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ABSTRACT Although the Internet of Things (IoT) can increase efficiency and productivity through
intelligent and remote management, it also increases the risk of cyber-attacks. The potential threats to IoT
applications and the need to reduce risk have recently become an interesting research topic. It is crucial
that effective Intrusion Detection Systems (IDSs) tailored to IoT applications be developed. Such IDSs
require an updated and representative IoT dataset for training and evaluation. However, there is a lack of
benchmark IoT and IIoT datasets for assessing IDSs-enabled IoT systems. This paper addresses this issue
and proposes a new data-driven IoT/IIoT dataset with the ground truth that incorporates a label feature
indicating normal and attack classes, as well as a type feature indicating the sub-classes of attacks targeting
IoT/IIoT applications for multi-classification problems. The proposed dataset, which is named TON_IoT,
includes Telemetry data of IoT/IIoT services, as well as Operating Systems logs and Network traffic of IoT
network, collected from a realistic representation of a medium-scale network at the Cyber Range and IoT
Labs at the UNSWCanberra (Australia). This paper also describes the proposed dataset of the Telemetry data
of IoT/IIoT services and their characteristics. TON_IoT has various advantages that are currently lacking
in the state-of-the-art datasets: i) it has various normal and attack events for different IoT/IIoT services,
and ii) it includes heterogeneous data sources. We evaluated the performance of several popular Machine
Learning (ML) methods and a Deep Learning model in both binary and multi-class classification problems
for intrusion detection purposes using the proposed Telemetry dataset.

INDEX TERMS Internet of Things (IoT), Industrial Internet of Things (IIoT), cybersecurity, intrusion
detection systems (IDSs), dataset.

I. INTRODUCTION
The Internet of Things (IoT) is an emerging paradigm that
enables the interconnection of physical objects and com-
puting capabilities to connect to the Internet. The IoT can
help to build flexible and efficient applications in various
domains such as health care, environmental monitoring, and
industrial control systems [1], [2]. Although IoT can increase
productivity and efficiency through intelligent and remote
management, it also increases the risk of cyber attacks due
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to a lack of security measures in the IoT ecosystem that
exposes IoT devices to malicious attacks from both inside
and outside of enterprise networks [3]. The potential threats
to IoT applications and the need to reduce risks have recently
become a hot topic in the cyber security area. Some IoT-based
applications, also commonly known as Industrial IoT (IIoT)
in the Industry 4.0 revolution, involve mission-critical tasks
such as industrial control and infrastructure systems which
require a high level of security. Reportedly, in the latest attack
on the IIoT applications, several power substations in Ukraine
were compromised resulting in a power black-out which
affects approximately 225,000 customers [4]. A Supervisory
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Control and Data Acquisition (SCADA) system that controls
and monitors the smart grid’s IIoT devices was compromised
by an attacker who successfully acquired privileges to access
SCADA systems through an IT network and took the power
offline [4]. Another example of IoT attacks is the Mirai
botnet in late 2016, which consisted primarily of compro-
mised smart cameras, causing Internet-wide outages when
it overwhelmed several high-profile companies with mas-
sive distributed denial-of-service (DDoS) attacks [5]. Hence,
an efficient and accurate security measure is required to
secure IoT/IIoT applications.

Several security tools (e.g., firewalls, encryption, and
intrusion detection systems) have been extensively used
in traditional IT-based systems. However, such mea-
sures cannot be directly deployed for IoT/IIoT-based
applications without considering their different nature and
characteristics [2], [6], [7]. In general, IoT and IIoT appli-
cations consist of lightweight communication protocols and
resource-constrained devices that have limited computation
power and storage capacity [2], [7]. Consequently, security
applications and cryptographic solutions that require high
computational capabilities cannot be applied to Iot/IIoT.
Moreover, none of these security measures is sufficient to
entirely protect IoT applications from potential threats. Yet,
a full complement of these security tools can design a robust
security system. In order to identify cyber threats against
IoT/IIoT services, it is vital that cyber-security applications
such as intrusion detection systems (IDS) be developed,
specifically designed for IoT and IIoT applications to meet
their special requirements [2], [6], [7].

Intrusion detection systems (IDSs) are widely used as
a second line of defence to monitor systems or network
events to detect possible malicious activities that successfully
evade security perimeters (e.g., firewalls) [8]. The evaluation
of intrusion detection methods is essential and the use of
IoT-related datasets that reflect real-world IoT applications
plays an essential role in evaluating the accuracy as well as
the efficiency of IoT security methods. However, the lack
of availability of real-world datasets for IoT and IIoT
applications presents a major obstacle to the evaluation of
intrusion detection methods tailored to IoT/IIoT applications.
The scarcity of these datasets hinders the design and devel-
opment of IoT-based intrusion detection methods since the
empirical validation and evaluation of such methods should
meet performance expectations [7], [9], [10]. This lack of
availability ismainly due to privacy issues which is whymany
large companies who create these IoT datasets do not show
interest in sharing their data with research communities [9],
[10]. Finally, Buczak and Guven [11] conducted a survey of
cyber-security research using data mining and machine learn-
ing methods for intrusion detection systems. They confirmed
that the unavailability of a labelled dataset is a significant gap
in the literature that must be addressed in order to develop a
promising anomaly-based intrusion detection method.

Various network datasets, for example, KDDCUP99,
NSL-KDD [12], UNSW-NB15 [13] and ISCX [14], were

generated for evaluating IDSs; however, they do not include
any specific characteristics of IoT/IIoT applications as these
datasets contain neither sensors’ reading data (i.e., teleme-
try or measurement data) nor IoT network traffic. The
LWSNDR [15] dataset contains only a homogeneous data
collected from a single and multi-hop Wireless Sensor Net-
works (WSNs), and it does not include any attack scenarios.
Another known dataset is the AWID [16] dataset, which only
contains the network features extracted from Media Access
Control (MAC) layer frame from 802.11 wireless network.
It also does not have the telemetry data of IoT devices.

Sivanathan et al. [17] proposed IoT-based datasets
for IoT device classifications based on network traffic
characteristics; however, these datasets did not include
attack scenarios. Responding to the aforementioned issues,
Koroniotis et al. [18] and Hamza et al. [19] recently proposed
network-based IoT datasets that include attack scenarios.
However, the datasets did not have a variety of attack types
such as ransomware and Cross-site Scripting (XSS); nor they
contain sensor measurement data of IoT devices.

Most of the recently published datasets [12]–[14],
[17]–[19] are network-based datasets, which primarily con-
tain packet-level and flow-level information or a combination
of both, for detecting attacks on the IoT network. However,
they do not have the actual data generated from sensor read-
ings. While these types of datasets could assist in detecting
network-based attacks targeting IIoT systems, they cannot
adequately detect sensor attacks that manipulate sensory data
or compromise IoT devices [20]–[22]. Therefore, there is a
real need for real-world datasets that not only contain sen-
sors’ reading data but also includes various types of attacks
to enable a comprehensive evaluation of data-driven IoT
intrusion detection solutions. These issues have motivated
us to come up with an IoT-related dataset that contains sen-
sors’ reading data as an information source for data-driven
IoT-based IDS to properly monitor the internal behaviour
of IoT applications, hereby protecting them from malicious
activities that are intended to sabotage the functionality of the
targeted applications.

The aim of this paper is to provide a representative and
recent dataset that can be used to accurately design and
evaluate IoT/IIoT defence solutions. We propose a new
data-driven IIoT-based dataset (i.e., Telemetry data) gath-
ered from a representative scale-down testbed for each IoT
device. The proposed datasets are made publicly available
for use by the research community [23]. The testbed includes
seven IoT and IIoT sensors, such as weather and Modbus
sensors, that were used to capture their telemetry data. The
datasets aremade publicly available for the use of the research
community. Moreover, a description of the datasets and their
characteristics are provided here. We also evaluated the per-
formance of data-driven intrusion detection methods as a
binary classification problem, based on several supervised
machine learning methods using the proposed IIoT-based
datasets. Then, all IoT device datasets are combined into a
single dataset, named combined_IoT_dataset , and evaluated
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on binary and multi-class classification problems. Through-
out the paper, we will use the terms IoT and IIoT interchange-
ably since the proposed datasets have a variety of IoT and
IIoT sensors.

The key contributions of this study are listed as follows:
1) A representative medium-scale testbed for the gen-

eration and collection of datasets is introduced. The
testbed was designed based on interacting network ele-
ments and IoT/IIoT systems with the three layers of
Edge, Fog and Cloud to simulate a realistic represen-
tation of IoT/IIoT network configuration.

2) New datasets are proposed with new data features for
IoT services based on the proposed testbed. These
datasets are named TON-IoT as they containTelemetry
data, Operating systems’ data, and Network data from
the testbed IoT/IIoT network.

