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ABSTRACT The Bernoulli filter is a general, Bayes-optimal solution for tracking a single disappearing and
reappearing target, using a sensor whose observations are corrupted by missed detections and a general,
known clutter process. Like virtually all target-tracking algorithms it presumes restrictive independence
assumptions, namely a hidden Markov model (HMM) structure on the sensor and target. That is, the current
state of the target depends only on its previous state, and the measurement collected from it depends
only on its current state. Pieczynski’s pairwise Markov model (PMM) relaxes these restrictions. In it,
the current target state can additionally depend on the previous measurement; and the current measurement
can additionally depend on the previous measurement and previous target state. In this paper we show how
to correctly generalize the PMM to the multitarget (MPMM) case; and use the MPMM to derive a ‘‘PMM
Bernoulli filter’’ that obeys PMM rather than restrictive HMM sensor/target statistics.

INDEX TERMS Target tracking, randomfinite set, finite-set statistics, recursive Bayes filter, Bernoulli filter,
hidden Markov model, pairwise Markov model.

I. INTRODUCTION
The Bernoulli filter was independently and contemporane-
ously devised by Vo [1] and Mahler [2, Sec. 14.7]. It is a
general and Bayes-optimal solution for tracking a single dis-
appearing and reappearing target, using a sensor whose obser-
vations are corrupted by missed detections and a general,
known clutter process. It propagates a probability hypothesis
density (PHD) D via time-update and measurement-update
steps D(xk−1|Z1:k−1)→ D(xk |Z1:k−1) and D(xk |Z1:k−1) →
D(xk |Z1:k ), where Z1:k : Z1,. . . , Zk is the time-sequence of col-
lected measurement-sets. See Section VI-A for more detail.

Like virtually all target-tracking algorithms, the Bernoulli
filter presumes restrictive independence assumptions, namely
a hidden Markov model (HMM) structure on the sensor and
target. That is, at time tk the target’s state xk depends only
on its previous state xk−1 with Markov transition density
f (xk |xk−1); and the measurement yk that the sensor col-
lects from it depends only on xk with measurement den-
sity f (yk |xk ). Pieczynski’s pairwise Markov model (PMM)
[3]–[7] relaxes these restrictions.

A. THE PAIRWISE MARKOV MODEL (PMM)
The PMM generalizes the HMM by treating the target and
sensor as a joint dynamical system with joint state (xk , yk ),
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which is governed by a Markov transition density

f (xk , yk |xk−1, yk−1)

= f (xk |xk−1, yk−1) · f (yk |xk , xk−1, yk−1) (1)

where the factorization on the right is due to Bayes’ rule.
In the PMM, the current target state can additionally depend
on the previous measurement (as described by f (xk |xk−1,
yk−1) (i.e., the target can be non-Markovian); and in that the
current measurement can additionally depend on the previous
measurement and the previous target state as described by
f (yk |xk , xk−1, yk−1) (and thus measurement noise can be
colored or correlated with plant noise [7, p. 4487]). See
Section III for more detail.

Pieczynski and Desbouvries [6] have described practical
Kalman filter-based implementations of PMMs to single-
target tracking. Petetin and Desbouvries [7] proposed a PMM
generalization of the probability hypothesis density (PHD)
filter of [2, Sec. 16.3]; described concrete practical appli-
cations and implementations; and demonstrated that their
PMM-PHD filter has better tracking performance than the
classical HMM-PHD filter under non-HMM conditions. This
work has been extended to nonlinear models [8].

B. THE MULTITARGET PMM (MPMM)
Let Xk be the state-set of a multitarget system at time tk
and Yk the multitarget measurement-set generated by both
targets and clutter. In [9] Mahler generalized the PMM to

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168229

https://orcid.org/0000-0003-1226-1104


R. Mahler: Pairwise-Markov Bernoulli Filter

the multitarget PMM (MPMM); and also proposed a con-
crete formula—see (51,53) below—for the MPMM transi-
tion density f (Xk ,Yk |Xk−1,Yk−1), based on the ‘‘standard’’
multitarget Markov density f (Xk |Xk−1) [2, Eq. 14.273], [10,
Eq. 5.94]; and the ‘‘standard’’ multitarget measurement den-
sity f (Yk |Xk ) [2, Eq. 14.290], [10, Eq. 5.104].
Remark 1: The MPMM transition model (51,53) turns out

to be erroneous—see Section V-C. It will be replaced by the
corrected, theoretically rigorous model in (60,61).

