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ABSTRACT As a typical data-driven fault detection approach, the moving window kernel principal
component analysis (MWKPCA) method has attracted attention for fault detection of turbofan engines
considering the presence of component degradation, but the conventional MWKPCA method uses a fixed
step to update the KPCA model periodically until anomaly data is detected, this will increase the amount
of calculation. To address this weakness, a modified MWKPCA method is proposed based on an adaptive
updating mechanism for the KPCA model in this study. To realize the capability of updating KPCA model
adaptively, k-means clustering method is utilized to divide a certain amount of newly acquired sampling
data and the same amount of oldest data in the current time window into two categories, and calculates the
Mahalanobis distance of the two clustering centers. Then the distance is comparedwith a prescribed threshold
to determine whether to update the KPCA model. The proposed method is applied to an illustrative case,
and the fault detection results under normal condition and sensor faults condition show that compared with
the conventional MWKPCA algorithm, the modified MWKPCAmethod does not weaken the ability of fault
detection and has better performances in terms of computation efficiency than the conventional MWKPCA
algorithm with a fixed moving step.

INDEX TERMS KPCA, MWKPCA, k-means clustering, aircraft turbofan engine, fault detection.

I. INTRODUCTION
The aircraft turbofan engine, an extremely complex aerother-
modynamics system operating under harsh environments,
various faults will be inevitable happened in a long-time
service process [1], [2]. These faults may lead to poor aircraft
engine performance or even affect the flight safety. Online
and real-time engine fault detection can help improve the
safety and reliability by providing accurately and effectively
anomaly monitoring.

In recent years, aircraft turbofan engine fault detection
has been widely studied, and the main technologies can be
categorized into two distinct groups [3], [4], including the
model-based approaches [5]–[7] and data-driven approaches
[8]–[11]. Model-based approaches provide most solutions to
real-time monitoring and control problems [12]. But these
approaches require a reasonably high-fidelity mathematical
model of turbofan engine, which is unfortunately rarely avail-
able. This fact has propelled extensive research activities into
data-driven-based fault detection. Many data-driven methods
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are based on statistical and feature extraction methods [13],
neural networks and machine learning [14]–[16], and fuzzy
logic [17]–[19]. In these data-driven solutions, multivariate
statistical process monitoring (MSPM) has been successfully
applied to online process quality monitoring. And with the
continuous improvement of aircraft engine data acquisition
technology, the dimension and quantity of data acquisition
are greatly increased. MSPM can handle high-dimensional,
noisy, and highly correlated data and realize data dimension-
ality reduction and abnormal data detection. MSPMmethods
such as principal component analysis (PCA) [20]–[22], mod-
ified principal component analysis (MPCA) [23], partial least
squares (PLS) [24], and independent component analysis
(ICA) [25], [26] have been developed and applied for fault
detection. Among MSPM methods, PCA is the most widely
used technique, which relates to its conceptual simplicity. The
commonly used fault detection indices in PCAmethod are the
Hotelling T 2 and the Squared Prediction Error (SPE) [27].
However, PCA is a method of linear projection and per-
forms poorly in dealing with nonlinear processes, like aircraft
turbofan engine fault detection. To overcome this limitation,
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the kernel principal component analysis (KPCA) [28] have
been developed.

KPCA first projects the input data space onto a feature
space by means of nonlinear mapping and then computes
the principal components via eigen decomposing the kernel
matrix in the feature space. The twomain advantage of KPCA
are that: (1) It can efficiently extract the principal features
using integral operators and nonlinear kernel functions and
without involving any complex nonlinear optimization. (2)
It can handle a wide range of nonlinearities by incorporat-
ing different kernel functions. KPCA has been successfully
applied for nonlinear system fault detection. Similar as PCA,
the Hotelling T 2 and SPE are also used in fault detection
process based on KPCA method.