3) Afirst-hand evaluation of seven popular machine learn-
ing methods as well as a deep learning model on the
proposed datasets is also provided as a baseline for
further research.

This paper is organised as follows. Section II discusses
current studies related to existing security datasets. Section III
presents an overview of the testbed architecture used for the
generation and collection of the proposed datasets. A detailed
description of TON_IoT datasets as well as the method-
ology used to develop the proposed datasets are given in
Section IV. Also, normal and attack scenarios are discussed
in this Section. An overview of candidate machine learn-
ing (ML) methods used to evaluate their performance on the
proposed datasets is presented in Section V, and the evalu-
ation and experimental results of these methods are shown
in Section VI. Finally, the conclusion and possible future
directions are given in Section VII.

II. RELATED WORK
The evaluation of intrusion detection methods tailored to
IIoT applications is vital and the use of IoT-related datasets
reflecting real-world IoT applications plays an important role
in evaluating the accuracy and efficiency of IIoT security
methods. However, the lack of availability of real-world
datasets for IIoT applications is a major obstacle to the eval-
uation of intrusion detection solutions tailored to IoT/IIoT
applications. The absence of such datasets hinders the design
and development of IIoT-based intrusion detection methods
since the empirical validation and evaluation of such methods
should be showing promising performance [9], [10]. Buczak
andGuven [11] conducted a survey of cyber-security research
using data mining and ML methods for IDSs. They stated
that the unavailability of labelled datasets is a significant gap
found in the literature to develop promising anomaly-based
intrusion detection solutions. This is mainly due to privacy
issues, as most the IoT datasets from large companies are not
made available nor shared with research communities [10].

Well-known datasets (e.g., KDDCUP99, NSL-KDD [12],
UNSW-NB15 [13] and ISCX [14]) were then designed
to fill this gap for evaluation purposes; these datasets

however do not include the specific characteristics of
IoT/IIoT applications, as they do not contain either sensor
measurements nor IoT network traffic. Even though several
studies did use such datasets to evaluate their IoT-related
intrusion detection solutions [24]–[28], one can argue that
these datasets do not reflect IIoT characteristics since none
of which contains any IoT device in their testbeds. The
LWSNDR [15] dataset contains only homogeneous data col-
lected only from humidity-temperature sensor deployed in
a single and multi-hop Wireless Sensor Networks (WSNs).
Although it has some anomalous points since the author used
a hot water kettle to introduce the anomalies, the dataset
does not include any attack scenarios. Sivanathan et al. [17]
came up later with IoT-based datasets for the classification
of IoT devices based on network traffic characteristics. They
developed a smart home testbed, where IoT traffic is collected
and relied on flow-based characteristics to classify each IoT
device. They assumed that each IoT device exhibits identifi-
able patterns in their traffic flows such as activity cycles and
volume patterns. Nonetheless, such datasets do not have any
attack scenario since they were generated for the purpose of
device classification.

Addressing the aforementioned issues, [16], [18], [19]
proposed network-based IoT datasets that included attack
scenarios. Kolias et al. [16] proposed Aegean WiFi Intrusion
Dataset (AWID) dataset for intrusion detection in wireless
networks. This AWID dataset was collected from a Small
Office/HomeOffice SOHO 802.11 wireless network contain-
ing the following devices: a desktop machine, two laptops,
two smartphones, one tablet and a smart TV. However, The
dataset contains only the traces from Media Access Con-
trol (MAC) layer frame, and it does not have the telemetry
data of IoT devices.

Koroniotis et al. [18] generated a BoT-IoT dataset col-
lected from a realistic representation of an IoT network
that comprises both legitimate and attack traffic, the attacks
included are DDoS, DoS, service scan, keylogging, and data
exfiltration. The BoT-IoT dataset contains over 72 million
records of network traffic collected from a simulated IoT
environment. The author also provided a scaled-down version
of the dataset with roughly 3.6 million records for evaluation
purposes. Hamza et al. [19] proposed an IoT-based dataset to
detect DoS attacks in an IoT network, where they collected
normal and various type of DoS attacks traffic (e.g., TCP
SYN flooding, Ping of Death, and SNMP/TCMP flooding).
They imitated a smart home environment to collect their data.
Nevertheless, these datasets neither do have a variety of attack
types (e.g., ransomware and XSS-Cross-site Scripting) nor
contain sensor readings of IoT devices.

In summary, the majority of recently published IoT
datasets were designed to validate IoT network-based IDSs.
They mostly contain packet/flow-level information or a com-
bination of both to detect attacks on IoT networks; they do not
however have the actual data generated from sensor readings
(i.e., measurement/telemetry data). While this can assist in
detecting network-based attacks targeting IIoT systems, it is
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TABLE 1. A comparison of the popular and publicly available datasets with the proposed datasets.

still not sufficient to detect those attacks that either manipu-
late sensory data or compromise IoT devices [20]–[22]. This
has motivated the community to come up with IoT-related
datasets that contain sensor readings as an information source
for data-driven IoT IDSs to monitor the internal behaviour
of the given IoT applications as well to protect them from
malicious activities intended to sabotage the functionality of
targeted applications. Mohammadi et al. [10] conducted an
extensive survey about the use of deep learning in IoT and big
data for streaming analysis, where twenty-five (25) IoT-based
datasets generated from sensor readings in different domains
and used in DL (Deep Learning) implementations. Yet, none
of these contained attack data. Therefore, there is a need
for a real-world dataset that not only contains sensor mea-
surements but also has various types of attacks to enable
the evaluation of data-driven intrusion detection approaches.
This paper addresses the aforementioned limitations and pro-
poses a new T-IIoT dataset to accurately design and evaluate
IIoT defence solutions. To the best of our knowledge, this is
first time in the security area where the (proposed) datasets
include IoT telemetry data collected from heterogeneous
IoT/IIoT data sources, network traffic and audit traces of
operating systems. Moreover, the proposed dataset contains a
variety of IoT-related attacks and legitimate scenarios, includ-
ing the ground truth of both attack and legitimate instances.
Table 1 provides a summary of the unique properties of the
new proposed dataset when compared to existing datasets.
As can be seen from the table, both KDDCUP99, NSL-KDD
are outdated compared to the other datasets. The
KDDCUP99, NSL-KDD, UNSW-NB15 and ISCX datasets
do not include the specific characteristics of IoT/IIoT appli-
cations, as they do not contain either IoT telemetry data or IoT
network traffic. The LWSNDR only contains a homogeneous
data, and it does not contain any attack scenarios. The AWID
dataset contains only the network features extracted from
Media Access Control (MAC) layer frame from 802.11 wire-
less network, and it does not have the telemetry data. Fur-
thermore, the UNSW-IoT trace dataset does not have any

1UNSW-NB15 was generated at University of New SouthWales (UNSW)
in Canberra. The UNSW-IoT trace and UNSW-IoTwere generated at UNSW
in Sydney.

attack scenario since it was generated for device classification
purposes only. The UNSW-IoT and Bot-IoT datasets do not
contain sensor readings of IoT devices. In contrast, the new
proposed dataset has new properties compared with the
existing datasets: (i) it has various normal and attack events
for several IoT/IIoT services, (ii) it includes heterogeneous
data sources, and (iii) it was collected from a testbed with a
realistic representation of a IoT architecture for communicat-
ing Edge, Fog and Cloud layers.

III. DETAILS OF THE TESTBED
This section describes the testbed environment created for the
generation and collection of the proposed TON_IoT teleme-
try datasets. As depicted in Figure 1, a new systematic testbed
of Industry 4.0/Industrial IoT (IIoT) networks was designed
to create new representative datasets comprising data col-
lected from several normal and cyber-attack events in a realis-
tic representation of IoT networks. The testbed was designed
based on interacting network elements and IoT/IIoT systems
with the three layers of Edge, Fog and Cloud to simulate
a real-world execution of current production IoT/IIoT net-
works. Software-defined Network (SDN) [30] and Network
Function Virtualisation (NFV) [31] were used to facilitate
the management of the interaction between the three layers,
and included physical and simulated systems. To do that,
the NSX-VMware platform [32] was utilised to provide the
features of SDN and NFV.