We shall see that the evolution f (Xk−1,Yk−1|Z1:k−2) →
f (Xk ,Yk |Z1:k−1) of an MPMM is described in terms of
‘‘MPMM densities’’ f (Xk ,Yk |Z1:k−1), which describe not
only Xk and Yk but also the statistical correlation between
them (Section IV). In this paper we will we consider the
evolution of ‘‘Bernoulli MPMM’s’’ (Xk ,Yk )—i.e., those such
that |Xk | ≤ 1 for all k ≥ 1 (where |X | denotes the
number of elements in X ). In such an MPMM the follow-
ing dynamical transitions are possible: ({xk−1}, Yk−1) →
({xk}, Yk ) (target survives); ({xk−1}, Yk−1)→ (Ø,Yk ) (target
disappears); or (Ø,Yk−1) → ({xk}, Yk ) (target appears or
reappears).
Since f (Xk ,Yk |Z1:k−1) = 0 identically if |Xk | > 1,

the state of a Bernoulli MPMM at time tk is completely
described by f (Ø,Yk |Z1:k−1) and f ({xk}, Yk |Z1:k−1); and
its evolution from time tk−1 to time tk is described by
the update f (Ø,Yk−1|Z1:k−2), f ({xk−1}, Yk−1|Z1:k−2) →
f (Ø,Yk |Z1:k−1), f ({xk}, Yk |Z1:k−1). The ultimate result is a
Bayes-optimal ‘‘PMM Bernoulli filter’’ in which the sensor
can have correlated-noise statistics and the target can have
non-Markovian dynamics.

C. SUMMARY OF MAIN RESULTS
These are as follows:

1. The corrected MPMM transition model, (60,61).
2. Evolution models for the ‘‘elementary’’ MPMM pairs

(Xk ,Yk )—i.e., those with |Xk |, |Yk | ≤ 1 (Sections V-D
through V-H).

3. The ‘‘Bernoulli MPMM filter,’’ which recursively prop-
agates Bernoulli MPMM densities f (Xk ,Yk |Z1:k−1) with
|Xk | ≤ 1 (Section VI-D).

4. The ‘‘PMM Bernoulli filter,’’ which, like the usual
HMM Bernoulli filter, recursively propagates PHD’s
D(xk |Z1:k ) (see (10)).

The PMMBernoullii filter can be summarized as follows. Let
us be given: (i) κk (Yk ) (the multi-object probability density
function of the clutter process); (ii) pS (xk−1) (the probability
that the target will not disappear at time tk−1); (iii) qBk (the
probability that the target will reappear at time tk− after hav-
ing disappeared); (iv) sBk (xk ) (the target’s spatial density after
reappearance); (v) pD(xk ) (the target’s probability of detec-
tion); (vi) f (xk , yk |xk−1, yk−1) (the PMM transition density);
(vii) f (xk |xk−1, yk−1) (the marginal of f (xk , yk |xk−1, yk−1);
(viii) Mxk (xk−1) = f (xk |xk−1) (Markov density associated
with transition ({xk−1}}, Ø) → ({xk}, Ø), see (76); and
(ix) Lyk (xk ) = f (yk |xk ) (measurement density associated

with (Ø,Ø)→ ({xk},{yk}), see (89). Define

`Yk (xk )=1− pD(xk )+pD(xk )
∑
yk∈Yk

Lyk (xk ) ·
κk (Yk−{yk})
κk (Yk )

(2)
where by convention the summation vanishes if Yk = Ø.
Also, if f (xk |xk−1, yk−1) is the marginal of f (xk , yk |xk−1,
yk−1),

`Yk ,Yk−1 (xk |xk−1)

=
1− pD(xk )
|Yk−1|

∑
yk−1∈Yk−1

f (xk |xk−1, yk−1)

+
pD(xk )
|Yk−1|

∑
yk−1∈Yk−1

∑
yk∈Yk

f (xk , yk |xk−1, yk−1)

·
κk (Yk − {yk})

κk (yk )
(3)

if Yk−1 6= Ø (and where by convention the second summation
vanishes if Yk = Ø); whereas if Yk−1 = Ø,

`Yk ,Ø(xk |xk−1)=`Yk (xk ) · f (xk |xk−1)=`Yk (xk ) ·Mxk (xk−1).
(4)

Abbreviate

Dk|k−1(xk )=D(xk |Z1:k−1),Dk|k (xk )=D(xk |Z1:k ) (5)
`Yk ,Yk−1,xk (xk−1) = `Yk ,Yk−1 (xk |xk−1). (6)

Define

˜̀Yk ,Yk−1 (xk−1)

=
1
|Yk−1|

∑
yk−1∈Yk−1

∫
(1− pD(xk )) · f (xk |xk−1, yk−1)dxk

+
1
|Yk−1|

∑
yk−1∈Yk−1

∑
yk∈Yk

κk (Yk − {yk})
κk (Yk )

×

∫
pD(xk )f (xk , yk |xk−1, yk−1)dxk (7)

if Yk−1 6= Ø whereas if Yk−1 = Ø (and employing the
notation defined in (47)),

˜̀Yk ,Ø(xk−1) =
∫
`Yk (xk ) ·Mxk (xk−1)dxk = M`Yk

(xk−1).

(8)

Also, if f (x) is a density function and 0 ≤ h(x) ≤ 1 a unitless
function, define

f [h] =
∫
h(x) · f (x)dx. (9)

Given this, the PMMBernoulli filter is given by the following
single-step recursive update, (10), as shown at the bottom of
the next page. This equation is derived in Appendix B.