There are two main challenges of KPCA-based fault detec-
tion, firstly, as the training data size increases, the calculation
of feature decomposition of the symmetric kernel matrix will
be time consuming [29]. Secondly, the KPCAmodel remains
time invariant once it is established based on the training data
[28], [29], but most real industrial processes are time varying,
and a fixed KPCA model cannot reflect the latest measur-
ing information of system parameters, and false alarms may
occur in fault detection process. To address the first challenge,
Fazai et al. [29] and Jaffel et al. [30] proposed a reduced
kernel principal component analysis (RKPCA) method, and
k-means clustering was applied to reduce the number of
training samples. To overcome the second limitation, several
extensions for KPCA have been proposed as moving window
kernel principal component analysis (MWKPCA) [30], [31],
variable movingwindow kernel principal component analysis
(VMWKPCA) [32] and adaptive kernel principal component
analysis (AKPCA) [33]. The MWKPCA method adds the
latest normal sampling data to the current time window and
excludes the oldest observation from the current time win-
dow. For most industrial processes monitoring, like aircraft
turbofan engine, in most cases, they are operated in the stable
state. During this period, the measured output parameters
contain a lot of redundant information, so it is necessary to
study whether the KPCA model needs to be updated periodi-
cally. However, the conventional MWKPCAmethod lacks an
effective mechanism for KPCA model updating and usually
uses a fixed step to continuously update the KPCA model
until anomaly data is detected. Therefore, fault detection
based on the conventional MWKPCA method will increase
the amount of calculation.

This article combines k-means clustering with conven-
tional MWKPCA, and proposes a modified MWKPCA used
for aircraft engine fault detection. K-means clusteringmethod
divides a certain amount of newly acquired sampling data
and the same amount of oldest data in the time window into
two categories, and calculates the Mahalanobis distance of
the two clustering centers. Then the distance is compared
with a prescribed threshold. If the Mahalanobis distance of
the two clustering centers does not exceed the threshold,
it means that the newly acquired data does not bring more
new information, so it is not necessary to update the KPCA

model, otherwise the KPCA model need to be updated. The
modifiedMWKPCAmethod, on the basis of not affecting the
original MWKPCAmethod fault detection performance, will
greatly reduce the calculation amount of the algorithm.

The remainder of this article is organized as follows: In
Section. II, the fault detection method based on KPCA and
conventional MWKPCA method are introduced. The modi-
fied MWKPCA method and the key technologies are intro-
duced in Section. III. In Section. IV, aiming at the normal
operating condition and sensor faults condition of an air-
craft engine, the conventional MWKPCA and the modified
MWKPCA algorithm are simulated and verified, and the fault
detection performance and calculation amount of the two
algorithms are compared. The conclusion is summarized in
Section. V.

II. PREVIOUS WORKS
Before introducing the modified MWKPCA algorithm,
we first review the fault detection methods based on KPCA
and MWKPCA, respectively.

A. FAULT DETECTION BASED ON KPCA
KPCA maps sample data (X ∈ Rm×n,where m denotes the
number of samples and n denotes the dimensions of the orig-
inal space) from its original space into a higher dimensional
feature space (0 ∈ Rh×h, h � n) using a nonlinear mapping
function and the principal components are obtained in 0.
X ∈ Rm×nis extended into 0 by using nonlinear function

φ(xi) (i = 1, . . . ,m). The covariance matrix C ∈ Rh×h in 0
is defined as

C =
1

m− 1

m∑
i=1

φ(xi)φT (xi) (1)

It is assumed that φ(xi) ∈ Rh is the sample in 0 with
zero-mean and unit-variance. The eigenvalue decomposition
of C can be solved by

λjvj = Cvj

=
1
m

m∑
i=1

〈
φ (xi) , vj

〉
φ (xi) (2)

where vj ∈ Rh×1 (j = 1, . . . , h) and λj ∈ R1×1 are the jth
eigenvector and eigenvalue, respectively. In space0, vj can be
linearly expanded by coefficients αji ∈ R1×1(i = 1, · · · ,m)
and φ(xi), such that

vj =
m∑
i=1

αijφ(xi) (3)

Combining equation (2) and (3), we can obtain

λj

m∑
k=1

α
j
k 〈φ (xi) , φ (xk)〉

=
1
m

m∑
k=1

α
j
k

〈
φ (xi) ,

m∑
q=1

φ
(
xq
) 〈
φ
(
xq
)
, φ (xk)

〉〉
j = 1, . . . , h; i = 1, . . . ,m (4)
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To avoid obtaining φ(x) and doing eigenvalue decompos-
ing of C directly, the kernel matrix K ∈ Rm×m [28] is given
by

[K]i,j =
〈
φ(xi), φ(xj)

〉
=k(xi, xj) (5)

Define a vector αj ∈ Rm×1 as

αj = [αj1, α
j
2, . . . , α

j
m]

T
(6)

Combining equation (5) and (6) into (4), we can get

mλjαj = Kαj, j = 1, . . . ,m (7)