Briefly, NSX-VMware platform [32] is a network virtu-
alisation technology used to facilitate the implementation of
virtual networks on a physical network and within the virtual
server infrastructure. The SDN feature in the NSX-VMware
platform allows network administrators to automatically con-
trol, change, and manage network and security behaviour
in a dynamic way with minimal human intervention [30].
In the proposed testbed, the NSX-VMware platform with
SDN enables us to automatically manage and control the
programmable IoT/IIoT applications and network devices.
Moreover, the NSX-VMware platform was deployed with
VMware vSphere hypervisor NFV [33] to allow the cre-
ation and management of various virtual machines (VMs)
that simultaneously operate to offer the IoT/IIoT and
network services. Furthermore, the vCloud NFV [32]
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FIGURE 1. Testbed environment for generating and collecting the
proposed datasets from the IIoT networks.

platform in NSX-VMware was utilised to provide a modular
design with abstractions that facilitates multi-domain, hybrid
physical, and VM deployment [31]. The benefit of using
the vCloud NFV platform is that it provides and manages
orchestrated VMs of the proposed testbed. Finally, using the
NSX-VMware, we designed a blueprint architectural design
that emulates and controls multiple VMs in the testbed for
both hacking and normal operations, allowing the intercon-
nections between the three layers. The Edge layer of the
testbed includes a set of simulated and physical IoT/IIoT ser-
vices, a NSX-VMware Server and different network devices
(e.g., switches and routers). The Fog layer consists of the
virtualisation technology, Offensive Kali systems [34], sev-
eral VMs and Middleware Node-RED Server [35]. Finally,
the Cloud layer contains various cloud services such as a
Hive-MQTT broker [36], a vulnerable PHP website [37] and
Cloud centres services (e.g., Microsoft Azure IoT Hub [38]
and AmazonWeb Services Lambda [39]). A detailed descrip-
tion of these three layers configured in the testbed is provided
in the following subsections.

A. EDGE LAYER
This layer is the fundamental one of the entire IoT/IIoT
applications since it can acquire data by directly measur-
ing real-world physical conditions and sending information
to the Fog or Cloud for further analysis [40]. As shown

in Figure 1, the Edge layer includes physical devices,
a NSX-VMware Server [41] and different network equip-
ment (e.g., switches and routers) that are all connected to
different LAN interfaces as well as linked to the Fog layer
through the vSwitch. It includes a set of simulated and phys-
ical IoT/IIoT services and sensors, such as a thermostat and
weather sensors, connected to a Message Queue Telemetry
Transport (MQTT) gateway [42] to publish and subscribe to
different topics, such as measuring temperature and pressure.
Additionally, the NSX-VMware platform [32] was installed
on the host server (i.e., NSX-VMware Server) to allow inter-
action between network elements and IoT/IIoT systems with
the three layers of Edge, Fog and Cloud; thus it can lead to the
realistic execution of current production IoT/IIoT networks.
The hypervisor technology (VMware vSphere hypervisor
NFV) of NSX-VMware [33] was installed on a host server
(i.e., vSphere System) to manage the VMs created at the
Fog layer. Finally, the testbed network contains other devices
in this layer (e.g., two iPhone 7 and Smart TV) and their
patterns have been recorded in the network traffic of the
datasets.

B. FOG LAYER
The original idea of this layer is to extend the Cloud com-
puting and services to the Edge of the network to pro-
vide limited computing capacity and storage near to the
data sources [40], [43]. As it can be seen from Figure 1,
the Fog layer consists of the virtualisation technology,
the offensiveKali systems [34], variousVMs andMiddleware
Node-RED Server [35]. The virtualisation technology pro-
vides uswith a control on theVMs and their services using the
NSX-VMware [41] and vCloud [32] platforms to offer
the framework of executing SDN and NFV in the pro-
posed testbed. The NSX vCloud NFV platform provides
the design of a dynamic IoT/IIoT network testbed of the
ToN_IoT dataset with creating and controlling several VMs
for attacks and normal operations, allowing the interconnec-
tions between the three layers via vSwitches and gateways.
Moreover, the Fog layer includes Offensive Kali systems
(Linux-based OS) [34] that contains ten Kali Linux VMswith
static IP addresses (i.e., 192.168.1.30-39) and various bash
and python scripts of attacks scenarios that exploit vulnerable
systems in the IIoT network. More details are provided in
Section IV-B.
The Virtual Machines (VMs) shown in the green box

were used to offer vulnerabilities such as the VMs of
DVWA service [44], Metasploitable3 [45] and OWASP Secu-
rity Shepherd [46], and others such as Windows 7 and 10
were employed as the remote web connection of the
Node-RED tool. The Damn Vulnerable Web Application
(DVWA) [44] is used as a vulnerable Web application coded
in PHP/MySQL that contains the most common Web vulner-
abilities. The DVWA VM (IP: 192.168.1.192) was utilised to
make security vulnerabilities through Web applications that
were attacked by the Offensive Kali systems. The Metas-
ploitable3 [45] is a free vulnerable VM with various security
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vulnerabilities. The Metasploitable3 VM (IP: 192.168.1.194)
was deployed in the testbed to increase the vulnerabil-
ity of Fog devices as well as to attack them using vari-
ous hacking methods by the Offensive Kali systems. The
Open Web Application Security Project (OWASP) Secu-
rity Shepherd [46] (IP: 192.168.1.184) is a security plat-
form that exploits common security vulnerabilities in Web
and mobile applications being exploited of the offensive
systems. Finally, the remaining VMs are the Orchestrated
server and the Security Onion VM [47]. The Orchestrated
server (OS:Ubuntu 14.04 LTS with IP: 192.168.1.190) is
configured to offer some orchestrated services, such as FTP,
Kerberos, HTTPS, and DNS to reflect real production net-
works. The Security Onion (IP: 192.168.1.180) was used
to log network data from all the active systems in the
testbed.

The Middleware Node-RED Server is the IoT/IIoT virtu-
alised server deployed in the testbed. This server included
the scripts that run IoT/IIoT services through public and
local MQTT gateways utilised in the testbed and linked with
the Cloud layer to subscribe and publish the telemetry data
of IoT/IIoT sensors. Also, a data logger on the Middle-
ware Node-RED Server was used to store telemetry data
of IoT/IIoT sensors, and a Node-RED tool [35] used for
simulating various IoT/IIoT sensors.

The IoT and IIoT services on the Middleware Node-RED
Server were simulated through a Node-RED tool [35] and
Modbus of Node-RED tools [48]. The Node-RED is an
open-source development tool developed by IBM Emerg-
ing Technology used for the integration of IoT physical
devices with APIs and their backend cloud server [35].
The main benefit of this tool is to enable develop-
ers/researchers to easily design and configure real-time
IoT/IIoT applications on end-devices and connect them with
their corresponding Cloud infrastructure. As mentioned in
Section IV-A, using the Node-RED tool, various JavaScript
scripts were designed to simulate various IoT/IIoT ser-
vices (e.g., Smart Fridge, temperature, GPS, weather and
Modbus) to present a variety of the most popular real-world
IoT/IIoT applications found in smart home, smart cities and
smart manufacturing. The various pieces of scripts were
triggered for publishing and subscribing to a specific topic
as explained later in Section IV-A. The data generated
by several sensors were transferred to their corresponding
backend cloud server using a Message Queue Telemetry
Transport (MQTT) protocol [42]. The MQTT was mainly
designed for resource-constrained devices such as IoT/IIoT
sensors as a lightweight messaging transportation protocol
that links machine-to-machine (M2M) communications and
it also operates via a topic-based publish-subscribe mode.
Accordingly, when a sensor (i.e., a publisher) publishes a
message to a broker (server-side) under a particular topic, all
the sensors (i.e., subscribers) that have subscribed to the same
topic can receive this message. The broker is the primary
component that completes the transfer process based on one-
to-many connections [42].

C. CLOUD LAYER
This layer generally hosts large-size data centres with sig-
nificant capacity for both computation power and storage
to support IoT/IIoT applications and satisfy the resource
requirements for big data analysis [43]. In the testbed,
the Cloud layer contains various Cloud services such as a
Hive-MQTT broker [36], a vulnerable PHP website [37] and
Cloud centres services (e.g., Microsoft Azure IoT Hub [38]
and Amazon Web Services Lambda [39]). The Hive-MQTT
broker receives the IoT data from the lower layer for further
analysis. As mentioned in Section III-B, IoT/IIoT sensors
send the data to the corresponding Hive-MQTT broker using
MQTT protocol. The Hive-MQTT broker is a public IoT
MQTT-basedmessaging platform designed for fast and effec-
tive data transportation to and from the connected IoT/IIoT
devices [36]. TheHive-MQTTbroker has a list of subscribers,
which receive the data sent by publishers. The use of the
public IoT platform (i.e., Hive-MQTT broker) in the testbed
ensures that it reflects a realistic IIoT network configura-
tion. The vulnerable public PHP website was used to launch
injection attacks events against websites as discussed later
in Section IV-B. Finally, Microsoft Azure IoT Hub [38]
and AWS Lambda [39] were used to subscribe and publish
IoT/IIoT topics between them and the Fog VMs through
the MQTT protocol. These Cloud services were used due
to their popular use in most IoT applications, and to deter-
mine the variations of IoT legitimate samples when applying
ML methods.