If the PMM is actually an HMM, then

f (xk , yk |xk−1, yk−1) = f (yk |xk ) · f (xk |xk−1), (11)

(see (36)) from which it follows that

`Yk ,Yk−1 (xk |xk−1) = `Yk (xk ) · f (xk |xk−1) (12)

in which case, as will be shown in (200), (10) reduces to the
single-step HMM Bernoulli filter as given in (111).
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D. ORGANIZATION OF THE PAPER
The remainder of the paper is organized as follows: A brief
summary of the mathematical theory required to under-
stand the paper (Section II); the PMM (Section III); the
MPMM (Section IV); the corrected MPMM transition den-
sity (SectionV); and the BernoulliMPMMfilter (SectionVI).
Conclusions can be found in Section VII, and the Bernoulli
MPMM and PMM Bernoulli filters are derived in Appen-
dices A and B, respectively. The following notation will be
employed hereafter: A : = B means ‘‘A is defined to be B’’;
and A != B means ‘‘A is an abbreviation of B.’’

II. OVERVIEW OF FINITE-SET STATISTICS (FISST)
This section summarizes the theory necessary to understand
the remainder of the paper. Greater detail can be found in
books [2], [10]–[12], tutorials [13]–[15], and a short survey
of advances c. 2015 [16]. Also, systematic investigations of
FISST vs. ‘‘point processes’’ can be found in [17], [18] and
of FISST vs. measurement-to-track approaches in [19].

Significant recent advances can be found in [20], [21].
Specifically, [20] describes an implementation of the gener-
alized labeled multi-Bernoulli (GLMB) filter that is capable
of simultaneously tracking over a million 2D targets in signif-
icant clutter in real time using off-the-shelf computing equip-
ment, as well as a theoretically rigorous, large-scale track
quality measure, ‘‘OSPA(2)’’; and [21] describes a multiscan
extension of the GLMB filter.

The section is organized as follows: random finite sets
(Section II-A); multitarget calculus (Section II-B); Bernoulli
RFSs (Section II-C); and themultitarget recursive Bayes filter
(Section II-D).

A. RANDOM FINITE SETS (RFSs)
Let = be a single-target state-space with x ∈ =, and let <
be the sensor measurement space with z ∈ <. Then the
state of a multitarget system is represented as a finite subset
X = {x1,. . . , xn} ⊆ = with X = Ø for n = 0. The number
of elements in X is denoted as |X |. In a Bayesian approach,
unknown states are random variables. Thus an unknown mul-
titarget state is a random finite set (RFS) 4 ⊆ =.

B. MULTITARGET CALCULUS
A multitarget density function is a function f (X ) ≥ 0 of the
finite-set variable X ⊆ = such that the unit of measurement of
f (X ) is ι−|X |

=
, where ι= is the unit of measurement of =. The

set integral of f (X ) is∫
f (X )δX = f (Ø)+

∑
n≥1

∫
fn(x1, . . . , xn)dx1 · · · dxn (13)

where fn(x1,. . . , xn) : = f ({x1,. . . , xn})/n! for distinct
x1,. . . , xn and fn(x1,. . . , xn) : = 0 otherwise. Every random
finite state-set 4 has a multitarget probability distribution
f4(X ) with ∫ f4(X )δX = 1.
An MPMM density function is a function f (X ,Y ) ≥ 0

of the finite-set variables X ⊆ =, Y ⊆ < such that the
unit of measurement of f (X ,Y ) is ι−|X |

=
ι
−|Y |
<

where ι< is the
unit of measurement of <. An MPMM density function is a
joint probability density if ∫ f (X ,Y )δXδY = 1. If 4 ⊆ =
and 6 ⊆ < are RFSs then 4, 6 have an MPMM probability
density f4,6(X ,Y ) that describes the statistical correlation
between them.

The probability generating functional (p.g.fl.) of 4 is, for
unitless ‘‘test functions’’ 0 ≤ h(x) ≤ 1,

G4[h] :=
∫
hX · f4(X )δX (14)

where hX = 1 if X = Ø and hX = 5x∈Xh(x) otherwise. The
simplest nontrivial p.g.fl.’s are

s[h] =
∫
h(x) · s(x)dx (15)

where s(x) ≥ 0 is a probability density function on =.
If 0 ≤ g(z) ≤ 1 for z ∈ < then the joint p.g.fl. of 4, 6 is

G4,6[h, g] :=
∫
hX · gY · f4,6(X ,Y )δXδY . (16)

The intuitive definition of the Volterra functional deriva-
tive of G4[h] is:

δG4
δx

[h] := limε→0+
G4[h+ ε · δx]− G4[h]

ε
(17)

where δx(y) is the Dirac delta function concentrated at x.
(For a rigorous definition see [14].) If X = {x1,. . . , xn} with
|X | = n then the iterated functional derivative is

δG4
δX

[h] :=
δnG4

δx1 · · · δxn
[h] :=

δ

δxn

δn−1G4
δx1 · · · δxn−1

[h] (18)

if |X | ≥ 1 and = G4[h] if otherwise. There is an extensive
‘‘toolbox’’ of ‘‘turn-the-crank’’ rules for set integrals and
functional derivatives [2, pp. 383-389], [10, pp. 69-80].