Kernel function should satisfy Mercers theorem [33], and
polynomial, sigmoid, and radial basis kernels are the widely
used kernel functions. Before doing eigenvalue decomposi-
tion in equation (7), the kernel matrix K should be conven-
tionalized and centralized to K̄ :

K̄ = K - 1mK − K1m + 1mK1m (8)

where 1m is a square matrix of order m, the elements are all
1/m . The equation (7) can be expressed as

mλjαj = K̄αj; j = 1, . . . ,m (9)

Solve the equation (9), then the orthonormal eigenvectors
(α1,α2, . . . ,αm) and the corresponding eigenvalues (λ1 ≥
λ2 ≥ . . . ≥ λm) can be obtained. The number of principal
components d can be chosen by Cumulative Percent Variance
(CPV) [34] and it is given by∑d

j=1 λj∑m
j=1 λj

≥ thCPV (10)

thCPV is a user-defined threshold. For all p = 1, . . . , d ,
the pth score values tp(x) of the new measurement x ∈ R1×n

can be obtained by projecting φ(x) onto the direction of νp in
space 0, as shown in the following formula

tp(x) =
〈
νp, φ(x)

〉
=

m∑
i=1

αip 〈φ(xi), φ(x)〉

=

m∑
i=1

αipk(x, xi) (11)

αip denotes the ith element of αp.
The two statistics Hotelling T 2 and SPE are usually used

to detect faults in nonlinear system, and they are defined
as [35]

T 2
= [t1, t2, . . . , td ]3−1[t1, t2, . . . , td ]T

SPE =
m∑
i=1

t2i −
d∑
i=1

t2i
(12)

where 3 = diag(λ1, . . . , λd ), T 2
β and SPEβ denote the

confidence limit of statistics Hotelling T 2 and SPE with
the confidence level β, respectively. T 2

β and SPEβ can be
calculated as [28], [36]{

T 2
β = [d(m− 1)/(m− d)]Fd,m−d,β

SPEβ = [b/(2a)]χ2
β (2a

2/b)
(13)

where Fd,m−d,β denotes the critical value of F−distribution
with (d,m − d) degrees of freedom and the confidence
level β. The a and b are the estimated mean and variance
of the SPE determined from training data. χ2

β (2a
2/b) means

the χ2
−distribution with 2a2/b degrees of freedom and the

confidence level β.
The fault detection process based on KPCA are divided

into two phases: building a KPCA model under the normal
operating condition by off-line training and online real-time
monitoring. The details of the phases are described in
Table. 1.

B. FAULT DETECTION BASED ON CONVENTIONAL
MWKPCA
The conventional MWKPCA algorithm is applied by moving
a fixed length data window in real time to update the KPCA
model when a certain number of new normal samples are
obtained. And the new normal samples are added to the cur-
rent data window and to keep the length of the data window
constant, the same number of oldest samples are removed.
We assumed L denotes the window length, and one move step
is h.
The key to updating the KPCA model is to update

the centralized kernel matrix K̄ . The update process
includes two stages: (1) Adding h new data sam-
ples { xL+1, xL+2, . . . , xL+h} to the current data win-
dow { x1, x2, . . . , xL} . (2) Discarding h oldest data
samples {x1, x2, . . . , xh} from the new data window
{x1, x2, . . . , xL + h}. The kernel matrix K̄L+h ∈ R(L+h)×(L+h)

after adding h data samples can be expressed as shown in
equation (14), where the upper left corner is the kernel matrix
in the original model K̄L ∈ RL×L :

K̄L+h=

[
K̄L A
AT B

]
(14)

where



K̄L =


k̄11 . . . k̄1L
...

. . .
...

k̄L1 . . . k̄LL

 ∈ RL×L

A =


k̄1(L+1) . . . k̄1(L+h)
...

. . .
...

k̄L(L+1) · · · k̄L(L+h)

 ∈ RL×h

B =


k̄(L+1)(L+1) . . . k̄(L+1)(L+h)

...
. . .

...

k̄(L+h)(L+1) . . . k̄(L+h)(L+h)

R ∈ h×h

(15)

where k̄11 = k̄(x1, x1), the other elements in equation (15)
can be deduced like that. After removing the first h rows and
the first h columns in equation (14), and the updated kernel
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matrix K̄ ′L can be obtained as equation (16):

K̄ ′L =

 k̄(h+1)(h+1) . . . k̄(h+1)(L+h)
...

