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ABSTRACT Traffic classification will be a key aspect in the operation of future 5G cellular networks,
where services of very different nature will coexist. Unfortunately, data encryption makes this task very
difficult. To overcome this issue, flow-based schemes have been proposed based on payload-independent
features extracted from the Internet Protocol (IP) traffic flow. However, such an approach relies on the use
of expensive traffic probes in the core network. Alternatively, in this paper, an offline method for encrypted
traffic classification in the radio interface is presented. The method divides connections per service class
by analyzing only features in radio connection traces collected by base stations. For this purpose, it relies
on unsupervised learning, namely agglomerative hierarchical clustering. Thus, it can be applied in the
absence of labeled data (seldom available in operational cellular networks). Likewise, it can also identify
new services launched in the network. Method assessment is performed over a real trace dataset taken from
a live Long Term Evolution (LTE) network. Results show that traffic shares per application class estimated
by the proposed method are similar to those provided by a vendor report.

INDEX TERMS Traffic classification, radio access network, trace, unsupervised learning, clustering.

I. INTRODUCTION
In the last years, the success of smartphones and tables
has opened up a new world of exciting applications for
mobile users. The global mobile application market size was
valued at $106.27 billion in 2018, and projected to reach
$407.31 billion by 2026 [1]. This trend will continue with
future 5G systems, whose improved connectivity will be
exploited to create innovative use cases. All these changes
have forced cellular operators to change the way they man-
age their systems from a network-centric to a user-centric
approach focused on Quality of Experience (QoE) [2].

For the above purpose, operators need proper tools to
predict, monitor and control the QoE offered to their cus-
tomers [3]. With recent advances in information technologies
and data science, the newest traffic monitoring and analysis
solutions can leverage the huge amount of information from
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network elements and interfaces in mobile networks [4].
To make the most of these tools, it is key to identify the
service demanded by the user at all times. In this context,
traffic classification aims to associate network traffic with
the underlying generating application. In current cellular net-
works, accurate traffic classification can benefit many net-
work management tasks, such as capacity planning, traffic
policy and charging, troubleshooting or QoE management.
For this reason, in Long Term Evolution (LTE) systems, each
connection has a Quality-of-service Class Identifier (QCI),
used for prioritizing services [5]. Such information is regis-
tered in measurements collected by radio network elements.
However, even if someQCIs are associated to a single service,
other QCIs comprise services of very different nature. In par-
ticular, QCIs 6, 8 and 9 comprise a mixture of multimedia,
interactive and Transmission Control Protocol (TCP)-based
services, namely instant messaging, streaming, web surf-
ing or app download. Such a coarse granularity compli-
cates any application-oriented task. Then, more precise traffic
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classification methods are required. In future 5G networks,
identifying the traffic mix will be key to design fine-grained
slices with QoE control, mobile edge/multi-access computing
and network functions optimized per service [6].

In legacy Internet Protocol (IP)-based networks, traffic was
classified in the past by port number [7]. Such an approach
is today unreliable due to the proliferation of new appli-
cations with non-standard or randomly generated ports [8].
As an alternative, payload-based methods (e.g., deep packet
inspection) match the IP packet payload with a set of stored
signatures to classify network traffic [9]. However, such an
approach requires high storage and processing capacity, and
it is useless for encrypted traffic [10]. To solve these limita-
tions, several works tackle traffic classification by analyzing
payload-independent flow characteristics. These techniques
rely on the fact that traffic from different applications typ-
ically have distinct flow patterns (a.k.a., app fingerprints),
which can be detected by Supervised Learning (SL) algo-
rithms [11]. Unfortunately, SL-based classifiers exclusively
consider services included in the training dataset, and are
therefore unable to identify new services arising in the net-
work. Moreover, these methods depend on large quantities
of labeled data, which are difficult to obtain. For these rea-
sons, the design of semi-supervised [12] or unsupervised [13]
schemes is considered a promising research direction [14].
Nonetheless, in the particular case of mobile networks, both
supervised or unsupervised flow-based traffic classification
require probes that analyze traffic in the core network.
In practice, operators are reluctant to install such probes
because of the high associated costs. As an alternative, it is
possible to process connection traces collected in the radio
interface bymeans of big data analytics techniques. Such very
detailed information can be used to classify traffic without
investing in network probes.

In this work, an offline method for coarse-grained
encrypted traffic classification in cellular radio access
networks is presented. The method relies on unsupervised
learning to classify traffic into broad service classes. Unlike
classical approaches, based on IP traffic analysis by probes in
the core network, the proposedmethod uses traffic descriptors
from connection traces in the radio interface to perform the
classification. Likewise, it can be applied in the absence of
labeled data (seldom available in mobile networks) and iden-
tify new types of services launched in the network. Validation
is performed over a dataset from a live LTE network. The
main contributions of this work are: a) the definition of a
set of traffic descriptors to classify and characterize traffic
in the radio interface, and b) a method for coarse-grained
encrypted traffic classification in absence of labeled data
based on such descriptors. The proposed offline method is
conceived to make the most of existing trace datasets for
QoE-driven network planning and optimization.

The rest of the document is organized as follows. Section II
presents an overview of related work. Section III introduces
some key concepts related to the proposed classification
method, described in section IV. Section V presents the

validation of the method in a live LTE network. Finally,
section VI summarizes the main conclusions.