IV. IIoT DATASETS AND EXPERIMENTAL SETUP
A. OVERVIEW OF THE DATASETS
The ToN-IoT datasets include heterogeneous data sources
gathered from the Telemetry data of IoT/IIoT services, as well
as the Operating Systems logs and Network traffic of IoT
network, which were collected from a realistic representation
of a medium-scale network designed at the Cyber Range
and IoT Labs at the UNSW Canberra. The main focus of
this work is on the proposed dataset of the Telemetry data
of IoT/IIoT services and their characteristics. The ToN-IoT
datasets can be accessed at ToN-IoT repository [23]. More-
over, the proposed datasets were labelled with a label feature
(indicating whether an observation is normal or attack) and a
type feature (indicating the attacks sub-classes for multi-class
classification problems). Nine (9) types of cyber-attacks
(e.g., Scanning, DoS, DDoS, ransomware, backdoor, data
injection, Cross-site Scripting (XSS), password cracking
attack and Man-in-The-Middle (MITM)) were launched
against various IoT and IIoT sensors across the IIoT network.
Details of the dataset can be accessed in [23].

The generated data were stored in log and CSV files, and
seven (7) IoT and IIoT sensors (e.g. weather, temperature
and Modbus sensors) were used to capture their telemetry
data, and two smartphones and a smart TV were logged
in network traffic. The two main folders of IIoT datasets
are ’Processed_datasets’ and ‘Train_Test_datasets’. The
’Processed datasets’ folder contains a processed and filtered
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version of the datasets with their standard features and label
in the format of CSV files. In the ‘Train_Test_datasets’
folder, samples of the datasets are used as train-test datasets
in a CSV format selected for evaluating the accuracy and
efficiency of new cybersecurity applications and machine
learning methods. Each IoT device has its own CSV file such
as ‘Train_Test_IoT_device_name.csv’. The total number of
Train-Test IIoT datasets is seven (7), which covers each of
the IIoT devices: Fridge, GPS Tracker, Motion Light, Garage
Door, Modbus, Thermostat and Weather.

The testbed has a combination of physical and simulated
IoT/IIoT services. The real devices include two smartphones
and a smart TV configured with dynamic IP addresses using
the DHCP server installed on the Orchestrated Server. They
also include physical ESP8266 weather sensors [49]. These
sensors were deployed at the edge layer and linked with
the Node-RED to subscribe and publish sensory data to the
public MQTT broker in the cloud layer. The testbed also has
six simulated IoT services found in most popular IoT/IIoT
applications. These services were developed using Javascript
in the Node-RED API and linked to the public MQTT broker
in the cloud layer. To generate the telemetry data for the
simulator, JavaScript codes were written to publish the data to
the broker, and this data was logged in order to evaluate cyber
security solutions. In what follows, three algorithms (i.e,
JavaScript code) of the simulated IoT devices are provided
namely: Fridge, GPS and Thermostat sensors. The remaining
JavaScript codes of all the simulated IoT/IIoT services are
provided in this link [50].

Algorithms 1, 2 and 3 show three of the simulated IoT/IIoT
services (i.g., Fridge, GPS and thermostats) used in the
testbed. Algorithm 1 describes the script of the simulated
fridge sensor that runs against the message payload that is
passed through it as an input. The main idea of the script
is to measure the fridge’s temperature (fridge_temperature),
given as an input from the message payload, and adjust it

Algorithm 1 Fridge Simulation Script
Input: fridgeTemp, tempCondition
Output: data
1: timeStamp← date()
2: fridgeTemp ← retrieve temperature from message pay-
load or set it to a random number

3: if (RandomNumber ≥ 0.5 or fridgeTemp ≥ 6) then
4: fridgeTemp = fridgeTemp + (randomNumber ×

fridgeTemp ≥ 6)
5: end if
6: if fridgeTemp ≥ 6 then
7: tempCondition← high
8: else
9: tempCondition← low

10: end if
11: data← timeStamp, fridgeTemp, tempCondition
12: return data

below a predefined threshold. First, the timestamp is retrieved
from the date function, which will be sent with the teleme-
try data. As shown in the Algorithm 1, the if statement is
used as a threshold to ensure that the fridge_temperature
does not exceed the predefined value and adjust it accord-
ingly. temp_condition is set to high or low based on the
fridge_temperature value. Then, the generated values of
fridge_temperature and temp_condition together with the
timestamp will be published to the MQTT broker as the
telemetry data of the Node-RED fridge sensor. Algorithm 2
gives the script of the simulated a GPS sensor where latitude
and longitude values of GPS tracker sensor are given as
inputs. Then, calculations are performed on both values to
generate the telemetry data of the GPS sensor. Finally, Algo-
rithm 3 gives the script of simulated thermostats’ sensors,
where currentTemperature and sensorState are retrieved from
the message payload as input values. currentTemperature
is the current temperature reading of a thermostat sensor
connected to the testbed environment, where sensorState is
the status of a thermostat sensor which is either on or off.
The task of this script is to maintain the temperature between
25 and 26 ◦C , the default value of the temperature is set
to 25 ◦C . Then, the generated values of currentTemperature,
sensorState and timestamp will be published to the MQTT
broker as the telemetry data of the thermostat sen-
sor. This is just a brief explanation of simulated IoT
devices, and each scenario of IoT devices together with
a description of their features is provided below in more
details.

For the generation of the dataset, various IoT/IIoT scenar-
ios were simulated in the testbed. These scenarios could be
applied to the following popular IoT/IIoT applications: smart
homes, smart cities, and smart manufacturing. For instance,
Smart Fridge, garage door and Motion lights sensors can be
found in most smart homes. The GPS sensor can be found
in the smart cities. The Modbus, Thermostat, and weather

Algorithm 2 GPS Simulation Script
Input: latitude, longitude
Output: data
1: timeStamp← date()
2: x ← 0
3: y← 10
4: z← 0.01
5: sign1← set to a random number
6: i1← set to (a random number ×9)
7: latitude← retrieve it frommessage payload+sign1∗i1∗
z or x

8: sign2← set to a random number
9: i2← set to (a random number ×9)
10: longitude← retrieve it from message payload +sign2 ∗

i2 ∗ z or y
11: data← latitude, longitude, timeStamp
12: return data
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Algorithm 3 Thermostat Simulation Script
Input: currentTemperature, sensorState
Output: data
1: timeStamp← date()
2: default ← 25
3: Initialize currentTemperature and difference
4: difference = currentTemperature− 25
5: currentTemperature← retrieve it from message payload

or set it to default
6: sensorState← retrieve it from message payload or set it

to false
7: if currentTemperature 6= 25 then
8: sensorState← true
9: else

10: sensorState← false
11: end if
12: if sensorState← true then
13: if 0 < difference < 1 then
14: currentTemperature = currentTemperature −

difference
15: sensorState← false
16: else if −1 < difference < 0 then
17: currentTemperature = currentTemperature −

difference
18: sensorState← false
19: else
20: set the currentTemperature to a random number
21: end if
22: end if
23: data← currentTemperature, sensorState, timeStamp
24: return data

monitoring can be found in most smart manufacturing and
industrial applications. We extracted the features in these
scenarios based on the sensing functionality of the simulated
IoT/IIoT services. The detail of the IoT/IIoT scenarios and
the extracted features are as follows:
• Smart fridge measures the temperature and adjusts it
below a threshold when needed. Table 2 shows the fea-
ture column in IoT fridge dataset with their descriptions.

• A remotely activated garage door enables opening or
closing of the door based on a probabilistic input.
The features of the garage door sensors are listed
in Table 3.

• Global Positioning System GPS tracks the location
coordinates such as latitude and longitude of an
object remotely, and the GPS features are shown
in Table 4.

• Smart sense motion, which turn on or off the light based
on a pseudo-random generated signal and the features
description is presented in Table 5.

• Modbus service, which simulates the functionality of the
Modbus devices found in many industrial applications
as these devices communicate with each other using a

master-slave communication to transmit register types
such as input, discrete, holding and Coil over serial
lines. We extracted the register type features as it is the
functionality of the Modbus service. More details can be
found in Table 6.

• Smart thermostat regulates the temperature of a phys-
ical system by controlling a heating/cooling system
(e.g., the central heating, Air-conditioning, or water
heaters system). The main two features in a smart ther-
mostat sensor are the current temperature and thermostat
status as explained in Table 7.

• Weather monitoring system generates data about air
pressure, humidity, and temperature. More details are
presented in Table 8.