. . .
...

k̄(L+h)(h+1) . . . k̄(L+h)(L+h)

 (16)

TABLE 1. Fault detection algorithm based on KPCA.

After updating the kernel matrix, calculate the principal
eigenvalues and eigenvectors of K̄ ′L . The control limits of
T 2
lim and SPElim also need to recalculate according to the new

data window {xh+1, xh+2, . . . , xL+h}. And the next new con-
tinuous data samples are monitored using the updated KPCA
model. The implementation of this algorithm requires the
establishment of an initial KPCA model by training normal
data in offline. The KPCA offline training phase is shown in
Table. 1. And the details of the online fault detection phase
based on the conventional MWKPCA algorithm is described
in Table. 2.

III. THE PROPOSED MODIFIED MWKPCA METHOD
The conventional MWKPCA method would update the
KPCAmodel when the newly acquired h samples are normal.
It is not necessary to update the KPCA model, if the h
oldest samples to be discarded are relatively stable compared
to the newly acquired h samples. Due to the lack of an
adaptive KPCAmodel updatingmechanism, the conventional
MWKPCA method updates KPCA models too frequently.
Therefore, a new KPCA model updating mechanism for
MWKPCA algorithm needs to be considered.

Suppose the data set { x1, x2, · · · , xh, · · · , xL} denotes
the current data window. If the KPCA model is updated,
the data set in the next time window is { xh+1, xh+2, · · · ,
xL , · · · ,xL+h} . To decidewhether to update theKPCAmodel
established based on data set { x1, x2, · · · , xh, · · · , xL} ,
the similarity of the two data sets {x1, x2, · · · , xh} and
{ xL , xL+1, · · · , xL+h} needs to be compared. Given the
number of clusters, k-means clustering method can maxi-
mize the distance between clusters and minimize the distance

TABLE 2. Online fault detection algorithm based on the conventional
MWKPCA.

between internal data points. Therefore, we choose k-means
clustering method to measure the similarity between the two
data sets. Divide the two data sets into two categories using
k-means clustering method, and obtain the two cluster cen-
ter points (xc1, xc2). Because the Mahalanobis distance [35]
between two points is independent of themeasurement unit of
the original data, we calculate theMahalanobis distance of the
two cluster center points to measure the similarity between
the two categories, as shown in equation (17).

dMa(xc1, xc2) =
√
(xc1 − xc2)Tω−1(xc1 − xc2) (17)

In equation (17), ω−1 represents the inverse matrix of the
diagonal matrix formed by the conventional deviation of the
measurement parameters.
dthreshold is a presetting threshold for Mahalanobis dis-

tance between the two cluster center points xc1 and xc2.
If dMa(xc1, xc2) does not exceeds the threshold dthreshold ,
which means data set { xL , xL+1, · · · , xL+h} is similar to
data set {x1, x2, · · · , xh}, therefore the current data win-
dow and the corresponding KPCA model do not need to be
updated. There are two problems need to be solved before
implementing the new KPCA model updating mechanism
to MWKPCA algorithm: firstly, how to perform effective
recursive calculation on (xc1, xc2), secondly, how to preset the
threshold dthreshold .The following two parts will introduce the
solutions to these two problems in detail.

A. K-MEANS CLUSTERING METHOD
K-means is a typical clustering algorithm, which is simple
and possesses rapid convergence rate. K-means method parti-
tions the input dataset into k clusters and find out k clustering
centers to minimize the distance between each sample point
and its nearest clustering center [37]. The general calcu-
lation steps of k-means clustering method are as follows:

166544 VOLUME 8, 2020



H. Sun et al.: Fault Detection for Aircraft Turbofan Engine Using a Modified MWKPCA

(1) Determining K initial cluster centers randomly. (2) For
each data sample to be classified, find the nearest cluster
center, and divide it into the data set. (3) Recalculate the clus-
tering center. (4) Calculate the sum of the minimum squared
distance between each data point and its nearest cluster center
Dc. (5) If the Dc converges, terminate the clustering process,
otherwise return step (2).

Assume that the data set in the current data win-
dow is { xi+1, xi+2, · · · , xi+L} , after obtaining h nor-
mal samples, k-means clustering is used to divide dataset
{ xi+1, xi+2, · · · , xi+h} and dataset { xi+L+1, xi+L+2, · · · ,
xi+L+h} into two categories, and the distance between two
clustering centers is calculated. To reduce the amount of
calculation in the calculation process of k-means clustering
centers, we consider a recursive method as shown in Fig. 1.

