy

]
=


∂2I
∂x∂x

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y∂y

 (8)

The Hessian is a symmetric matrix where hxy is the same
as hyx . The Hessian matrix contains the structure informa-
tion of the grayscale image.Next, we have used eigenvalues
transformation to get the structure information of the image.
We have obtained eigenvalues λ1 and λ2 from the Hessian
matrix sorted by absolute values such that |λ1| > |λ2|.
We have applied differencing approach [36] to obtain two
different enhanced images. To obtain the thick and thin vessel
enhanced images, the values of σ are set to 2.5 and 1 respec-
tively. Figure 6 (d) and (f) shows the thick and thin vessel
enhanced images respectively. We have applied Otsu global
thresholding on the thick vessel enhanced image to obtain the
binary image as shown in Figure 6 (e). Next, we have fused
the thick vessel enhanced imagewith the thin vessel enhanced
image to obtain a single image with having the thin and thick
vessels become more prominent as shown in Figure 6 (g).
We have applied ISODATA local thresholding technique on a
single enhanced image to obtain the thin vessel binary image
as shown in Figure 6 (h). ISODATA is an iterative method for
threshold selection to discriminate between foreground and
background [39]. A block size of [64, 48] non-overlapping
has been used for the local thresholding. In order to suppress
the noise in the image, we have added an offset (small value)
in the threshold. In the segmentation stage, we have obtained
three binary images as shown in Figure 6 (c), (e) and (h).
We have passed these binary images to the post-processing
stage to remove the non-vessel components and obtain the
final segmented image.

VOLUME 8, 2020 165063



M. Alhussein et al.: Unsupervised Retinal Vessel Segmentation Using Hessian and Intensity Based Approach

C. POST-PROCESSING
The inputs to the post-processing block are intensity trans-
formed binary image IInte, thick vessels binary image Ithic,
and thin vessels binary image Ithin as shown in Fig-
ure 7 (a), (b) and (c) respectively. The final step of retinal
blood vessel segmentation is the removal of non-vessel com-
ponents from each of the input binary image. To achieve
this, we first obtain the connected components in each of
the binary image and then take into consideration the geo-
metric structural properties of those connected regions to fil-
ter out the non-vessel components. These region parameters
are features whereby thresholds can be empirically investi-
gated or learned using artificial intelligent techniques. In this
work, we consider area, eccentricity and solidity as region
parameters to empirically obtain the thresholds to remove
the non-vessel components from the input binary images.
The area is defined as the total pixels count in a region
(connected). The solidity is the ratio of connected compo-
nents area and its convex hull. The eccentricity is the ratio
of distance from the center to the foci and the distance from
the center to the vertex. As the retinal vessels are elongated
patches, therefore, for each connected component to be a
vessel, the area should be high, the eccentricity should be
close to one, and the solidity should be low. We investigated
empirically the region parameters of components (the con-
nected ones) in each of the binary image (input) and made
the following observations;
• The components having eccentricity below 0.95 and
solidity above 0.40 are anticipated as non-vessels.

• The components that are too large in area (the largest
connected component in a binary image) have eccentric-
ity and solidity values well below 0.95 and 0.20 respec-
tively, and are anticipated as vessels.

• The components having area less than 100 pixels are
anticipated as non-vessels.

To summarize the post-processing stage, we perform the
following steps for each input binary image;
• Find the connected components by adopting Matlab
command bwconncomp.

• Obtain the region parameters such as area, eccentricity
and solidity using Matlab command regionprop.

• Apply the empirically investigated threshold values of
region properties to remove the non-vessel components.

The above mentioned observations helped in determining
the threshold values of region parameters. These threshold
values were applied separately to each of the input binary
image. The final segmented image is then obtained by com-
bining the thresholded images using logical OR operation as
shown in Figure 7 (g). We have observed that if the input
binary images were fused before applying the empirically
calculated threshold values, then it is anticipated with high
probability that some vessel components might merge with
non-vessel components. This is the reason, we perform the
post-processing steps for each input binary image separately.

FIGURE 7. Post-processing stages (a) Input intensity transformed binary
image IInte. (b) Input thick vessels binary image Ithic. (c) Input thin
vessels binary image Ithin. (d) Thresholded intensity transformed binary
image I’Inte. (e) Thresholded thick vessels binary image I’thic.
(f) Thresholded thin vessels binary image I’thin. (g) Final segmented
image by fusing the thresholded images using logical or operation.
(h) The ground truth image.