B. NORMAL AND ATTACK SCENARIOS
Asmentioned in Section IV-A, seven (7) IoT and IIoT sensors
were simulated. TheNode-RED tool was used to connect sen-
sors and their corresponding backend cloud server to generate
normal data. Various cyber-security incidents (i.e., DDoS and
ransomware, XSS - Cross-site Scripting, backdoor and injec-
tion) were launched against different IoT and IIoT sensors.
The hacking scenarios were launched to exploit either the
Node-RED’s IP address, public and local MQTT brokers or
WiFi connections of the physical IoT sensors. In order to label
the data as either normal or attack, we used the timestamp
field of each well-known attack that occurred to tag each
vector in the dataset. Then, after labelling the attacks and their
types (i.e., the attack sub-classes), we added the remaining
vectors as either normal operations (that occurred via publish-
ing and subscribing through public) or local MQTT brokers.
As mentioned in Section III-B, the attack scenarios were
carried out by the Offensive Kali systems that include ten Kali
Linux VMs with static IP addresses (i.e., 192.168.1.30-39)
and various bash and python scripts of attacks scenar-
ios that exploit vulnerable systems in the IIoT network
and launch the attacks scenarios against IoT/IIoT services
(e.g., IoT/IIoT devices and public MQTT brokers). More
details of the hacking scenarios and different scripts used
to launch such attacks in the dataset are made available
in [51]. A brief description of these cyber-attacks is provided
below.

• Scanning [52], [53] is considered to be the first step
where an attacker gathers information about a target sys-
tem, such as opening ports and available services about
a victim device or sensor, before launching the actual
attack. The attacker usually uses scanning tools such
as Nmap [54] or Nessus [55] to perform port scanning.
We used both Nmap and Nessus tools from the offensive
Kali systems to perform scanning attacks against the
victim IoT/IIoT devices in the subnet (192.168.1.0/24)
and the Public MQTT broker. The attack IP addresses
of the Offensive Kali systems used to perform the scan-
ning attack are as follows: 192.168.1.30, 192.168.1.31,
192.168.1.32, 192.168.1.33 and 192.168.1.38.
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TABLE 2. IoT fridge features and description.

TABLE 3. IoT garage door features and description.

TABLE 4. IoT GPS tracker features and description.

TABLE 5. IoT motion light features and description.

TABLE 6. IoT IoT modbus features and description.
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TABLE 7. IoT thermostat features and description.

TABLE 8. IoT weather features and description.

• Denial of Service (DoS) [52], [53] is a well-known
flooding attack where an attacker typically launches
sequences of malicious attempts against a legitimate
user to disrupt access to services. Distributed Denial of
Service (DDoS) and Denial of Service (DoS) attacks
are included in the IIoT dataset. DDoS is usually
launched by a large number of compromised devices
known as bots or botnets [18], [52]. This attack can
be done by flooding target IIoT devices with a numer-
ous number of connections so to exhaust the device
resources (e.g., CPU and memory). As mentioned in
Section I, IIoT devices have a limited computation
power and storage capacity which makes them eas-
ily vulnerable to DoS attacks [2]. To launch such
attacks against vulnerable IoT/IIoT devices in our sce-
narios, a python script (e.g., dos.py) was developed
to perform DoS attacks using the Scapy package [56]
and different python scripts (e.g, ddos.py, ddos2.py
and ddos2_broker.py) were written to launch DDoS
attacks using the UFONet toolkit [57]. The IP addresses
of the offensive Kali systems used to perform DoS
attacks are: 192.168.1.30, 192.168.1.31, 192.168.1.39
where DDoS attacks were launched by 192.168.1.30,
192.168.1.31 and 192.168.1.{34-38}.

• Ransomware [58] is a sophisticated type of malware
that denies a legitimate user access to a system or ser-
vices by encrypting them and tries to sell the decryption
key that allows the user to get back access to the sys-
tem. An IoT ransomware is similar, however it denies
access to IoT devices. IIoT devices and applications are
potential victims of IoT ransomware since they often
carry out mission-critical tasks where denied access
or locked down to these applications could lead to

catastrophic consequences such as financial losses to
organisations [58], [59]. We used aMetasploitable3 [45]
framework to exploit weaknesses in the target devices
and then executed the ransomware attack. The ran-
somware attack was performed by the offensive
Kali systems with IP addresses: 192.168.1.33 and
192.168.1.37.

• Backdoor [16] is a passive attack that allows an adver-
sary to gain unauthorised remote access to the infected
IIoT devices by a backdoor malware. The adversary
uses the backdoor to control infected IIoT devices and
makes it a part of botnets to attempt DDoS attack [16],
[60]. We utilised the Metasploitable3 [45] framework
to perform backdoor attacks, which were launched by
two offensive Kali systems with IP addresses as follows:
192.168.1.33 and 192.168.1.37.

• Injection Attack [16], [60] often tries to execute mali-
cious codes or inject malicious data into the IIoT
applications. Also, the injection attack can manipulate
telemetry data and the control commands in the IIoT
system and disrupt the normal operation. To perform
injection attacks two bash scripts (e.g., injection-1.sh
and injection-2.sh) were written to inject data inputs
against web applications (e.g., DVWA and the vul-
nerable public PHP) and Security Shepherd VMs and
webpages of IoT services. The IP addresses of the
offensive Kali systems participated in injection attacks
are: 192.168.1.{30,31,33,35,36,38}.

• Cross-Site Scripting (XSS) [60] often attempts to run
malicious commands on a Web server in the IIoT
applications. The XSS allows an attacker to remotely
inject arbitrary Web scripts such as malicious HTTP or
JavaScript codes. This attack can compromise the data
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and the authentication procedures between IIoT devices
and a remote Web server. We developed two bash
scripts (e.g., xss1-sh and xss2.sh) using the Cross-Site
Scripter (XSSer) toolkit [61] to perform XSS attacks on
theWeb applications of DVWA, Security ShepherdVMs
and webpages of IoT services. The attack IP addresses
of the offensive Kali systems used to perform the XSS
attacks are: 192.168.1.{32,35,36,39}.

• Password Cracking Attack [62] when an attacker
uses password cracking methods such as brute force
and dictionary attacks to guess the password of IIoT
devices. This can enable the attacker to bypass authen-
tication methods and compromise IIoT devices [16].
We developed two bash scripts: (e.g., password-1.sh)
using the CeWL toolkit [63] for dictionary attacks and
(password-2.sh) using the Hydra toolkit [64] for brute
force attacks. These scripts were developed to simul-
taneously launch password attacks scenarios against
vulnerable IoT/IIoT devices in the testbed. The pass-
word cracking attacks were launched by the follow-
ing the offensive Kali systems with IP addresses,
namely 192.168.1.30, 192.168.1.31, 192.168.1.33,
192.168.1.35 and 192.168.1.38.

• Man-In-The-Middle (MITM) attack [9] is a
well-known network attack that can intercept the com-
munication channel between two devices and may
manipulate their data. Some of the common MITM
attacks are ARP Cache poisoning, ICMP redirect and
port-stealing [9]. The offensive Kali VMs with IP
addresses 192.168.1.31-34 were utilized to launch vari-
ous MITM scenarios in our testbed. We used the Etter-
cap tool [65] to execute ARP Cache poisoning, ICMP
redirection and port-stealing attacks.

V. CANDIDATE SUPERVISED ML METHODS
Having explained the various types of attacks included in the
proposed datasets, we next present the statistics of normal
and attack data records in each Train-Test IIoT dataset (see
Figures 2 and 3). Several supervised ML methods along with
a Deep Learning model have been applied to evaluate their
performance on the proposed Telemetry datasets when such
methods are used to train different classifiers for intrusion
detection purposes. In particular, a combination of classifi-
cation methods are implemented on the proposed datasets to
evaluate their performance in terms of accuracy and other
evaluation metrics (e.g., precision, recall, F-score) along with
the required time for training and testing each classifier.

Candidatemethodswere chosen based on their widely used
in the security domain as they have demonstrated a good
performance on the design of IDSs, and have shown effec-
tiveness in a variety of areas [11]. In particular, we consider
these seven methods: Support Vector Machines (SVM) [66],
k-Nearest Neighbour (kNN) [67], Naïve Bayes (NB) [68],
decision tree-based methods (i.e., Random Forest (RF) &
Classification and Regression Trees (CART) [66]), as well
as Logistics Regression (LR) [69], and Linear Discriminant

FIGURE 2. Statistics of the training and testing records in Fridge, GPS,
Garage and Thermostat datasets.

FIGURE 3. Statistics of the training and testing records in Motion_light,
Weather and Modbus datasets.

Analysis (LDA) [70]. The authors in [11], [67] also showed
that SVM, kNN,NB and CART are themost popular methods
used for IDS development. Additionally, Resende and Drum-
mond [71] conducted a survey that shows the effectiveness
of the Random Forest (RF) [66] algorithm for IDSs since
this can provide both a classification and embedded feature
selection. Therefore, Random Forest is chosen here as the
ensemble algorithm. LR and LDA are considered in this paper
as they have low computation overheads [72]. Finally, Long
Short-Term Memory (LSTM) [73] has been chosen as the
deep learning method based on the reviewer’s suggestion;
moreover, it achieves state-of-the-art performance in dealing
with sensor data and learning long-term dependencies from
observations [74].