FIGURE 1. The flowchart of k-means clustering calculation.

Firstly, two clustering centers of data set { xi+1, xi+2, · · · ,
xi+h} are calculated using the k-means clustering method
as the initial values of the recursive calculation. Then the
Mahalanobis distances between the next sample data xj and
each clustering center are calculated using the equation (17).
Divide xj into the data category with the smaller Mahalanobis
distance, and the clustering center of the data category is
updated using the equation (18):

x′ci =
nxci + xj
n+ 1

(18)

In equation (18), x′ci(i = 1, 2) denotes the updated clus-
tering center, n denotes the number of samples in this data
category.

After completing the classification of the h data samples
and the recursive calculation of the cluster points, then it
is determined whether the Mahalanobis distance between

the two clustering centers calculated using equation (17)
exceeds the presetting threshold dthreshold . If the Mahalanobis
distance exceeds dthreshold , the KPCA model and clustering
data set { xi, xi+1, · · · , xi+h} need to be updated. And the
two k-means cluster centers of the updated data set need
to be calculated as the new initial values of the iterative
calculation process. Otherwise, if the Mahalanobis distance
does not exceed dthreshold , then continue to process new data
samples based on the current cluster centers of the data set
{ xi, xi+1, · · · , xi+h} .

B. DETERMINE THE PRESETTING THRESHOLD
The threshold dthreshold is used to determinewhether to update
the time window data and the corresponding KPCA model.
The setting of dthreshold should comprehensively consider
the impact of engine component performance degradation
on sensor measurement parameters and the fault detection
performance of the improved MWKPCA algorithm, such as
false alarm rate, fault detection rate, fault detection time and
other performance indicators. It is assumed that the same
baseline model can be used for fault detection if the relative
change of the performance of engine components is less
than 0.5% . The idea of obtaining the appropriate setting of
dthreshold is: referring to the degradation law of the turbofan
engine, taking 0.5% as performance degradation change step
of engine components, calculate the Mahalanobis distance of
the output parameters in each adjacent degradation situation
and a data set of the Mahalanobis distance is formed, and the
minimum value of the Mahalanobis distance is chosen as the
dthreshold .
In the actual operation of aircraft engines, the performance

of their mechanical rotating components will degrade slowly,
in order to simulate the normal degradation process, the
performance degradation of HPT component is considered.
The HPT component operates in a high-temperature and
high-pressure environment. Compared with other mechanical
rotating components, the performance degradation rate of
HPT components is faster. The HPT efficiency coefficient
eHPT and flow coefficient fHPT are used to measure the health
condition of HPT component. With reference to relevant lit-
erature [38], the relationship between the performance degra-
dation level F of HPT and the changes of eHPT and fHPT is as
follows:

1eHPT =
F√

1+ (1fHPT/1eHPT)2
(19)

1fHPT = 1eHPT ∗ (1fHPT/1eHPT) (20)

where1fHPT/1eHPT ∈ [−1,−0.5], the relationship between
the Mahalanobis distance of the output parameters in each
adjacent degradation situation and the performance degrada-
tion level F of high-pressure turbine components is simulated
as shown in Fig. 2.

Combining the simulation results and the dthreshold setting
idea, the minimum value of the data set {d iMa} is set as the
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FIGURE 2. The simulation of the relationship between F and the
Mahalanobis distance of the output parameters in each adjacent
degradation situation.

dthreshold , that is:

dthreshold = min{d iMa}, i = 1, . . . , 5 (21)

C. OVERALL STRUCTURE AND ALGORITHM
IMPLEMENTATION OF THE MODIFIED MWKPCA
ALGORITHM
The flowchart of the modifiedMWKPCA algorithm is shown
in Fig. 3. Firstly, in the offline training phase, the initial
KPCA model is trained using the normal samples and the
corresponding control limit T 2

lim and SPElim are calculated.
Like all other data-driven fault detection approaches, a nor-
mal data set is required for the initial training stage of the
proposed method. In the real application of the algorithm,
the initial training data can be extracted from the aircraft
engine ground test data sets. Then in the online real-time fault
detection phase, the real time test data is monitored by the
trained KPCA model and the corresponding statistics T 2 and
SPE of the test data are calculated and compare with the con-
trol limits. If one of the statistics exceeds the corresponding
control limit, the test data is considered as abnormal data, and
the parameter for counting i needs to recount. If i accumulate
to h, whether to update the KPCA model is determined by
applying k-means clustering method, which help to calculate
the Mahalanobis distance between the two cluster centers xc1
and xc2. If the Mahalanobis distance does not exceed the
threshold limit, continue to use the current KPCA model for
online fault detection, otherwise, the current KPCA model
and the corresponding control limits need to be updated using
the latest obtained normal data.