IV. EXPERIMENTAL RESULTS
We have used retinal image databases (DRIVE and
CHASE_DB1) for evaluating the performance of the devel-
oped unsupervised machine learning approach.

A. DATABASES
The details of the two used retinal image databases are pro-
vided below.

1) CHASE_DB1: This is a database of retinal images
which covers fourteen pediatric subjects [40]

2) DRIVE: This database contains retinal fundus images
covering a wider age range of diabetic patients from
Netherlands [41]

In each image of the DRIVE database, the vessel trees
are manually segmented. Furthermore, each image is accom-
panied by a mask in the DRIVE database. The binary
mask demarcate the field of view (FOV) and is avail-
able only in DRIVE database but is not available for
CHASE_DB1 database. Consequently, some well-known
methods are applied for creating the masks for the
CHASE_DB1 databases [42]. Both the CHASE_DB1 and
the DRIVE databases have separate training and test-
ing. We resize the CHASE_DB1 retinal images into the
same dimensions as DRIVE retinal images to keep the
parameters of the proposed model constant, for exam-
ple, the radius of the structuring element and eigenvalues
transformation.

The details of the two evaluated retinal image databases are
provided in the Table 1.

165064 VOLUME 8, 2020



M. Alhussein et al.: Unsupervised Retinal Vessel Segmentation Using Hessian and Intensity Based Approach

TABLE 1. The details of the two evaluated databases.

B. EVALUATION CRITERION
The vessel segmentation approaches are designed and imple-
mented for differentiating between vessels and background.
The manually marked ‘‘ground truth’’ images are utilized
for assessing the developed approach. The four standard
evaluation metrics provided below are generally assessed for
comparing the performance of the developed method.

1) True Positive (TP): The vessels pixels which are cor-
rectly detected by the developed approach

2) False Negative (FN): The vessels pixels which are
detected as background pixels by developed approach

3) True Negative (TN): The non-vessels pixels which are
detected (correctly) as non-vessels pixels by the devel-
oped approach

4) False Positive (FP): The non-vessels pixels detected
(incorrectly) as vessels pixels by the developed
approach

The parameters provided above are used for evaluating the
three main evaluation metrics of the developed approach (For
the pixels inside FOV) [17]:

Acc =
TP+ TN

TP+ FN + TN + FP
(9)

Se =
TP

TP+ FN
(10)

Sp =
TN

TN + FP
(11)

MCC =
(TP×TN−FP×FN )

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(12)

The equation (9), (10), (11), and (12) denote accuracy,
sensitivity and specificity and MCC respectively. The accu-
racy is the ratio of the correctly detected pixels (vessels or
background) to rest of all pixels in the FOV of the mask. The
sensitivity and the specificity measures the detection ratio of
the vessel vs non-vessel. The MCC is a balanced accuracy
metric that is used to measures the quality of binary classifi-
cation. It is well suited for problems with class imbalance as
it is with the case of retinal vessel segmentation. The MCC
values closer to +1 indicates better segmentation method.

C. EVALUATION OF PROPOSED METHOD
The various individual evaluation metrics and their average
determined by applying the developed approach on twenty
test images of the DRIVE dataset are shown in Table 2. It can
be noted that the variation in the sensitivity for the various
images is high while it is low for specificity and accuracy.

By performing simulations on the DRIVE database, our
overall obtained sensitivity, specificity, accuracy, AUC and

TABLE 2. Evaluation of the Proposed Method on DRIVE database.

FIGURE 8. Segmentation results of the proposed method on DRIVE
dataset. Image 1 (top row) and Image 20 (bottom row).

MCC are 0.7851, 0.9724, 0.9559, 0.8787 and 0.7481 respec-
tively. The AUC is determined using the equation from [36].
In order to obtain the average values, we run the model for
five times. The segmentation results of proposed method on
DRIVE database are presented in Figure 8, where the image 1
of the test set is shown in the top row while image 20 is
shown in bottom row. In both the rows, the first, second and
third columns denote the original image, the ground truth and
the segmented image respectively. The various parameters
including the TP, FP and FN are indicated using white, red
and green colors. The FPs are the results of over-segmentation
of the small vessels and some lesions. In column 4 of this
figure, it can be observed that, the developed method is
capable of detecting most of the blood vessels correctly.