II. RELATED WORK
Encrypted traffic classification has been extensively covered
in the literature. In fixed networks, several flow-based
methods have been proposed to classify traffic in real time by
using the first packets of the flow (early classification) [15],
[16] or offline based on the whole flow (late classifica-
tion) [9]. These approaches have also been extended to
wireless networks, by leveraging the ability of SL to iden-
tify app fingerprints. In [17], a device-fingerprinting scheme
based on learning traffic patterns of background activities
is proposed. The method uses support vector and k-nearest
neighbors classifiers, trained with data from 20 users with
different combinations of apps connected to a 3G network.
In [18], six types of mobile applications are identified by
analyzing the packet size and transmission direction of the
first 20 packets as input features of a hidden Markov model.
In [11], a framework for fingerprinting and identification of
mobile apps is presented based on decision trees and sup-
port vector classifiers trained with statistical flow features
grouped based on timing and destination IP address/port.
In [19], the same framework is used to assess the degradation
of classification performance due to changes in app finger-
prints. In [20], an ensemble approach combining different
state-of-the-art classifiers is proposed. Four classes of com-
bination techniques are compared, differing in accepted clas-
sifiers’ outputs, training requirements and learning scheme.
Validation on a dataset of real user activity shows higher
accuracy compared to the individual use of the considered
classifiers.

App fingerprints vary significantly with time due to ter-
minal evolution, app updates, user behavior, etc. Thus,
classification models must be retrained with new data
periodically [19]. To overcome this issue, other works pro-
pose classifiers based on deep learning, that work directly on
input data by automatically distilling structured and complex
feature representations at the expense of a higher training
complexity and need for larger datasets [14]. In wireless
networks, this approach has been considered via variational
autoencoder networks [21], convolutional networks [22] or
multi-modal classifiers [6], [23]. Nonetheless, as explained
above, using SL flow-based classifiers in mobile networks
requires a large training dataset and implies installing probes
in the core network, which is undesirable for network opera-
tors. In this work, the former shortcoming is circumvented by
unsupervised learning, already used for traffic classification
in fixed networks [13], but not in mobile networks. For this
purpose, the analysis relies on radio connection traces, which
can be collected in the absence of probes in the core network.

With recent advances in data analytics, several works
have considered the use of connection traces for network
management in the context of self-organizing networks. Their
ability to generate new indicators different from counters
provided by vendors is extremely valuable for operators [24].
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For instance, traces can be used in network planning to derive
spectral efficiency curves required in cellular planning and
simulation [25] or the spatiotemporal distribution of radio
resources in a live network [26]. Likewise, traces can be used
in the operational stage to tune network parameters (e.g., link
adaptation offset [27], antenna tilt angle [28] or inter-system
handover margin [29]) or find the root cause of problems
(e.g., dropped connections [30]). In this work, information in
radio connection traces is used to characterize connections
from different service classes. To the authors’ knowledge,
no traffic classification method based on unsupervised learn-
ing over performance indicators in radio connection traces
has been proposed.

III. KEY CONCEPTS
In this section, some key concepts for the proposed classifi-
cation system are explained, namely radio connection traces
and data encapsulation in LTE.

A. TRACES
Radio connection traces contain signaling events in the radio
interface [31]. An event is a report including measurements
and performance information (e.g., signal level, bit rate, etc.).
Events are grouped in two categories: internal and exter-
nal events. Internal events are generated by base stations
(e.g., evolved Nodes B in LTE) and are specific to each
vendor. In contrast, external events include signaling mes-
sages that the base station exchanges with other network
equipment via standard protocols, such as Radio Resource
Control (RRC) or S1 Application Protocol (S1AP). Events
selected by the network operator are registered in a trace file
per cell generated periodically after each reporting period
(currently, 15 min). Such file is then sent to the Operation
and Support System (OSS). Two types of trace files are distin-
guished: Cell Traffic Recording (CTR) and User Equipment
Traffic Recording (UETR). While CTRs store events of all
users in the cell anonymously, UETRs store information of a
specific user selected by the operator [32]. In this work, for
privacy reasons, CTRs are used to collect traffic descriptor
statistics for all users in the network.

CTRs are binary files in ASN.1 format. To compute traffic
descriptors for classification purposes, these files must be
first converted into a readable format (e.g., a CSV file). Each
file comprises events from users demanding services in a cell.
An event includes timestamp, user identifier, cell identifier,
QCI and a set of traffic parameters that differ depending
on the event type. For ease of analysis, information in each
file is divided per event type and synchronized. Later, user
and node identifiers are used to build individual connections.
A connection comprises information from a user demanding a
certain service in a particular cell. Each connection includes
user identifier, cell identifier and a set of traffic descriptors
computed from information in events. In this work, the fol-
lowing traffic descriptors are considered:

• The RRC connection time, TRRC [s]. A RRC connection
starts when a service is requested and lasts until the user
leaves the cell, the connection is closed explicitly or the
user inactivity timer expires. Such a timer often has a
default value of 10 s [33]. Thus, in a RRC connection
of 13 s, the user may transmit during the first 3 s and the
inactivity timer expires 10 s later. The connection time
excluding that timer (if that is the cause of connection
release) is here referred to as the effective connection
time, Teff .