Below is a brief description of these methods:

• Logistic Regression (LR) [69]: even though it has the
name ‘regression’, LR is commonly used for classifi-
cation problems such as intrusion detection and spam
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filtering, as it can estimate the probability that an obser-
vation belongs to a particular class [72]. For instance,
if the estimated probability is greater than 50%, then the
model will predict that the observation belongs to attack
class since it exceeds the threshold; otherwise, it will
predict it as a normal class. LR estimates the probability
based on the following equation:

hθ (x) = σ (θT ∗ x) (1)

where hθ is the hypothesis function which outputs the
estimated probability, x is the observation’s feature
vector, θ is the model’s parameter, θT is the transpose
of θ , and σ (.) is a sigmoid (i.e., logistic) function which
defines the threshold, and the equation of σ (.) is defined
as:

σ (z) =
1

1+ e-z
(2)

where z is the term (θT ∗ x) in Eq. (1). Basically,
the sigmoid function outputs a number between 0 and
1, where the value closest to 0 indicates that an obser-
vation is normal and value closest to 1 indicates that
an observation is attack. The model’s parameter θ is
estimated during the training phase based on k-fold cross
validation as explained in Section VI-A2.

• Linear Discriminant Analysis (LDA) [75] is a
well-known linear algorithm commonly implemented
as a dimensionality reduction method during the
pre-processing step. In this work, however, LDA is not
employed as a dimensionality reduction, rather it is
applied as a classification method to build an intrusion
detection model (i.e., a classifier) [72]. Initially, LDA
estimates the means, and covariance matrix for mul-
tivariate features from the training data for each class
based on the assumption that the data is normally dis-
tributed. Then, LDA uses Bayes’ Theorem to estimate
the probability of the output class (k) (whether it is a
normal/attack class) given the observation (x) using the
probability of each class. Bayes’ Theorem is explained
further in Naïve Bayes below. All the means, covariance
matrix, and the estimated probability are estimated from
the training data, and used in the LDA equation (i.e.,
a discriminate function). Finally, LDA uses the discrim-
inate function to make the final prediction as the class
with a highest probability is the output classification.
The discriminate function is defined as:

fk (x) = x ∗
µk

6
−

µ2
k

2 ∗6
+ log(Pk ) (3)

where fk (x) is the discriminate function for class k given
observation x,µ is the mean,6 is the covariance matrix,
and P is the estimated probability.

• k-Nearest Neighbour (kNN) [67]: unlike LDA, kNN
is a non-parametric method that does not make any
assumption about the underlying data distribution. This
is also considered as a simple method that classifies an

incoming observation from a test sample to the nearest
sample in the training set based on specific metrics.
In particular, kNN attempts to find a group of k observa-
tions in the training set that is closest to the test observa-
tion, and assigns a label based on themost common class
among its k nearest neighbours. The kNN method has
twomain parameters [66]: a distance or similarity metric
(i.e., to compute the distance between observations), and
the value of k (i.e., the number of nearest neighbours).
In this work, the value of k was set to 5 as it is considered
as the default value, and Euclidean Distance is chosen
as it is a widely-used distance metric [66], [70]. The
equation of Euclidean Distance is defined as:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (4)

where d(x, y) is a function that calculates the Euclidean
Distance between two observations, xi is the first obser-
vation, yi is the second observation of data, n is the total
number of observations and i is the index to a specific
column as we sum across all columns.

• Classification and Regression Trees (CART) [66],
[67] is a decision tree-based algorithm that constructs
a binary tree structure from the training set. Each root
node, also known as a non-leaf node, indicates a single
input variable (x) and a split point on that variable
whereas each leaf node (i.e., it does not have any chil-
dren nodes) corresponds to an output of variable (y) used
to make a prediction. The CART algorithm provides
a foundation for other important tree-based methods
(e.g., RF - Random Forest) which will be explained
next. In this work, Gini impurity is used based on the
recommendation in the current literature [67] as a split
criterion to decide which feature to split at each step of
the tree building process, as shown in Eq 5:

G(D) =
c∑
i=1

(P(i)) ∗ (1− P(i)) = 1−
c∑
i=1

P(i)2 (5)

whereD is the dataset,C is a set of classes, and p(i) is the
fraction of the number of samples with the class label, i
in c. Gini impurity has 0 when there is only one class in
c and reaches the maximum value when all classes are
potentially equal.

• Random Forest (RF) [66], [71] is an ensemble learning
that combines multiple decision trees that use randomly
picked data points as their input. For classification task,
RF can be used to classify an observation based on
the results of a collection of decision trees. The final
classification result can be decided by majority voting
or weighted voting. In this work, the weighted voting is
used as the voting technique, and the number of trees in
the forest was set to 10 as it is the popular initial value
to start with [70]. The Gini impurity (Eq. 5) is also used
as a split criterion.
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• Naïve Bayes (NB) [68] is a probabilistic-based approach
which applies Bayes’ theorem to perform the classifi-
cation approach. Like LDA, NB assumes the data is
normally distributed, and it calculates the conditional
probability of a class label given a dataset. Moreover,
the Bayes theorem provides a principled approach for
computing this conditional probability with indepen-
dence assumptions between the features, such as each
input feature is independent of all other input features.
Bayes’ theorem is stated in Eq 6:

P(C|x) =
P(C) ∗ P(x|C)

P(x)
(6)

where P(C|x) is the posterior probability of class C
given the provided observation x, P(C) is the prior prob-
ability,P(x|C) is the likelihood, andP(x) is the evidence.
These parameters are estimated from the training set.
During the training phase, the Maximum A Posteri-
ori (MAP) estimation is used to estimate the P(C) and
P(x|C), as the goal of NB is to classify a given observa-
tion x to the class with the highest posterior probability.

• Support Vector Machine (SVM) [66] is a discrimina-
tive classifier used for both linear and nonlinear data, and
it is mainly defined by a separating hyperplane. SVM is
intended to derive a hyperplane that maximizes the sep-
arating margin between the normal and attack classes.
Different kernel functions exist for expressing the hyper-
plane, ranging from a linear kernel that attempts to find a
simple linear separation between the data, to a non-linear
one (e.g., Gaussian Radial Basis Function (RBF) ker-
nel) [66]. In the experiment, we use the widely adopted
Gaussian RBF kernel function of SVM [66], [70], and
the kernel coefficient gamma is set to ‘auto’ as suggested
in [70]. RBF is used as a nonlinear mapping to transform
the original training data to a higher dimension in which
it searches for the linear optimal separating hyperplane.
The equation of the hyperplane is defined as:

g(x) =
n∑
i=1

Wi ∗ xi+ b0 (7)

where g(x) is the hyperplane function, W is a weight
vector, n is the number of features in n-dimensional
space and b is a bias.

• Long Short-Term Memory (LSTM) [73] is a vari-
ant of Recurrent Neural Network (RNN) architecture
used in the field of deep learning, which is primarily
designed to accurately model temporal sequences and
their long-term dependencies by introducing a collection
of memory units in the recurrent hidden layer. LSTM
usually consists of memory cells and gates. The use of
different gate units in LSTMcan address the issue of gra-
dient vanishing or explosion caused by memory loss for
long-term sequences, which can be encountered when
training RNN [73]. An LSTM model can be formulated
as a classification problem in a supervised manner to
be used for attack detection by computing a mapping

function from an input observation x = (x1, x2, . . . , xN )
to an output label ywithin the [0,1] set, by calculating the
activation function of the network units. A typical LSTM
memory cell is configured with an input vector x<t>,
hidden input vector h<t−1> from previous timestep, and
output vector h<t>. The implementation of the memory
cell can be established using the following equations in
iterative manner [76].