The joint functional derivatives of G4,6[h, g] are:

δG4,6
δX•δY

[h] :=
δ

δX
δ

δY
G4,6[h, g] (19)

where the ‘‘•’’ notation indicates that δ/δX is taken with
respect to the variable h and δ/δY with respect to the
variable g. When Y = Ø or X = Ø we have:

δG4,6
δX•

[h, g] : =
δ

δX
G4,6[h, g],

δG4,6
•δY

[h, g] : =
δ

δY
G4,6[h, g]. (20)

Dk|k (xk ) =
`Zk (xk ) · q

B
k s
B
k (xk ) · (1− Dk−1|k−1[1])+ Dk−1|k−1[pS`Zk ,Zk−1,xk ](

(1− qBk s
B
k + q

B
k s
B
k [`Zk ]) · (1− Dk−1|k−1[1])

+Dk−1|k−1[1− pS + pS ˜̀Zk ,Zk−1 ]

) . (10)
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The p.g.fl. and distibution of an RFS are related by:

f4(X ) =
δG4
δX

[0]. (21)

Likewise, the bivariate p.g.fl. and bivariate multitarget disti-
bution of RFSs 4, 6 are related by:

f4,6(X ,Y ) =
δG4,6
δX•δY

[0, 0]. (22)

C. THE BERNOULLI RFS
An RFS of special importance for this paper, the Bernoulli
RFS, is most easily described using its p.g.fl.:G4[h]= 1− q+
q · s[h] where 0 ≤ q ≤ 1 and the probability density s(x) are,
respectively, the existence probability and spatial distribution
of a single target.

D. MULTITARGET RECURSIVE BAYES FILTER
Given a time-sequence Z1:k :Z1, . . . ,Zk of collected
measurement-sets from a sensor, this is:

. . .→ f (Xk−1|Z1:k−1)→ f (Xk |Z1:k−1)→ f (Xk |Z1:k )→ . . .

where

f (Xk |Z1:k−1)=
∫
f (Xk |Xk−1,Z1:k−1) · f (Xk−1|Z1:k−1)δXk−1

(23)

f (Xk |Z1:k ) ∝ f (Zk |Xk ,Z1:k−1) · f (Xk |Z1:k−1); (24)

and where f (Xk |Xk−1,Z1:k−1) is the multitarget state-
transition density and f (Zk |Xk ,Z1:k−1) is the sensor
multitarget measurement density. It is assumed that
f (Xk |Xk−1,Z1:k−1) = f (Xk |Xk−1) (Markov assumption) and
f (Zk |Xk ,Z1:k−1) = f (Zk |Xk ).
In this paper we will be concerned with f (Xk |Xk−1) and

f (Zk |Xk ) for only the ‘‘standard’’ multitarget motion and
measurement models, respectively—see Section V-A.

III. THE PAIRWISE MARKOV MODEL (PMM)
The section is organized as follows: single-target recursive
Bayes filter (Section III-A); the PMM (Section III-B); and
single-target tracking using PMMs (Section III-C).

A. SINGLE-TARGET RECURSIVE BAYES FILTER
The PMM concept is most easily explained via the single-
target recursive Bayes filter. Let x ∈ = denote a single-target
state and z ∈ < a single-target measurement. In the Bayesian
approach, the unknown state at time tk is a random variable
Xk|k ∈ = and the measurement process at time tk is a random
variable Zk ∈ <. Let us be given:
1. the distribution f (x0) of the initial state X0|0;
2. the sequence z1:k : z1,. . . , zk of measurements collected

from the target at times t1,. . . , tk ;
3. the transition density f (xk |xk−1, z1:k−1), which describes

the evolution of Xk−1|k−1 at time tk−1 to Xk|k−1 at
time tk ; and

4. the measurement density f (zk |xk , z1:k−1) at time tk ,
which characterizes the statistics of Zk if xk is a real-
ization of Xk|k−1.

Given this, the recursive Bayes filter is defined by the time-
and measurement-update equations

f (xk |z1:k−1) =
∫
f (xk |xk−1, z1:k−1) · f (xk−1|z1:k−1)dxk−1

(25)

f (xk |z1:k ) =
f (zk |xk , z1:k−1) · f (xk |z1:k−1)

f (zk |z1:k−1)
(26)

f (zk |z1:k−1) =
∫
f (zk |xk , z1:k−1) · f (xk |z1:k−1)dxk−1.

(27)

It is usually assumed that f (xk |xk−1, z1:k−1) = f (xk |xk−1)
and f (zk |xk , z1:k−1) = f (zk |xk ).