• The total DownLink (DL) traffic volume at the packet
data converge protocol level, VDL [bytes].

• The UpLink (UL) traffic volume ratio, ηUL [%], com-
puted as

ηUL = 100×
VUL

VUL + VDL
. (1)

• The DL traffic volume ratio transmitted in last Trans-
mission Time Intervals (i.e, TTIs when the transmission
buffer becomes empty), ηlastTTIDL , computed as

ηlastTTIDL =
V lastTTI
DL

VDL
. (2)

• The DL activity ratio, τ activeDL , computed as the ratio
between active TTIs (i.e., those with data to transmit)
and the effective duration of the connection,

τ activeDL =
T activeDL

Teff
. (3)

• The DL session throughput, TH session
DL [bps], computed

as the volume transmitted in the DL divided by the
effective duration of the connection,

TH session
DL =

8VDL
Teff

. (4)

As shown in previous works [34], the above traffic descrip-
tors can easily be computed per connection from information
in common signaling events (e.g., connection setup, con-
nection release, etc.). All of them are payload-independent,
so they can be collected even if traffic is encrypted at applica-
tion level. Moreover, most are ratios, showing similar values
regardless of encryption scheme. Nonetheless, some of these
descriptors are strongly influenced by radio link and net-
work conditions (e.g., ηlastTTIDL and τ activeDL depend on spectral
efficiency, cell bandwidth, available user capacity, schedul-
ing algorithm, etc.). Thus, connections of the same service
might have different values of these descriptors. Likewise,
connections of different services might have similar values of
these indicators, making it difficult to isolate services. Hence,
it is advisable to develop new traffic descriptors that are less
dependent on network performance.

B. DATA ENCAPSULATION PROCESS IN LTE
To reduce design complexity, most networks are organized
into protocol layers, each one built upon the one below.
As a result, data generated by applications goes through an
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TABLE 1. Traffic descriptors at different protocol layers for 5 different services in LTE.

encapsulation process. Each layer adds a header and passes
the data to the next layer, until the lowest layer is reached,
where actual communication occurs through the physical
medium.

FIGURE 1. Example of packet encapsulation in the LTE user plane.

Fig. 1 shows an example of the encapsulation scheme in
the user plane of the LTE radio interface. The upper level
is the application layer, which contains application-specific
protocols (e.g., Hypertext Transfer Protocol -HTTP-, File
Transfer Protocol -FTP-, etc.). These protocols generate data
packets of very different sizes. Below the application layer
is the transport layer, which is responsible for transferring
data between application peers. The primary two protocols
on this layer are Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). UDP is a stateless and

connectionless option, providing fast, unreliable data transfer,
suitable for streaming services. In contrast, TCP is stateful
and connection-oriented, providing reliable transmission by
guaranteeing in-order data delivery and retransmissions, suit-
able for web or file transfer. In both cases, application data
packets are broken into smaller more manageable pieces. The
maximum size of these pieces (a.k.a., Maximum Segment
Size -MSS-) is usually restricted by the maximum trans-
fer unit of the underlying network. In TCP, flow control
uses a sliding window whose size limits how many bytes
may be sent (one or more segments). When a segment is
correctly received, the receiver sends an acknowledgment
packet (ACK) and informs about how many bytes can still
be received. Below the transport layer is the network layer,
responsible for connecting devices with the Internet Proto-
col (IP) [35]. In the link layer, the Packet Data Converge
Protocol (PDCP) transports IP datagrams, provides header
compression (if required), ciphering and integrity protection.
Below PDCP, Radio Link Control (RLC) segments and con-
catenates PDCP packets to adapt them to the transport block
size in the Medium Access Control (MAC) layer. RLC has
threemodes of operation: transparent mode, unacknowledged
mode and acknowledge mode. The latter mode is often
used to deliver packets through dedicated logical channels
(i.e., data traffic) [36].

The performance of the above protocols is strongly
influenced by the type of service requested by the user.
Different applications have different traffic characteristics
and communication patterns. For instance, app or file down-
loads generate large packets, while messaging services gen-
erate infrequent small packets. To support this statement,
Table 1 breaks down traffic descriptors at different proto-
col layers for 4 of the most demanded services in LTE,
namely instant messaging via WhatsApp, web browsing
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(in two different webpages), video streaming via YouTube
and app download via Google Play Store. Data in the table is
obtained by analyzing traffic from live applications captured
in amobile terminal connected to a commercial LTE network.
As expected, WhatsApp reports the lowest TCP packet size,
with an average packet size of 71 bytes. In fact, no packet fills
the transport MSS. For the rest of services (i.e., data-hungry
services), the percentage of packets that fill the transport
MSS varies. In app download, video streaming and web with
large objects, application data chunks are large enough to fill
payload in most transport packets (≥ 86%). In contrast, in the
case of web browsing in simple webs, only 73% of packets
fill TCP payload, revealing the presence of some application
data chunks with smaller size (e.g., small objects).