For the CHASE_DB1 database, we obtained average
scores of 0.7776, 0.9634, 0.9505, 0.8705 and 0.6806 for
sensitivity, specificity, accuracy, AUC and MCC respec-
tively. The segmentation results of proposed method on
CHASE_DB1 database are presented in Figure 9, where
the image 13L of the test set is shown in the top row
while image 14L is shown in bottom row. We can observe
that, the developed method is capable of detecting most of
the blood vessels correctly in the representative images of
CHASE_DB1 database. As seen in column 4 of Figure 9,
there are few FPs that sometimes occur around the optic
disk region or certain type of pathologies that present strong
contrast.
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TABLE 3. The sensitivity, specificity and accuracy of individual as well as various combinations of segmented images in the proposed framework.

FIGURE 9. Segmentation results of the proposed method on CHASE test
dataset. Image 13L (top row) and Image 14L (bottom row).

FIGURE 10. Image 12 from DRIVE test database, (a) Ground truth.
(b) Segmented Image; Intensity transformed binary image (green), thick
vessel enhanced binary image (blue) and thin vessel enhanced binary
image (red).

The segmentation results of proposed method on DRIVE
dataset for Image 12 are presented in Figure 10, where (a) is
the ground truth while (b) is the segmented image. In this
figure, the results of the intensity transformation are repre-
sented in green while the thick and thin enhanced vessels are
shown blue and red respectively. In this figure, each binary
image is overlapped to show that the importance of individual
contributions from intensity transformed approach as well as
Hessian based approach.

V. DISCUSSION
The segmentation and analysis of retinal vascular structure
can assist in diagnosing numerous diseases including Glau-
coma, DR and hypertension. Usually, the researcher develop
automatic methods for studying the variations in various
physical parameters including the diameter of blood vessel
(retinal), the creation of new retinal blood vessels and the

TABLE 4. Comparison with state-of-the-art methods on the DRIVE
database.

TABLE 5. Comparison with state-of-the-art methods on the
CHASE_DB1 database.

branching of the retinal blood vessels. The accurate segmen-
tation of the vascular structure is crucial due to the fact that
the diagnosis of various diseases is dependent on it. But due
to the presence of numerous pathologies in retinal images,
vascular segmentation is a challenging task.

The segmentation of wide and thin vessels simultaneously
is a challenging task because of class imbalance and contrast
variability. In [43], the authors examined the ground truth
images and observed that around 77% of the vessel pixels
belong to thick vessels. This observation was based on an
assumption that the vessel pixels belong to a thin vessel if
the thickness is less than three pixels. Most of the segmen-
tation methods, especially unsupervised, treat all the vessel
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TABLE 6. Average time for processing one image.

pixels with equal importance. It results in a more accurate
segmentation of thick vessels as compared to thin vessels.
Regarding the contrast variability, the retinal vessels have
varying contrast due to which wide vessels (higher contrast)
can be extracted easily while it is challenging to extract the
thin vessels (poor contrast).

A. OPTIMAL CONFIGURATION OF PROPOSED MODEL
We compare the performance of the developed approach
with various combinations of segmented images based on
different configurations. Additionally, the performance of the
developed approach without Wiener filter as well as without
region parameter thresholding is presented. Table 3 shows
the performance evaluation of individual as well as various
combinations of segmented images using intensity based
approach and hessian based approach for thick and thin vessel
enhanced images. Table 3 clearly indicates that the proposed
method outperforms individual approach based segmented
images as well as various combinations of segmented images,
especially a combination of thick and thin vessel enhanced
image. For the DRIVE and CHASE_DB1 datasets, the sen-
sitivity of the proposed method without Wiener filter is high
but the specificity and accuracy are comparatively low.

The performance of the proposed approach is better on
the DRIVE dataset than the CHASE_DB dataset as shown
in Table 3. In the DRIVE dataset, the classification of the
background pixel is better which results in higher accu-
racy and sensitivity. For the case of CHASE_DB1 dataset,
the obtained results are comparable to vast majority of the
existing unsupervised machine learning based segmentation
approaches. However, slightly lower segmentation accuracy
observed in the CHASE_DB1 can be due to problem of
central vessel reflection, uneven background illumination
or low inter-vessels contrast. The accurate segmentation of
CHASE_DB1 database is challenging because of the men-
tioned attributes of the fundus images.

In another experiment, we evaluated the performance of
proposed method without region-based parameter thresh-
olding. We only remove less than or equal to 50 uncon-
nected pixels by considering them as non-vessels then, for
DRIVE dataset, we obtain 0.7914, 0.9697, 0.9540, 0.8806,

and 0.7275 as sensitivity, specificity, accuracy, AUC and
MCC. Table 3 shows that the proposed method (with region
parameter thresholding) achieved slightly lower sensitivity
but higher specificity, accuracy and MCC. We believe that
by incorporating the non-vascular component removal using
region parameters thresholding is an optimal post-processing
step. It will eliminate the non-vascular components from the
segmented image and improve the overall performance of the
method.