B. THE PAIRWISE MARKOV MODEL
Now let the state space be the Cartesian product =×< rather
than =. In this case, the unknown quantity at time tk is the
joint state of the joint target-measurement system, and is
represented as the random pair (Xk|k , Yk ) ∈ = × <. What
is unknown is not only Xk|k and Yk but also their statisti-
cal correlation, as described by the posterior PMM density
f (xk , yk |z1:k−1). Let us be given
1. a PMM transition density

f (xk , yk |xk−1, yk−1) = f (xk |xk−1, yk−1)

·f (yk |xk , xk−1, yk−1) (28)

that describes the evolution of the PMM system;
2. the measurement density f (zk |xk , yk ) = δyk (zk ) of the

PMM system, in which case it follows that the mea-
surement equation is zk = η(xk , yk ) with measurement
function η(x, y) : = y—i.e., if the joint system has
state (x, y) then y is the only measurement that can be
collected from it.

Given this, f (xk , yk |z1:k−1) can be recursively derived from
f (xk−1, yk−1|z1:k−2) as (29)–(31), shown at the bottom of the
next page. Here, (29) is the Bayes’ filter time-update step for
the PMM; (30) incorporates the Bayes’ filter measurement-
update step for the PMM; and (31) follows from the fact
that f (zk |xk , yk ) = δyk (zk ). The initial PMM distribution
for the recursion is f (x1, y1) = f (y1|x1) · f (x1) where
f (x1) is an initial target distribution and f (y1|x1) is an initial
measurement density.
Remark 2: Since Zk = Yk , in the PMM literature the

distinction between zj(a collected measurement) and yj(a
realization of the unknown random variable Yj) is notation-
ally suppressed:

f (xk , yk |y1:k−1)

=

∫
f (xk , yk |xk−1, yk−1) · f (xk−1, yk−1|y1:k−2)dxk−1∫

f (xk−1, yk−1|y1:k−2)dxk−1
.

(32)
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The estimated measurement density at time tk can be deter-
mined from f (xk , yk |z1:k−1) via

f (yk |xk , y1:k−1)=
f (xk , yk |y1:k−1)
f (xk |y1:k−1)

=
f (xk , yk |y1:k−1)∫
f (xk , yk |y1:k−1)dyk

.

(33)

Likewise, if f (xk |xk−1, yk−1) is themarginal of f (xk , yk |xk−1,
yk−1) then the estimated Markov density at time tk is

f (xk |xk−1, y1:k−2)

=

∫
f (xk |xk−1, yk−1) · f (xk−1, yk−1|y1:k−2)dyk−1

f (xk−1|y1:k−2)
.

(34)

A PMM reduces to an HMM if, for k > 1,

f (yk |xk , xk−1, yk−1) = f (yk |xk ), f (xk |xk−1, yk−1)

= f (xk |xk−1) (35)

in which case (28) reduces to:

f (xk , yk |xk−1, yk−1) = f (xk |xk−1) · f (yk |xk ). (36)

Thus PMMs significantly weaken HMM’s to encompass
non-Markov targets and correlated sensor noise [7, p. 4487].

C. SINGLE-TARGET TRACKING USING PMMs
The single-target posterior distribution f (xk |y1:k ) can be
recursively propagated as follows [7, Eq. 12]:

f (xk |y1:k )

=

∫
f (xk , yk |xk−1, yk−1) · f (xk−1|y1:k−1)dxk−1∫

f (xk , yk |xk−1, yk−1) · f (xk−1|y1:k−1)dxk−1dxk
.

(37)

Note that f (xk |y1:k ) is related to f (xk , yk |y1:k−1) as follows:

f (xk |y1:k ) =
f (xk , yk |y1:k−1)
f (yk |y1:k−1)

=
f (xk , yk |y1:k−1)∫
f (xk , yk |y1:k−1)dxk

,

(38)

so that
_xk = arg supxk∈= f (xk , yk |y1:k−1) (39)

is the MAP estimate of the target state given y1:k . The pre-
dicted target distribution is

f (xk |y1:k−1) =
∫
f (xk , yk |y1:k−1)dyk . (40)

IV. MULTITARGET PMM (MPMM)
This is a direct generalization of the single-target PMM.
Let Fin(=) denote the set of multitarget states (i.e., the
finite subsets X of =) and let Fin(<) denote the set of
multitarget measurements (i.e., the finite subsets Z of <).
Then the unknown multitarget state at time tk is an RFS
4k|k ⊆ = and the multitarget measurement process is an RFS
6k ⊆ <.

Now let the state space be Fin(=)×Fin(<). Then the
unknown state at time tk is that of the joint multitarget, multi-
measurement system, as represented by the random pair
(4k|k , 6k ) ∈ Fin(=)×Fin(<). What is unknown is not only
4k|k and6k but also their statistical correlation, as described
by the posterior MPMM density f (Xk ,Yk |Y1:k−1). Let us be
given:

1. an MPMM transition density

f (Xk ,Yk |Xk−1,Yk−1) = f (Xk |Xk−1,Yk−1)

·f (Yk |Xk ,Xk−1,Yk−1) (41)

describing the evolution of the MPMM system;
2. the MPMM measurement density f (Zk |Xk ,Yk ) =

δYk (Zk ) of the MPMM system.