Different packet sizes of data-hungry services have an
impact on the value of ηUL descriptor. This indicator reflects
in which direction (i.e., UL, DL or both) data traffic is
transmitted in a connection. Connections with ηUL close to
0%/100% belong to asymmetric download/upload services,
respectively, while connections with ηUL close to 50% cor-
respond to symmetric services. For download connections
(the most frequent in data-hungry services), the value of ηUL
can be approximated analytically by considering a connec-
tion with arbitrarily large application data chunks, where
all transport packets are completely filled (i.e., a full buffer
service). Such an example is included in column ‘Full Buffer’
in Table 1. VDL at PDCP level is computed as the maximum
TCP payload (i.e., 1348 bytes in LTE, according to mea-
surements in Table 1) plus 32 + 20 bytes of TCP and IP
headers. Likewise, VUL is approximated by the size of ACK
packet (52 bytes). Thus, ηUL results in 3.58%. Connections
with ηUL less than that threshold belong to download services
characterized by large data chunks (e.g., app download).
In contrast, connections with a higher ηUL belong to upload
services (e.g., file upload), symmetric services (e.g., video
conference) or download services with smaller data chunk
size (e.g., web browsing with small objects). Such a threshold
is supported by measurements in Table 1. It is observed
that Google Play Store, YouTube and the large web show
ηUL below 3.58%. In contrast, the simple web shows ηUL
above 3.58%, and WhatsApp shows ηUL≈50%, since it is a
symmetric service.

It should be pointed out that, in the analytical bound
obtained for full buffer service, it is assumed that: a) there
is no header compression in PDCP, which is valid for most
data traffic in LTE [36], b) TCP protocol is used in the
transport layer, and c) each TCP packet is acknowledged
by an ACK. The latter assumptions are not always true in
current networks. On the contrary, results for app download
service in Table 1 show that 30,754 packets are sent in the
DL and only 10,991 ACKs are sent in the UL (i.e., 1 UL
ACK message acknowledges 2.8 DL packets on average).
Likewise, YouTube uses UDP protocol. If some of these
conditions do not hold (e.g., there is header compression,
less ACKs are sent, or a different transport protocol is used),
a lower value of ηDL will be obtained. Thus, it can be stated

that connections filling most transport packets cannot have
ηDL higher than 3.58%.

IV. CLASSIFICATION METHOD
This section describes the proposed traffic classification
method. The aim of the method is: a) to divide traffic
into broad application groups (e.g., messaging services, web
browsing, streaming services, etc.) using information from
radio connection traces provided by network operators, and
b) to report the main features of each group.

FIGURE 2. Proposed classification method.

Method structure is shown in Fig. 2. Once traces are col-
lected and processed, a new set of traffic descriptorsmodeling
radio connections at burst level is computed per connection
and added to the dataset. Then, the dataset is broken up
into disjoint groups by a 4-step procedure. It will be shown
later that services offered in mobile networks are unevenly
demanded (e.g., instant messaging is more demanded than
file download). Performing clustering over an imbalanced
dataset can lead to the classes with less members being shad-
owed by those with more members [37]. A common solution
is to re-sample the dataset by under-sampling the classes with
more data points, but this process requires labeled data, which
is seldom available in mobile networks due to the difficulty
of combining data from the radio access and core domains.
To circumvent this problem, the connection dataset is first
split into broad connection classes based on a priori knowl-
edge. Then, connections in each broad class, from services
with comparable demand, are divided into clusters by means
of unsupervised clustering. Finally, the obtained groups are
labeled manually by analyzing the properties of each group.
A more detailed explanation of each step is given next.

A. TRAFFIC MODELING IN THE RADIO INTERFACE
Traffic carried during a connection consists of one or more
data chunks sent from/to the network. As explained above,
chunks generated at the application layer can be fragmented
into smaller packets in lower layers. Then, as a result of
packet scheduling, packets belonging to the same data chunk
can be transmitted in several data bursts over the radio inter-
face, where traces are collected [36]. Thus, a connection in
the radio interface consists of a series of data bursts, char-
acterized by three parameters: the number of bursts, N burst

DL ,
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the duration per burst, T burstDL (n), and the volume per burst,
V burst
DL (n) (where n denotes the burst index, since burst dura-

tion and volume may vary across bursts). Those parameters
strongly depend on the service. For instance, when download-
ing a large file, a single data chunk is available at once at the
application layer, so less bursts are likely to be transmitted
than when downloading a web page comprising many small
objects. Thus, the values of the above parameters can be used
to isolate different services in the radio interface.

FIGURE 3. Connection model in the radio interface.

Unfortunately, radio connection traces do not explicitly
register information at a burst level. As an alternative, burst
level parameters can be estimated per connection from the set
of traffic descriptors described in section III-A by assuming
that all bursts are equal (i.e., have the same burst volume and
duration), as shown in Fig. 3. First, the activity ratio of a
connection k is expressed as

τ activeDL (k) =
T activeDL (k)
Teff (k)

=
N burst
DL (k) N activeTTI

burst_DL (k)

Teff (k)
=
N activeTTI
burst_DL (k)

T burstDL (k)
, (5)

where N activeTTI
burst_DL (k) is the average number of active TTIs per

burst in DL in connection k . Likewise, by assuming that all
the N activeTTI

DL (k) active TTIs in DL in a connection transmit
the same data volume, V TTI

DL (k), the total volume transmitted
in last TTIs in DL in the connection can be expressed as