The specific algorithm implementation steps of the modi-
fied MWKPCA fault detection method are shown in Table. 3.

IV. COMPARATIVE STUDY
In this section, the conventional MWKPCA algorithm and
the modified MWKPCA algorithm are applied to the fault
detection of a nonlinear model of a commercial aircraft tur-
bofan engine. The fault detection performances (false alarm

FIGURE 3. The flowchart of fault detection algorithm based on the
modified MWKPCA.

rate, fault detection rate, fault detection time, etc.) and the
calculation amount of the two algorithms are compared under
the normal operating condition and the sensor faults con-
dition, respectively. The comparison and simulation verifi-
cation of the two algorithms are mainly divided into three
parts: (1) Introduction of the aircraft turbofan engine model.
(2) Simulation results and comparative analysis under normal
condition. (3) Simulation results and comparative analysis
under sensor faults condition. The three parts are described
in detail as follows.

A. THE DESCRIPTION OF THE AIRCRAFT TURBOFAN
ENGINE NONLINEAR MODEL
The architecture of a civil aircraft turbofan engine is shown in
Fig. 4. The main components consist of the fan, low pressure
compressor (LPC), high pressure turbine (HPC), combustor,
high pressure turbine (HPT), low pressure turbine (LPT),
and two rotating spools. The station definitions are shown
along the bottom of the Fig. 4. The aircraft turbofan engine
model is developed in [39]. The sampling period of the engine
model is 0.02s. The control inputs to this engine model are
the fuel flow (WFM ), variable bleed valve position (VBV)
and variable stator vane angle (VSV). The controller of this
engine model is designed in [40]. The control law of the
engine under steady-state condition is to control the fuel flow
to keep the fan speed constant by giving the desired speed
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FIGURE 4. Diagram of the commercial turbofan engine components and station designations.

TABLE 3. Fault detection algorithm based on the modified MWKPCA.

of the fan. Two spool rotation and five gas path sensors are
chosen as measurement parameters of the engine, which are
used inmost commercial turbofan engines [41]. TheGaussian
white noise is added to the output of the simulation results
of the seven parameters, which ensuring that the simula-
tion approximates the actual engine conditions as closely as
possible. The description of the seven parameters and their
conventional deviations are listed in Table. 4, the installation
position of the sensors can be seen from the indices at bottom
of the Fig. 4.

B. SIMULATION RESULTS UNDER NORMAL OPERATING
CONDITION
In this part, the cruise operating condition is chosen for this
simulation. In this simulation process, the changes of the
performance degradation level F of HPT, the fuel flowWFM
and the seven sensor measurement parameters are shown in
Fig. 5. Under the action of the engine controller, the fan speed
remains basically unchanged in this simulation process. The
simulation ran for 500s then 25000 samples were collected.

A radial basis kernel function is selected as the kernel
function, as shown in equation (22).

k(x, y) = exp(−‖x − y‖2/γ ) (22)

where γ = amσ 2, and m, σ 2 denote the input space and the
variance of the data, respectively. a is a constant, which can be
determined by consideration of the process to be monitored
[28]. The thCPV in equation (10) is set to 0.95, and the
confidence limit of the T 2 and SPE index is set to 0.99. The
length of the data window and the moving forward step h are
set to 200 and 5, respectively. According to the above param-
eter settings, the conventional MWKPCA algorithm can be
implemented. And the dthreshold can be determined according
to equation (21), then the modified MWKPCA algorithm can
be implemented in the same fault detection process as the
conventional MWKPCA algorithm. It is worth mentioning
that the parameter settings of the proposed method, such as
the length of the time window, the fixed moving steps and
the kernel function selection can be optimized based on the
fault detection performance. Since the purpose of this article
has been limited to reducing the computation cost of the
conventional MWKPCAmethod, considering the parameters
optimization is beyond the scope of the present study, the
parameter settings are kept consistent before and after the
algorithm modification.