Then as with the single-target case, the recursions for the
MPMM density f (Xk ,Yk |Y1:k−1) and the multitarget poste-
rior f (Xk |Y1:k ) are, respectively,

f (Xk ,Yk |Y1:k−1)

=

∫
f (Xk ,Yk |Xk−1,Yk−1)f (Xk−1,Yk−1|Y1:k−2)δXk−1∫

f (Xk−1,Yk−1|Y1:k−2)δXk−1
(42)

f (Xk |Y1:k )

=

∫
f (Xk ,Yk |Xk−1,Yk−1) · f (Xk−1|Y1:k−1)δXk−1∫

f (Xk ,Yk |Xk−1,Yk−1) · f (Xk−1|Y1:k−1)δXk−1δXk
.

(43)

From (42) we see that the p.g.fl. of f (Xk ,Yk |Y1:k−1) is

G[hk , gk |Y1:k−1]

=

∫
hXkk · g

Yk
k · f (Xk ,Yk |Y1:k−1)δXkδYk (44)

=

∫
G[hk , gk |Xk−1,Yk−1] · f (Xk−1,Yk−1|Y1:k−2)δXk−1∫

f (Xk−1,Yk−1|Y1:k−2)δXk−1
(45)

f (xk , yk |z1:k−1) =
∫
f (xk , yk |xk−1, yk−1) · f (xk−1, yk−1|z1:k−1)dxk−1dyk−1 (29)

=

∫ ( f (xk , yk |xk−1, yk−1) · f (zk−1|xk−1, yk−1)
·f (xk−1, yk−1|z1:k−2)

)
dxk−1dyk−1∫

f (zk−1|xk−1, yk−1) · f (xk−1, yk−1|z1:k−2)dxk−1dyk−1
(30)

=

∫
f (xk , yk |xk−1, zk−1) · f (xk−1, zk−1|z1:k−2)dxk−1∫

f (xk−1, zk−1|z1:k−2)dxk−1
. (31)
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where the p.g.fl. of f (Xk ,Yk |Xk−1,Yk−1) is

G[hk , gk |Xk−1,Yk−1]

=

∫
hXkk g

Yk
k · f (Xk ,Yk |Xk−1,Yk−1)δXkδYk . (46)

Thus f (Xk ,Yk |Xk−1,Yk−1) can be specified by providing a
formula for G[hk , gk |Xk−1,Yk−1] as in the next section.

V. MPMM TRANSITION DENSITIES
The section is organized as follows: the ‘‘standard’’ multitar-
get motion and measurement models (Section V-A); the orig-
inal MPMM transition model (Section V-B); the corrected
MPMM transition model (Section V-C); and the evolution
of the MPMM pair ({xk−1},{yk−1}) according to this model
(Section V-D). The remaining subsections address exten-
sions of this basic evolution model: the general evolution of
({xk−1},{yk−1}) (Section V-E); the evolution of ({xk−1}, Ø)
(Section V-F); the evolution of (Ø,Ø) (Section V-G); and the
evolution of (Ø,{yk−1}) (Section V-H).

A. THE ‘‘STANDARD’’ MULTITARGET MOTION AND
MEASUREMENT MODELS
What is f (Xk ,Yk |Xk−1,Yk−1)? This question was addressed
in [9] by endeavoring to infer the form of its p.g.fl.
G[hk , gk |Xk−1,Yk−1] from the p.g.fl.’s G[hk |Xk−1] and
G[gk |Xk ] of, respectively, the ‘‘standard’’ multitarget motion
and measurement models.

The ‘‘standard’’ multitarget motion model [2, Eq. 14.273],
[10, Eq. 5.94], presumes that: (a) individual target motions
are statistically independent; (b) the probability that a target
with state xk−1 at time tk−1 will survive to time tk is pS (xk−1);
(c) if so, then f (xk |xk−1) is the probability (density) that it will
transition to a target with state xk ; and (d) f B(Xk ) is the mul-
titarget density of newly-appearing targets, with correspond-
ing p.g.fl. GB[hk ]. This motion model is used to construct
the ‘‘standard’’ multitarget Markov density f (Xk |Xk−1), with
corresponding p.g.fl.

G[hk |Xk−1] = GB[hk ] · (1− pS + pSMhk )
Xk−1 ,

Mhk (xk−1) : =
∫
hk (xk ) · f (xk |xk−1)dxk . (47)

The ‘‘standard’’ multitarget measurement model
[2, Eq. 14.290], [10, Eq. 5.104] presumes that: (e) all
measurements are generated independently of each other;
(f) the probability that a target with state xk at time tk will
generate a measurement is pD(xk ); (g) if so, then f (yk |xk ) is
the probability (density) that the measurement is yk ; and (h)
f κ (Zk ) is the multi-object density of the clutter process, with
corresponding p.g.fl. Gκ [gk ]. This model is used to construct
the standard multitarget measurement density f (Yk |Xk ), with
corresponding p.g.fl.