V lastTTI
DL (k) = N burst

DL (k) V TTI
DL (k) = N burst

DL (k)
VDL(k)

N activeTTI
DL (k)

= N burst
DL (k)

VDL(k)

N burst
DL (k) N activeTTI

burst_DL (k)

=
VDL(k)

N activeTTI
burst_DL (k)

, (6)

where it has been taken into account that there is only 1 last
TTI per burst, and hence the number of last TTIs in DL in
a connection is N burst

DL (k). Thus, the share of volume in last
TTIs is given by

ηlastTTIDL (k) =
V lastTTI
DL (k)
VDL(k)

=

VDL (k)

N activeTTI
burst_DL (k)

VDL(k)
=

1

N activeTTI
burst_DL (k)

. (7)

By replacing (7) in (5), the average burst duration can be
computed as

T burstDL (k) =
1

τ activeDL (k) ηlastTTIDL (k)
. (8)

Then, the number of bursts is estimated as

N burst
DL (k) =

Teff (k)

T burstDL (k)
, (9)

and finally the average burst size is computed as

V burst
DL (k) =

VDL(k)

N burst
DL (k)

. (10)

In the above equations, it is assumed that: a) every burst
has the same number of active TTIs, and b) every active TTI
transmits the same volume. Both statements may not be true
for some connections due to changing radio conditions, TCP
ramp-up or services with varying burst size (e.g., multiple
objects in a web page). Nonetheless, N burst

DL , T burstDL and V burst
DL

capture the general behavior of the connection, which should
be enough to identify the class of services it belongs to.

B. SPLIT PER DL VOLUME
The DL volume, VDL , allows to separate data-hungry services
from non-data-hungry services. Specifically, connections can
be split into 3 blocks:
• High Volume (HV) block, comprising connections with
VDL ≥ 256 kB, belonging to data-hungry services.
Such a threshold is the 5th percentile of web page size
in mobile version according to a comprehensive anal-
ysis of the 400 top web sites in Alexa ranking [38]
performed with the WebPageTest tool [39]. Moreover,
such a threshold it is below the size of the initial
data chunk of any audio or video in major streaming
platforms [40], [41].

• Medium Volume (MV) block, comprising connections
with 300 B < VDL < 256 kB. This block contains
connections from applications consuming less data. The
lower 300 bytes threshold is the minimum data volume
exchanged by applications providing instant messag-
ing service (Telegram, Viber, etc.), which is the less
data-demanding of the most popular services in current
mobile networks [42]. Such a threshold is also the max-
imum size of push notifications used by mobile applica-
tions to inform users of new events and updates [43].

• Low volume (LV) block, comprising connections with
VDL < 300 B. This block contains traffic from signaling
or push-up notifications.

C. SPLIT PER TRANSPORT SEGMENT SIZE
Different data-hungry services have different size of data
chunks at the application layer. As explained in section III-B,
such a behavior has an impact on the UL/DL volume ratio.
Thus, ηUL can be used to split connections in HV block in
two sub-blocks: a) HV-LC block, comprising connections
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with Heavy data Volume and Large data Chunks that tend
to make the most of payload size at the transport layer, and
b) HV-SC, comprising connections with Heavy data Volume
and some Small data Chunks that may not fill transport
packets. In section III-B, ηUL≈3%was computed as an upper
bound for the former services.

D. AGGLOMERATIVE HIERARCHICAL CLUSTERING
Connections in MV and HV-LC are divided into groups by
means of Agglomerative Hierarchical Clustering (AHC) [44].
AHC groups data points in clusters based on their similarity.
The algorithm starts by treating each data point as a singleton
cluster. Then, (dis)similarity between every pair of data points
in the dataset is computed with a given distance metric, and
the two closest clusters merged into a single cluster by means
of a linkage function based on such similarity information.
This process is repeated until all clusters merge into one root
cluster. The result is a tree-based representation of the data,
referred to as dendrogram.
Among the existing clustering algorithms, AHC is chosen

because: a) it is able to manage datasets with clusters of
different sizes (remember that, in mobile networks, services
are unevenly demanded) and density (connections from a
service can have very similar traffic descriptors or not), b) it
does not require to specify the number of clusters in advance
(in the considered problem, such information is unknown),
and c) the dendrogram itself is valuable to understand the
data.

Most clustering algorithms do not work effectively in
high dimensional space due to the so-called curse of
dimensionality [45].Moreover, in clustering algorithms based
on distance such as AHC, as the number of input features
grows, the distances among data points become all approxi-
mately equal, and no meaningful clusters can be formed [46].
To avoid these undesirable effects, a reduced subset of the
considered traffic descriptors are used as input features to
AHC. Ideally, the selected traffic descriptors must fulfill that:
a) they take different values for different services, b) they
are insensitive to network conditions, and c) they do not
provide redundant information. A preliminary analysis (not
shown here for brevity) reveals that the subset comprising
TRRC ,V burst

DL andN burst
DL fulfills these criteria. Then, only these

3 traffic descriptors are used as input features to AHC.
AHC assume normally distributed data. A log-transfor-

mation is performed over the 3 input features to reduce data
skewness. Moreover, traffic descriptors show very different
ranges of values. For higher accuracy, data is normalized so
that all variables are comparable. For this purpose, a feature
scaling method is used [47]. The normalized value of each
descriptor, inorm, is computed as

inorm =
i− imin

imax − imin
, (11)

where i is the original value of the descriptor (after log-
transformation) and imax and imin are the maximum and

minimum values of the descriptor in the corresponding block
of connections, respectively.