i<t> = σ (Wix<t> +Wih<t−1> + bi) (8)

f <t> = σ (Wf x<t> +Wf h<t−1> + bf ) (9)

o<t> = σ (Wox<t> +Woh<t−1> + bo) (10)

u<t> = tanh(Wux<t> +Wuh<t−1> + bu) (11)

c<t> = it � u<t> + f <t> � c<t−1> (12)

h<t> = o<t> � tanh(c<t>) (13)

y<t> = φ(Wy.h<t> + by) (14)

where x<t> is the input at the current time, σ is the
logistic sigmoid function and � indicates element-wise
multiplication. The W terms indicate weight matrices,
and the b terms indicate bias vectors. u is the cell input
activation. i, f , o, and c are the input gate, forget gate,
output gate, and memory cell, respectively. These gates
collectively decide how to update the current memory
cell c<t> and the current hidden state h<t>. The input
gate manages the flow of input activation into the mem-
ory cell. The forget gate is used to rest the memory
cells when their contents are outdated. The output gate
controls the output flow of internal memory state to the
rest of the network [76]. Lastly, y is the network output,
and φ is the network activation function. In this work,
the sigmoid function was used as φ for binary classi-
fication, whereas the softmax was used for multi-class
classification task which maps the last hidden layer vec-
tor into a vector whose length is equal to the number of
class labels.
The LSTM’s hyperparameters were selected based on
a grid search method [77], which designs an auto-
mated search to test different network configurations.
The grid search was performed on the Fridge dataset
as it has a combination of both discrete and continuous
values; then these configurations were used for all the
other datasets. The final hyperparameters used to con-
figure the LSTM network are shown in Table 9. The
number of epochs is set to 35 and the batch size is set
to 64. In general, an epoch is the number of complete
passes through the entire dataset so that each example
is seen once by the model, where examples were sepa-
rated into randomly selected ‘‘batch size’’ groups [78].
In addition, The LSTM models were configured with
one input layer with ‘‘the number of units equal to the
number of input features’’ based on the number of fea-
tures at each dataset, and with three hidden layers with
{128, 100, 64} units, respectively. The output layer was
configured with a single unit and a sigmoid activation
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TABLE 9. The hyperparameters of LSTM network.

function for the binary classification. For the multi-class
classification, the softmax was used with units equal to
the number of classes. As RNN like LSTM generally
has the problem of overfitting [78], the dropout layer has
been added after each layer to prevent model overfitting.
The crossentropy was used as the loss function where
‘‘binary crossentropy’’ was used for binary classifica-
tion and ‘‘sparse_categorical crossentropy’’ was used
for the multi-class classification. Finally, we used Adam
optimiser [79] for stochastic gradient descent to update
network weights based in training data.

VI. EXPERIMENTAL RESULTS
This section discusses the performance of the candidates
ML methods for intrusion detection purposes using the pro-
posed IIoT datasets. As discussed in Section V, we utilised
the parameters recommended in the current literature [66],
[70], and adopted the default values as the initialisation of
the candidate methods, because the goal of this experiment
is to provide a first-hand evaluation of the performance of
candidate ML methods applied to the proposed datasets as a
baseline for further research. The experiments were carried
out in Python version 3.7.3. The data processing and ML
evaluation were implemented by extension packages includ-
ing the packages of NumPy [80], SciPy [81], Pandas [82],
and Scikit-learn v0.22.1 [83]. For LSTM implementation,
TensorFlow v2.1.0 [84] was used with Keras v2.3.1 [85]. All
experiments were executed under Windows 7 enterprise with
core i7 3.60 GHz CPU and 8 GB memory. In what follows,
we will describe the experimental methodology applied to
evaluate the performance of the selected ML methods using
the proposed IIoT datasets. The experimental results and
discussion are also presented for both the per-device IoT
datasets and the combined_IoT_dataset .

A. EXPERIMENTAL METHODOLOGY
1) DATA PREPARATION
It is essential to clean and prepare the data before applying
any ML method to achieve good accuracy and accelerate the
learning process. This is often carried out by removing unnec-
essary features that may degrade the performance, converting
non-numerical features and replacing missing values if they
exist. The main two steps applied during the data preparation
process are data pre-processing and data normalisation.

• Data Pre-processing: categorical features that have
nominal values were converted to numeric values in
order to easily applyMLmethods. For instance, the tem-
perature feature in the Fridge dataset, which has cat-
egorical values ‘high’ and ‘low’, were mapped into
‘0’ and ‘1’. These categorical values have been con-
verted to consecutive numeric values by applying a
label-encoding method [70]. The following features
(date, time, and timestamp) were emitted from feature
vectors as they may cause some ML methods to over-
fit the training data. For LSTM, the input data were
reshaped into three dimensions (e.g., number of sam-
ples, timesteps, and feature numbers) in order to fed
it into LSTM network. The timesteps has been set to
one as it is the default representation when designing a
LSTM network [78].

• Data Normalisation: some features have larger values
than others, and this can lead to inaccurate results since a
model might be biased to the large feature values. Thus,
data normalisation plays an important role in preventing
features with large values from outweighing the features
with smaller values by scaling features within a range
between [0.0,1.0] without changing the normality of
data behaviour [86], [87]. As shown in Eq. 15, a min-
max normalisationmethod is used to scale feature values
within [0.0,1.0].

z =
(x − xmin)
xmax − xmin

(15)

where x is an original value, z is the normalised value,
and xmax and xmin the minimum and maximum values of
the feature, respectively.

2) TRAINING PROCESS
As discussed in Section IV-A, the train-test IIoT datasets are
formatted in CSV files where each device has its own CSV
file that contains both the training and the testing data. First,
we further divided the dataset into two parts (i.e., train and
test splits): 80% of the data was used to train/evaluate the
selected ML methods, and the 20% of the data was held back
for the testing dataset for further evaluation of the models
(i.e., trained classifiers) with unseen data. The percentage
of 80% for training and 20% for testing are chosen as sug-
gested in [70] since the (80% train - 20% test) split is con-
sidered to be the best ratio to avoid the over-fitting problem
where a model memorises the data rather than learns from
it [88]. Next, a k-fold cross-validation was used for parameter
tuningwhere it is applied to each training dataset by randomly
dividing the set of observations into k subsets of equal size.
Each time, one of the subsets was treated as a validation set,
while the remaining k-1 subsets were used to train themodels.
Then, the average value of all folds was used as the final
result [66], [70]. In this experiment, the k value was set to 4 as
we used a different set of values (3,4,7 and 10). We found that
4 gives a better result, while the accuracy slightly decreases
with a large k value such as 10 in some models. However,
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the k value is a user parameter and should not affect the
results as such. The performance of the generated models
is evaluated with different evaluation metrics, which will be
discussed in Section VI-B1. Figure 4 summarises the above
steps involved in evaluating the performance of different can-
didates ofMLmethods using the proposed datasets discussed.

FIGURE 4. Evaluation process on the datasets with candidate ML
methods.

B. FURTHER EVALUATION
1) EVALUATION METRICS
several metrics were used to evaluate the effectiveness of ML
methods on the proposed IIoT dataset. In particular, accuracy,
recall, precision, and F-score were used to quantitatively
evaluate the performance of the selected ML methods [8].
The accuracy metric shows the overall effectiveness of a
model as the fraction of all normal and attack observations
that are correctly classified. The recall metric shows the
number of attacks correctly detected divided by the total
number of attack observations in the test dataset [8]. The
precision metric shows the percentage of correctly detected
attack observations over all the detected attacks. The F-score
calculates the harmonic (equally-weighted) mean of preci-
sion and recall [8]. These metrics are defined as follows:

Accuracy =
(TP+ TN )

TP+ TN + FP+ FN
(16)

Recall =
TP

TP+ FN
(17)

Precision =
TP

TP+ FP
(18)

F − Score = 2 ∗
(Recall ∗ Precision)
Recall + Precision

(19)

where True Positive (TP) is the # of actual attack records that
are correctly detected as attacks, True Negative (TN) is the #
of actual normal data that are correctly classified as normal,
False Negative (FN) is the # of actual attack instances that are
incorrectly classified as normal and False Positive (FP) is the
# of actual normal instances that are incorrectly detected as
attacks.

In addition, we consider the training time (i.e., the CPU
time to build model), and testing time (i.e., the CPU time to
test the model) as they are important to evaluate the execution
time taken by the model especially during the testing/runtime
phase to report the predicted results.

C. PER-DEVICE DATA SET EVALUATION
This section shows the experimental results for per-device
datasets. The 4-fold cross validation was applied to all the
models. The average value of all the evaluation metrics was
computed and shown as the final results. In addition, the train-
ing and testing time are presented.