The fault detection results of the conventional MWKPCA
and the modified MWKPCA using T 2 statistic and SPE
statistic in the case of normal operating condition are pre-
sented respectively in Fig. 6 and Fig. 7. The performance
of the two algorithms is presented in Table. 5. We notice

VOLUME 8, 2020 166547



H. Sun et al.: Fault Detection for Aircraft Turbofan Engine Using a Modified MWKPCA

TABLE 4. Sensors and conventional deviations for the commercial turbofan engine model.

FIGURE 5. The setting of engine performance degradation and the change of the measurement parameters.

that both of the two algorithms meet the requirement of
the false alarm rate limit (TFAR). However, the conventional
MWKPCA algorithm updates the KPCAmodel in fixed steps
and the number of the total update times is 4492, the modified
MWKPCA algorithm updates the KPCA model adaptively
in the fault detection process and the number of the total
update times is 76. The eigenvalues and eigenvectors of
a kernel matrix of size (L,L) are needed to be calculated
when the KPCA model is updating. And the updating pro-
cess consumes O(L3), which is far great than the calculation
cost of the recursive calculation process of cluster centers.

Therefore, by comparing the update times of KPCA model
in the fault detection process, the modified MWKPCA algo-
rithm performs better than the conventional MWKPCA algo-
rithm in terms of calculation amount.

C. SIMULATION RESULTS UNDER SENSOR FAULTS
CONDITION
The fault detection performance of the two algorithms under
sensor faults condition is compared in this part. The setting
of the flight condition and the component degradation level
of HPT are the same as the normal operating condition.
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FIGURE 6. The changes of T 2 and SPE based on the conventional MWKPCA.

FIGURE 7. The changes of T 2 and SPE based on the modified MWKPCA.

TABLE 5. Performance of the conventional MWKPCA and the modified
MWKPCA for online fault detection under normal condition.

And it is assumed that three sensor faults have been occurred
in three different time intervals for the measurements Nh, Ps3
and T45. These faults are presented in Table. 6. The change
of the performance degradation level F of HPT, the fuel flow
WFM and the seven sensor measurement parameters in this
simulation process are shown in Fig. 8.
The setting of the kernel function and the related parame-

ters in this fault detection process is as same as the simulation
under the normal operation, which is shown in the former
part. The monitoring results of the conventional MWKPCA

TABLE 6. Sensor faults description.

and the modified MWKPCA using T 2 and SPE are presented
respectively in Fig. 9 and Fig. 10. From these figures, all the
injected faults are detected at time.

The fault detection results of the two algorithms are shown
in Table. 7. In Table. 7 the false alarm rate, fault detection
time, and the update times of KPCAmodels are summarized.
We notice that the modified MWKPCA algorithm provides
a comparable performance in term of false alarm rate and
the fault detection time than the conventional MWKPCA
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FIGURE 8. The setting of engine performance degradation and the change of the measurement parameters with sensor faults.

FIGURE 9. The changes of T 2 and SPE based on the conventional MWKPCA.

algorithm. However, the two algorithms have significant dif-
ferences in the update times of KPCAmodel in the process of
fault detection, which means that in the case of sensor fault,

the modified MWKPCA can reduce the calculation amount
of the algorithm and improve the execution efficiency of the
algorithm.
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FIGURE 10. The changes of T 2 and SPE based on the modified MWKPCA.

TABLE 7. Performances of the conventional MWKPCA and the modified MWKPCA for online fault detection under sensor faults condition.

V. CONCLUSION
In this article, a novel fault detection based on the mod-
ified MWKPCA is proposed for aircraft turbofan engine.
In this method, a new KPCA updating mechanism for the
conventional MWKPCA is established based on the k-means
clustering and Mahalanobis distance of the clustering cen-
ters. The proposed method is verified under normal oper-
ating condition and sensor faults condition, and the nor-
mal degradation of the components of the aircraft turbofan
engine is considered in both of the two simulation cases.
Compared with the conventional MWKPCA algorithm, the
improved MWKPCA algorithm can realize updating KPCA
model adaptively according to the changes of the system out-
put parameters. And the modified MWKPCA algorithm has
less KPCA update operations in the fault detection process,
therefore, it has better performances in terms of computation
cost. A future research direction is to design a real time
fault isolation and fault reconstruction strategy based on the
proposed modified MWKPCA algorithm.
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