For robustness, the optimal point to cut the dendro-
gram (i.e., the best number of clusters, Nclust ) is found
per block by checking the average silhouette score and the
Calinski–Harabasz (CH) score across a wide range of cut
points. Silhouette score assigns a mark between -1 and 1 to
each sample in the dataset. Positive values show that a sample
is well classified, whereas negative values indicate that the
sample is more similar to a different cluster [48]. In con-
trast, CH score computes the ratio between the within-cluster
dispersion and the between-cluster dispersion [49]. In both
cases, the higher value, the better.

It should be pointed out that connections in LV block con-
sist on signaling and notifications, which are often neglected
in network dimensioning and QoE management. Likewise,
HV-SC block is expected to include a mix of services whose
traffic patterns are not distinguishable by information in
traces. Thus, AHC is not applied into these blocks.

E. GROUP LABELING
Finally, the services included in each group are deduced by
analyzing the median value of traffic descriptors for connec-
tions in the group.

V. PERFORMANCE ASSESSMENT
The proposed classification method is validated using
connection traces from a live LTE network. For clarity,
assessment methodology is first described and results are
presented later.

A. ASSESSMENT METHODOLOGY
The dataset is generated from anonymous traces collected
from 10 am to 11 am (busy hour) in 145 cells covering
125 km2 in an urban area of a live LTE network. This data
should be representative of the entire network traffic because:
a) the time period represents a significant share of daily
network traffic, and b) the area includes financial, residential
and recreational districts, with different user profiles, which
should reduce the influence of time of day. Events provided
by the vendor in traces are:

• INTERNAL_PROC_INITIAL_CTXT_SETUP. Event
reporting connection start time.

• INTERNAL_PROC_UE_CTXT_RELEASE. Event re-
porting connection release time and cause.

• INTERNAL_PER_UE_TRAFFIC_REP. Periodic event
reporting the active number of TTIs in both UL and DL.

• INTERNAL_PER_UE_RB_TRAFFIC_REP. Periodic
event with total data volume in UL and DL and data
volume transmitted in last TTIs.

From those events, all the considered traffic descriptors can
be computed.

Event decoding is performed by a proprietary tool provided
by the network operator, and then connection building is
carried out in Java for computational efficiency. The resulting
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dataset consists of 184,349 connections. It is expected
that most traffic is encrypted by the time the dataset was
collected based on reports published by popular content
providers (e.g., Google [50]). As a consequence, QCI is
the only information available regarding service type. The
dataset comprises 11.5% of connections with QCI 1 (Voice-
over-LTE), 0.1% with QCI 5 (IP Multimedia Subsystem
signaling) and 88.4% with QCIs from 6 to 9 (multime-
dia and TCP-based services). The latter class, comprising
162,965 connections, is divided into application groups by the
proposed classification method. Such a method, referred to as
Enhanced Agglomerative Hierarchical Clustering (E–AHC),
is compared with a naïve method, referred to as Basic
Agglomerative Hierarchical Clustering B–AHC). In B–AHC,
AHC is applied to the connection dataset directly (i.e., with-
out any previous split per VDL or ηUL). This approach, con-
sidered as a benchmark, may be taken by a practitioner with
no prior knowledge on mobile networks.

AHC is implemented with the Cluster Analysis toolbox in
Matlab [51]. In both B–AHC and E–AHC, a ward linkage
function is used, which minimizes the total within-cluster
variance by merging the pair of clusters with minimum
between-cluster distance at each step. The Euclidean distance
is used as distance metric [52].

In the absence of labeled data, which would require using
network probes, the method is validated by checking that
the groups created are consistent with the typical mobile
traffic mix reported by a vendor the year when traces were
collected [53].

FIGURE 4. B–AHC performance with different number of clusters.

B. RESULTS: B–AHC
Fig. 4 shows the average silhouette score and the CH score
obtained with B–AHC for different cuts in the dendrogram
(i.e., Nclust choices). For a better visualization, values for
each indicator are normalized by their maximum value. It is
observed that, in general, the value of both metrics tend to
decrease as the number of clusters increases. The higher
(i.e., the best) value of CH index is obtained when Nclust = 4,

whereas the silhouette value for the same choice is near to the
best value (i.e., the relative value is 0.86). Thus, the connec-
tion dataset is split AHC into 4 service groups.

TABLE 2. Groups in B–AHC method.

Table 2 breaks down the results for B-AHCwithNclust = 4.
For each group, the following information is provided: a)
the number of connections, b) the median value of traffic
descriptors of connections in the group, and c) the percentage
of DL volume carried by connections in the group. Results
show that connections in groups 1 and 2 present very sim-
ilar characteristics (short connections with reduced volume
transmitted in last TTIs). Thus, all these connections should
have been grouped into a single cluster. Moreover, group 4,
comprising long data-intensive connections, has 98.52% of
the total carried traffic in the DL. According to [53], no ser-
vice had such an amount of traffic by the time the dataset was
collected (nor currently). The large number of connections in
this group (e.g., 12.56% of the total) suggests that it contain
connections from several data-hungry services. These incon-
sistencies point out that, as expected, AHC is not performing
well because the number of connections in some services is
extremely large, causing that clustering is focused only on
that particular service. To confirm that bad results are not due
to the AHC algorithm, the experiment is repeated with other
well-known clustering, namely k-means and DBSCAN [54].