Tables 10 and 11 show the average accuracy, precision,
recall and F-score as well as the training and testing time
for the candidate methods applied to the seven benchmark
datasets. In general, all the candidate methods show signif-
icant results for Garage Door dataset with an overall score
of (1.00) for all the evaluation metrics. The reason behind
this success of all the methods could be due to the fact that
the Garage dataset has only discrete values which are easier
to deal with, while the other datasets contain continuous
values or a combination of both (e.g., discrete and continuous
values). In contrast, all these methods perform poorly when
applied to both Light sensor and Thermostat datasets with
average accuracy and precision of (0.58 and 0.34) for the
Light dataset, and (0.66 and 0.44) for the Thermostat dataset.
These fluctuations in the performance of these methods could
be explained by the heterogeneity of the data sources in IoT
datasets. Long Short-Term Memory (LSTM) demonstrates
significant results in the Fridge dataset with an overall (1.00)
for all the evaluation metrics, followed by the k-Nearest
Neighbour (kNN) which shows the second-best results (0.99)
for all the evaluationmetrics.Moreover, both LSTMand kNN
show almost similar result in the GPS dataset with approxi-
mate values of (0.88) in all the evaluation metrics. Random
Forest (RF), and Classification and Regression Trees (CART)
outperform most of the other models in the Modbus dataset
where they show accuracy of (0.97) and (0.98), respectively.
In the Weather dataset, CART has the best results of (0.88)
in precision and (0.87) in the other metrics while RF shows
the second-best results of (0.84) in all the evaluation metrics.
LSTM and kNN show competitive results in the Weather
dataset where LSTM has accuracy and precision of (0.82),
and kNN has results of (0.81) in all the metrics.
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TABLE 10. The evaluation metrics results for Fridge, Garage Door, GPS and Modbus datasets (training and testing time is in seconds). [The abbreviations
are as follows: LR- Logistic Regression, LDA- Linear Discriminant Analysis, kNN- k-Nearest Neighbour, CART- Classification and Regression Trees, RF-
Random Forest, NB- Naïve Bayes, SVM- Support Vector Machine and LSTM- Long Short-Term Memory. These abbreviations also apply to Table (11-13).
Note: the best value for each metric is highlighted in bold for each dataset].

For most of the benchmark dataset, both RF and CART
obtain very similar results which could be due to the
tree-based structure of their design. In addition, Logistics
Regression (LR) and Linear Discriminant Analysis (LDA)
achieve relatively similar results for most of the datasets
and this could be due to the fact that they are both a
linear-based algorithm, so they produce similar results. Naïve
Bayes (NB) shows a good result only for the GPS dataset with
an accuracy of (0.86), and it achieves average results for the
other datasets. The results produced by the Support Vector
Machines (SVM) average between (0.63) and (0.67) for most
of the datasets. In terms of the training and testing time,
LSTM has the longest training and testing times compared
with those of other models, followed by SVM which has
the second-longest times. Both LR and LDA have the lowest
training and testing times.

Further evaluation is carried out in this section to assess
the performance of the candidatesMLmethods using the pro-
posed datasets by combing all the per-device datasets into a
single dataset, combined_IoT_dataset . This can reflect some
real-time scenarios since most real-time systems keep their
data in a central database where all the data gathered from

the system is stored for maintenance, historical, auditing and
analysis purposes. Furthermore, the selected ML methods
were evaluated for both binary and multi-class classification
problems using the combined_IoT_dataset .

1) COMBINED_IoT_DATASET
Each IoT dataset was combined into one CSV file
combined_IoT_dataset . A python script was implemented to
automatically combine all IoT dataset into a single CSV file
with a total of 22 features. Then, amedian value for each col-
umn was used as an imputation to fill missing values in such
column. The use of median is recommended as it is less sus-
ceptible to outlier errors compared to mean imputation [70].
The class distribution of the combined_IoT_dataset is shown
in Figure 5.

2) BINARY CLASSIFICATION ON combined_IoT_dataset
The combined_IoT_dataset was similarly used to evalu-
ate the ML methods as the per-device IoT dataset. Accu-
racy, recall, precision, and F-score were used to quantita-
tively evaluate the performance of the candidate ML meth-
ods on the combined_IoT_dataset . Additionally, the training
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TABLE 11. The evaluation metrics results for Light_Motion, Thermostat and Weather datasets (training and testing time is in seconds).

TABLE 12. Evaluation of binary classification models using combined_IoT_dataset (training and testing time is in seconds) [ Note: the best value for each
metric is highlighted in bold].

FIGURE 5. Statistics of combined_IoT _dataset .

and testing time for each model were calculated. Table 12
shows a summary of the results: CART achieves the highest
score of 0.88 in (accuracy, recall and F-score), and a sore
of 0.90 for precision with a test time of (0.022 second).

RF and kNN score the second good results. RF has a
score of 0.85 for (accuracy, recall and F-score), and a score
of 0.87 in the precision while kNN shows a score of 0.84 for
(accuracy, recall & F-score), and a score of 0.85 in the
precision. In terms of the time, RF requires 0.164 seconds
which is less testing time than kNN which requires a signifi-
cant amount of testing time (109.361 seconds). This can be
explained as kNN is a lazy leaner which uses the training
phase to store the data, and then it uses the data during
the test phase to make a prediction which makes the test-
ing phase slower. LSTM shows a precision of (0.83) and a
score of (0.81) for both accuracy and recall. LDA has an
accuracy of (0.68) and a precision of (0.74). LR, NB and
SVM have an overall accuracy around (0.61) but LR and
SVM have a precision of (0.37) which is lower than all
other models. The low precision of LR and SVM may indi-
cate that most of the predicted labels are incorrect (high
false positives). Finally, SVM has by far the longest train-
ing and testing time at (3525.052) and (558.663), seconds
respectively.
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TABLE 13. Evaluation of multi-class classification models on a combined_IoT_dataset (training and testing time is in seconds) [ Note: the best value for
each metric is highlighted in bold].

3) MULTI-CLASS CLASSIFICATION ON
combined_IoT_dataset
As mentioned earlier in Section IV-A, the proposed datasets
have a type feature that indicates the attack sub-classes for
the multi-classification problems. In this sub-section, we fur-
ther test the candidates ML methods to evaluate their per-
formance on multi-classification problems. The evaluation
of candidates ML methods for a multi-class classification
problem requires some considerations. To begin, Logistic
Regression (LR) is usually used for a binary classification
and it cannot be directly applied to solve a mutli-class
problem. Therefore, LR is implemented with the one-vs-
rest (OvR) scheme to be used for multi-class classifica-
tion. The one-vs-rest (OvR) scheme involves training a
single LR classifier per class, with the training samples
of that class as positive samples and all other samples as
negatives. Each LR classifier predicts the probability of a
particular class, and the class with the highest probability
is selected [70]. For LSTM, the softmax was used as the
network output activation function and ‘‘sparse_categorical
crossentropy’’ was used as the loss function as mentioned
in Section V.
Lastly, a weighted average is calculated by means of eval-

uation metrics as a final result for each model. The weighted
average can be computed by multiplying each class with
a weight factor (i.e., the # instances with that target class)
and then calculating the sum for other classes [70]. The
evaluation metrics used to compare all models are accuracy,
precision, recall and F-score. Table 13 shows a summary of
the multi-class classification results. CART achieves good
results compared to the other methods with a score of (0.77)
for all the metrics, and F-score of (0.75). kNN and RF
achieve the second best results where kNN scores accuracy
of 0.72 and recall of (0.73), whereas the RF shows accu-
racy of (0.71) and recall of (0.72). LSTM has a score of
(0.68) in both the accuracy and recall metrics. LR and LDA
show almost similar results for accuracy of (LR = 0.61 and
LDA= 0.62) and recall of (LR= 0.62 and LDA= 0.63). Both
SVMand LR have theworst precision score, (0.37) and (0.38)
respectively. NB has the lowest accuracy score of (0.54). The
SVM model shows an overall score of 0.60 for accuracy and
0.61 for recall. In terms of the execution time, SVM requires
the longest training and testing time. Surprisingly, the LR has
a training time of (30.778 seconds) which is the third-longest

training time after the LSTM which has a training time of
(1375.305 seconds).

VII. CONCLUSION
This paper proposed new IIoT-based datasets, called
TON_IoT, which incorporate both normal sensor measure-
ment data as well as various types of attacks targeting IIoT
applications. These datasets were designed on a realistic rep-
resentation of an IoT network testbed and were given a ‘label’
column to indicate normal and attack instances, and a ‘type’
column to indicate attack sub-classes for possible multi-class
classification purposes. In addition, the datasets were com-
bined into a single dataset, named combined_IoT_dataset ,
to represent real-world scenarios. Various evaluation metrics
(i.e., accuracy, precision, recall and F-score) were used to
evaluate the performance of seven supervised ML methods
along with LSTM as a deep learning method for the purpose
of intrusion detection using the proposed datasets. The results
of the evaluation have indicated that the proposed datasets
can be efficiently utilised to implement and train various
MLmethods for anomaly-based detection research. Themain
finding of the evaluation was that RF and CART achieved the
highest score in all metrics on both per-device datasets and the
combined one. This finding indicated an inherent advantage
of both methods in distinguishing normal class and different
attack classes. The results have also shown both LSTM and
kNN had the second-best performance compared to the other
methods. Overall, these results may pave the way for the
future design and development of robust detection models for
the specific datasets. In addition, we aspire that the findings
provided in this work, and the contribution of the proposed
datasets, will significantly benefit the research community
working on IDSs for IoT/IIoT applications. As a future direc-
tion, more work could be done to improve the performance
of the baseline methods on the proposed datasets. Advanced
parameter optimisation methods (e.g., Bayesian optimisation
and genetic algorithm) can be utilised to optimise the model’s
hyperparameters and achieve better results.
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