G[gk |Xk ] = Gκ [gk ] · (1− pD + pDLgk )
Xk ,

Lgk (xk ) : =
∫
gk (yk ) · f (yk |xk )dyk . (48)

B. THE ORIGINAL MPMM TRANSITION MODEL
The multitarget analog of (36) is

f (Xk ,Yk |Xk−1,Yk−1) = f (Xk |Xk−1) · f (Yk |Xk ). (49)

Given this, it was shown in [9, Sec. 2.4] via substitution that
the p.g.fl. of f (Xk ,Yk |Xk−1,Yk−1) is

G[hk , gk |Xk−1,Yk−1]

=

∫
hXkk g

Yk
k · f (Xk ,Yk |Xk−1,Yk−1)δXkδYk (50)

= Gκ [gk ] · GB[hk (1− pD + pDLgk )] · G
E [hk , gk |Xk−1]

(51)

where Gκ [gk ] characterizes the clutter process; GB[hk ]
characterizes the target-appearance process; and where the
evolution model is

GE [hk , gk |Xk−1]= (1−pS+ pSMhk (1−pD+pDLgk )
)Xk−1 . (52)

From this, in [9, Sec. 2.4] it was proposed that if
Xk−1 6= Ø and Yk−1 6= Ø then a plausible generalization of
GE [hk , gk |Xk−1] to GE [hk , gk |Xk−1,Yk−1] is

GE [hk , gk |Xk−1,Yk−1]

=

∏
(xk−1,yk−1)∈Xk−1×Yk−1

GE [hk , gk |{xk−1}, {yk−1}] (53)

where the evolution of the PMM pair ({xk−1},{yk−1}) is
described by the p.g.fl.

GE [hk , gk |{xk−1}, {yk−1}]

= M̈1−pS+pShk (1−pD+pDgk )(xk−1, yk−1) (54)

: =

∫ (
(1− pS (xk−1)+ pS (xk−1) · hk (xk )
·{1− pD(xk )+ pD(xk ) · gk (yk )})

)
× f (xk , yk |xk−1, yk−1)dxkdyk . (55)

Equation (53) thus presumes that the elementary pairs
({xk−1},{yk−1}) evolve independently of each other.

C. THE CORRECTED MPMM TRANSITION MODEL
In retrospect, (53) cannot be correct for at least two reasons.
First, when the underlying PMM is an HMM—i.e., when
f (xk , yk |xk−1, yk−1) = f (xk |xk−1) · f (yk |xk )—then

M̈1−pS+pShk (1−pD+pDgk )(xk−1, yk−1)

= M1−pS+pShk (1−pD+pDLgk )
(xk−1). (56)

Thus from (52-54) we see that

GE [hk , gk |Xk−1,Yk−1]

=

(
(1− pS + pSM1−pD+pDLgk

)Xk−1
)|Yk−1|

= GE [hk , gk |Xk−1]|Yk−1| (57)

rather than, as should be the case, GE [hk , gk |Xk−1,Yk−1] =
GE [hk , gk |Xk−1].1

Second, suppose that the scenario contains at most a single
target obscured by clutter. Then the multi-object system will

1 The MPMM-CPHD filter proposed in [9] therefore cannot be correct.
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always be described by an MPMM pair (Xk ,Yk ) with |Xk |
≤ 1. In this case the evolution of the system must consist
of transitions . . .→ (Xk−1,Yk−1)→ (Xk ,Yk )→ . . . where
|Xk−1|, |Xk | ≤ 1. Such an evolution is impossible if it is given
as (53) since

GE [hk , gk |{xk−1},Yk−1]=
∏

yk−1∈Yk−1

GE [hk , gk |{xk−1}, {yk−1}]

(58)

describes a system that has as many as |Yk−1| targets.
Accordingly, a corrected model is required, as follows.

If |Yk−1| > 0 or |Yk−1| = 0 define, respectively,

M̄1−pS+pShk (1−pD+pDgk )(xk−1,Yk−1)

: =
1
|Yk−1|

∑
yk−1∈Yk−1

M̈1−pS+pShk (1−pD+pDgk )(xk−1, yk−1)

M̄1−pS+pShk (1−pD+pDgk )(xk−1,Ø)

:= M1−pS+pShk (1−pD+pDLgk )
(xk−1). (59)

Then replace (53) with

G̃E [hk , gk |Xk−1,Yk−1]

: =

∏
xk−1∈Xk−1

M̄1−pS+pShk (1−pD+pDgk )(xk−1,Yk−1). (60)

In this case

G[hk , gk |Xk−1,Yk−1]

=Gκ [gk ] · GB[hk (1−pD+pDLgk )] · G̃
E [hk , gk |Xk−1,Yk−1]

(61)

does properly reduce to (51). Thus the incorrect (58) is
replaced with

G̃E [hk , gk |{xk−1},Yk−1]