The above shortcomings are solved by the proposed
E–AHC method by dividing the dataset into blocks of con-
nections based on a priori knowledge.

C. RESULTS: E–AHC
In E–AHC, the dataset is first divided into 3 blocks based
on connection data volume in the DL (LV, MV and HV
blocks). This split results inMVblock (medium volume) with
the highest number of connections (104,227 connections,
63.99% of the total), LV block (low volume) with 48,615 con-
nections and HV block (high volume) with the lowest number
of connections (7,032, a 4.32% of the total). Then, the lat-
ter block is divided according to ηUL value in 2 blocks:
HV-SC (small data chunks), comprising 7,032 connections,
and HV-LC (large data chunks), with only 3,091 connections.
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TABLE 3. Groups in E—AHC method.

FIGURE 5. E–AHC performance with different number of clusters.

Fig. 5 shows the relative average silhouette and CH scores
obtained when cutting the dendrograms of MV and HV-LC
blocks at different Nclust values. The highest values of both
scores are obtained with Nclust = 2. However, this solution
is discarded, since it provides a too coarse classification.
For Nclust = 4, CH score in MV block has a value of less
than 0.6 compared to the maximum, which is unacceptable.
Likewise, in HV-LC block, a deeper analysis of silhouette
score (not shown here) reveals that the number of samples
with a negative silhouette score value (i.e., which should be
assigned to a different cluster) strongly increases at that point,
which is undesirable. Larger number of clusters lead to worse
performance. Thus, Nclust = 3 is selected as the cut point for
both MV and HV-LC blocks.

Table 3 presents the 8 connection groups obtained at the
end of the classification process. For each group, it provides:
a) the block to which the group belongs, b) the number
of connections, c) the median value of traffic descriptors
of connections in the group, d) the percentage of the total
DL volume carried by connections in the group and e) the

underlying service, guessed by analyzing such values. Groups
are analyzed next.

Connections in LV block (≈30% of the total) make up
group 1. This group consists of very short connections
(TRRC<11 s and, hence, Teff≈1 s) with few data (≈150 B in
both UL and DL), all transmitted in last TTIs (ηlastTTIDL = 1).
As a consequence of the low transmitted data, session
throughput is very low (≈2 kbps). Such a description fits with
push notifications, consisting of lightweight audio or visual
cues sent by specific servers (e.g., Google Cloud Messaging
Server) to inform users about unread messages or updates in
applications [43]. This group may also include some radio
connections comprising only a TCP FIN or RESET packet,
appearing when these packets are delayed more than the user
inactivity timer [33]. In this case, a TCP connection is split
in 2 connections over the radio interface (one with the main
TCP data flow and another with the FIN or RESETmessage).
Note that this group with push notifications is the second
largest in the mobile network under analysis.

MV block is split in groups 2 to 4. Group 2 presents the
highest number of connections (about 33% of the total) with a
short RRC connection time, low traffic volume (≈800 B) and
100% of data transmitted in last TTIs. The fact that TRRC is
very close to the inactivity timer suggests that these connec-
tions consist of a single data chunk at the application layer.
Moreover, ηUL = 49%, revealing that connections belong to
a symmetric service, i.e., users send and receive data. All
these characteristics can be associated to instant messaging
services (e.g., WhatsApp) [42].

Group 3 has less connections than group 2 (23% of
the total) with longer duration (≈8 s without considering
the inactivity timer) and a higher but still limited volume
(≈11 kB). The fact that data is transmitted in last TTIs and
the extremely low activity ratio in the DL (1%) show that
data consists of small data chunks scattered in time (in fact,
N burst
DL = 54). ηUL = 35%, showing that a considerable

amount of the total data is transmitted in the UL. Thus, these
connections are likely due to several interactions between
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user and network. This behavior is also typical of instant
messaging services, where several messages are received/sent
before the inactivity timer expires, so all those messages are
part of the same connection. Note that connections in groups
2 and 3 make up 56% of samples in the dataset, which is
consistent with the fact that instant messaging services are the
most demanded services in mobile networks nowadays [55].

Connections in group 4 are shorter than those of group 3
(TRRC = 12.3 s), with similar DL volume (8 kB) but lower
UL volume ratio (≈25%). The average burst volume is much
higher than in group 3 (V burst

DL = 199 B and 496 B in groups
3 and 4, respectively), showing an increase of data chunk
length. In fact, only 40% of data is transmitted in last TTIs.
This group may be associated with small data files (e.g.,
images, audio recordings, documents, etc.) commonly shared
by e-mail, messaging applications or social networks.