B. COMPARISON WITH STATE-OF-THE-ART
To assess the performance of our developed framework,
we have performed experimentation on two well-known
databases that are publicly available i.e. DRIVE and
CHASE_DB1. Based on these two databases, we made a
comparison between our achieved results and the represen-
tative models from the literature. We have taken the values of
evaluation metrics of various state-of-the-art methods men-
tioned in Table 4 and Table 5 from their respective papers. The
best three results in each column of the table are highlighted
in the red, the green, and the blue which denotes best, second
best, and third best results respectively.

From Table 4, it is pertinent that, on the DRIVE database,
the sensitivity, accuracy, and AUC of the developed frame-
work is better compared to the second human observer. It can
also be observed in the same table that the sensitivity and
AUC of the developed framework are the best among the
unsupervised approaches respectively. The sensitivity of [44]
and [45] are the second-best while that of the [16] third-best
among the unsupervised approaches. It is pertinent to note
here that [44] and [16] achieved such high sensitivity at the
cost of specificity and accuracy. Our obtained specificity is
slightly lower than the specificity of [46], [47], and [48]
which are the best, the second best and third best among
unsupervised methods respectively. The average accuracy of
the proposed method lies in fourth place close behind [23]
who achieved third-best accuracy at the cost of sensitivity.
Talking about MCC, our method outperforms [46] and [23]
who achieved best specificity and third-best accuracy respec-
tively. The MCC of our method is in second-place close
behind [25].
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For the CHASE_DB1 database, from Table 5, it can be
observed that the sensitivity, AUC and MCC of the proposed
method are the best in the unsupervised approaches. The
sensitivity of [17] is the second best while that of the [30]
third best among the unsupervised methods respectively. Our
obtained specificity is slightly lower than the specificity
of [40], [46], and [17] which are the best, the second best
and third best among unsupervised methods respectively.
It is pertinent to note here that [40] achieved such high
sensitivity at the cost of specificity and accuracy. The same
local adaptive thresholding technique proposed by Dash [46]
scores the highest accuracy with our method in second place.
Finally, it should be noted that the AUC and MCC of the pro-
posed method achieved best score among the unsupervised
approaches.

From Table 6, the average time required to process one
image on a computer with 2.4 GHz CPU and 16 GB RAM
for the DRIVE and CHASE_DB1 databases is 40.65 seconds
and 32.48 seconds respectively. The different execution time
for the two databases is due to the different sizes of the con-
textual region adaptively selected based on the modified PSO
algorithm. The proposed method is computationally efficient
and fast comparable to many state-of-the-art methods.

VI. CONCLUSION
We have developed a less computational unsupervised frame-
work for vessel segmentation. Our contributions are mainly
in three aspects. First, rather than using default parameters
of CLAHE for the contrast enhancement of retinal images,
a pre-processing schemewas devised by tuning the contextual
region of CLAHE using improved PSO. Second, the Hessian
matrix approach and intensity transformation method were
separately applied to the pre-processed image to extract the
thick and thin vessel enhanced image and intensity trans-
formed image respectively. Third, a post-processing strat-
egy based on region parameters of connected components
in the binary images was adapted. The threshold values of
region parameters were empirically investigated and applied
separately on thick, thin and intensity transformed binary
images to remove the non-vessel components. The logical
OR operation is performed on the thresholded images for
obtaining the segmented binary image. The DRIVE and
CHASE_DB1 datasets are used for assessing the sensitiv-
ity, specificity, accuracy, AUC and MCC of the developed
unsupervised approach. Comparatively, our method exhibits
all-round performance on both databases and accomplishes
same or even better in comparison with existing literature.

In this work, we target the class imbalance and contrast
variability challenges by incorporating the multi-scale Hes-
sian approach and modified PSO-CLAHE based contrast
enhancement. The proposed method may find it challenging
to segment very thin vessels especially single pixels wide.
However, it results in the segmentation of some of the thin
vessels which are hard to be segmented using many state-
of-the-art unsupervised methods. The slight improvement in
sensitivity, accuracy, and MCC is due to the segmentation

of some of these thin vessels. The achieved results confirm
that the developed framework can be applied for retinal blood
vessel segmentation.
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