HV-LC block, comprising data-hungry services with large
data chunks at the application layer (i.e., ηDL<3%), is split in
groups 5 to 7. Group 5 presents the lowest number of connec-
tions in the dataset (0.05% of the total) with the longest length
(TRRC≈62 s) and the highest DL data volume (12MB), which
is transmitted in many bursts. In fact, despite the reduced
number of connections, this group accounts for 41.81% of the
total download traffic in the network. The large duration and
DL volume and the presence of bursty traffic suggest that this
group includes connections from audio and video streaming
applications (e.g., YouTube, Netflix, Spotify, etc.). It is worth
noting that the median value of THDL

session in this group in
higher than expected, since 2150 kbps is approximately the
rate of high-definition video [56]. It should be pointed out
that, at the initial phase of a streaming session, a significant
part of the video/audio file (e.g., 40 s) is downloaded at full
speed to avoid re-buffering events. Then, download speed
decreases, approaching the playout rate [40], [41]. Thus,
THDL

session for short videos can be considerably higher than
the playout rate. A deeper analysis of data (not shown here)
reveals that THDL

session for connections in this group tends to
decrease as TRRC increases, which is consistent with the fact
that, in longer videos, download speed tends to playout rate.

Groups 6 and 7 in HV-LC block comprise shorter connec-
tions than group 5 (TRRC≈20 s) with lower VDL (≈2 MB).
The new burst indicators reveal that, in connections in
group 6, data is transmitted in a few very long bursts over
the air interface (the heaviest in the dataset). As a conse-
quence, the activity ratio in the DL and session throughput
are the highest (10.4% and 2.3 Mbps, respectively). These
features fit with full buffer services, such as app download,
software update or large file download via FTP, where the
user demands as many resources as possible until all the data
is transmitted. In contrast, group 7 comprises connections
with a large number of bursts (N burst

DL = 136 in group 7,
compared to 24 in group 6) and lower DL activity ratio (6.7%)
and session throughput (≈1.48Mbps). The higher ratio of last
TTIs (0.17 in group 7, compared to 0.03 in group 6) points
out the presence of small data bursts, which is confirmed by

the lower V burst
DL (6.5 kB in group 7, compared to 16.3 kB

in group 6). Because of the presence of bursts with different
sizes, and the median value of VDL , very similar to the median
size of mobile web pages in Alexa ranking, this group is
labeled as web browsing.

Finally, connections in HV-SC block make up group 8.
Since ηlastTTIDL = 0.23, it is deduced that connections in this
group have medium size data chunks. The median value of
TRRC is 46 s. The reducedDL activity ratio (2.3%) and the low
session throughput (≈250 kbps) point out that such a duration
is due to several user interactions. This group may contain a
mix of services, such as web browsing (e.g., web with many
small objects, or multi-page sessions) or social networks,
where a wide range of services (e.g., instant messaging, file
sharing, short video streaming, etc.) can be demanded in a
single connection.

TABLE 4. Share of DL traffic volume.

In the absence of labeled data, the classification shown
in Table 3 is validated by comparing the results with mobile
traffic statistics published by a vendor [53]. Table 4 shows
the percentage of traffic per application type carried world-
wide in 2016 [53] (i.e., when traces were collected) and
that obtained by E–AHC. According to [53], audio/video
streaming services carry most of the traffic (54.6%) in current
networks. This figure is consistent with results from E–AHC,
which ascribe 41.8% of traffic to these services (group 5).
In [53], 6% of traffic is assigned to web browsing, whereas
the proposed classification system assigns 8.3% of traffic to
this service (group 7). Software update, application download
and file sharing services comprise 6.9% of traffic in [53],
compared to the 9.2% of traffic assigned to full buffer ser-
vices (group 6) by E–AHC. Finally, [53] includes two groups
called Social Networks and Others carrying 32.5% of traffic.
Both groups include traffic of a different nature (e.g., instant
messaging, short videos, small file sharing, etc.), equivalent
to groups 1,2,3, 4 and 8 in A-EHC, carrying 40.7% of volume
in the DL. Nonetheless, note that the classification performed
here is based on traces from a particular network, and percent-
ages may slightly differ from those reported worldwide by the
vendor.

VI. CONCLUSION
In this work, a novel scheme for coarse-grained encrypted
traffic classification in mobile networks has been proposed.
Unlike previous flow-based approaches, based on expensive
traffic probes in the core network, classification is based on
traffic descriptors computed from connection traces collected
on the air interface. To avoid the influence of network condi-
tions, a new set of network-independent indicators describing
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typical application burst behavior per connection has been
developed. The model is based on unsupervised learning,
namely agglomerative hierarchical clustering, so that it can
be applied in absence of labeled data.

Validation has been performed with a dataset from a live
LTE network. Results have shown the limitations of clas-
sical clustering algorithms due to the uneven demand of
services in mobile networks, where push notifications and
instant messaging prevail over other services. To circumvent
this problem, it is essential to exploit a priori knowledge
before applying unsupervised clustering for traffic classifi-
cation. The classification performed by the proposed method
is consistent with the traffic share reported for current live
networks, showing that traffic classification can be performed
without installing expensive probes in the core network.

With the proposed method, radio optimization teams can
make the most of existing trace datasets to build applica-
tion performance maps for network benchmarking purposes.
Since this task is carried out offline, computational efficiency
is not critical. Moreover, the methodology can easily be
extended to other radio access technologies, and is especially
suitable for future 5G systems, where little knowledge is
available about the type of services to come.
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