= M̄1−pS+pShk (1−pD+pDgk )(xk−1,Yk−1). (62)

Equation (62) has a physical interpretation. Suppose that
pS = 1 (the target does not disappear) and pD = 1 (the target
is detected) and |Yk−1| > 0. Then (62) reduces to

G̃E [hk , gk |{xk−1},Yk−1]

=
1
|Yk−1|

∑
yk−1∈Yk−1

∫
hk (xk ) · gk (yk )

·f (xk , yk |xk−1, yk−1)dxkdyk . (63)

The corresponding distribution is: f E (Xk ,Yk |{xk−1},
Yk−1) = 0 unless |Xk | = |Yk | = 1, in which case

f E ({xk}, {yk}|{xk−1},Yk−1)

=
1
|Yk−1|

∑
yk−1∈Yk−1

f (xk , yk |xk−1, yk−1). (64)

That is, the transition from ({xk−1}, Yk−1) to ({xk},{yk}) is
the average transition from ({xk−1},{yk−1}) to ({xk},{yk}),
taken over all yk−1 ∈ Yk−1.

D. EVOLUTION OF THE MPMM PAIR ({xk−1}, {yk−1})
It was shown in [9, Sec. 2.4] that GE [hk , gk |{xk−1},{yk−1}]
in (54) is the p.g.fl. of the bivariate multitarget probability
distribution f (Xk ,Yk |{xk−1},{yk−1}) that characterizes the
following intuitive dynamics model for |Xk |, |Yk | ≤ 1:
1. If xk−1 evolves to xk and measurement yk is collected

from xk then the probability (density) that this event will
occur is:

f ({xk}, {yk}|{xk−1}, {yk−1})

= pS (xk−1) · pD(xk ) · f (xk , yk |xk−1, yk−1). (65)

2. If xk−1 evolves to xk but xk is not detected, then the prob-
ability (density) that this event will occur is, if f (xk |xk−1,
yk−1) is the marginal of the PMM density f (xk , yk |xk−1,
yk−1):

f ({xk},Ø|{xk−1}, {yk−1})

= pS (xk−1) · (1− pD(xk )) · f (xk |xk−1, yk−1). (66)

3. If xk−1 does not survive to time tk then no (nonempty)
measurement can be collected from it and so the proba-
bility that this event will occur is:

f (Ø,Ø|{xk−1}, {yk−1}) = 1− pS (xk−1). (67)

4. If xk−1 does not survive to time tk and yet measurement
yk is collected from it, this is an impossibility and so the
probability that this event will occur is:

f (Ø, {yk}|{xk−1}, {yk−1}) = 0. (68)

Subsections V-E through V-H will address generalizations
and extensions of this basic evolution model.

E. GENERAL EVOLUTION OF ({xk−1},{yk−1})
The dynamics model f (Xk ,Yk |{xk−1},{yk−1}) of the previ-
ous section is a special case of a more general model, deduced
from an arbitrary MPMM density f (Xk ,Yk |{xk−1},{yk−1})
assuming only that |Xk |, |Yk | ≤ 1. Since a nonexistent
target cannot generate a nonempty measurement, we may
assume that f (Ø,{yk}|{xk−1},{yk−1}) = 0 identically.
Define

pS (xk−1, yk−1)

: =

∫
f ({xk},Yk |{xk−1}, {yk−1})δYkdxk (69)

pD(xk |xk−1, yk−1)

: =

∫
f ({xk}, {yk}|{xk−1}, {yk−1})dyk∫
f ({xk},Yk |{xk−1}, {yk−1})δYk

(70)

f (xk , yk |xk−1, yk−1)

: =
f ({xk}, {yk}|{xk−1}, {yk−1})∫
f ({xk}, {yk}|{xk−1}, {yk−1})dyk

·

∫
f ({xk},Yk |{xk−1}, {yk−1})δYk∫

f ({xk},Yk |{xk−1}, {yk−1})δYkdxk
. (71)
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Abbreviate p̃S (xk−1)! = pS (xk−1, yk−1) and p̃D(xk )! =
pD(xk |xk−1, yk−1). Then it is easily shown that

f ({xk}, {yk}|{xk−1}, {yk−1})

= p̃S (xk−1) · p̃D(xk ) · f (xk , yk |xk−1, yk−1) (72)

f ({xk},Ø|{xk−1}, {yk−1})

= p̃S (xk−1) · (1− p̃D(xk )) · f (xk |xk−1, yk−1) (73)

f (Ø,Ø|{xk−1}, {yk−1}) = 1− p̃S (xk−1). (74)

This reduces to the model of Section V-D if pS (xk−1, yk−1) =
pS (xk−1) and pD(xk |xk−1, yk−1) = pD(xk ).
Remark 3: To simplify notation, this is what will be

assumed later in Section VI-C (though this assumption is not
a necessity).

F. EVOLUTION OF ({xk−1}, Ø)
Now consider f (Xk ,Yk |{xk−1}, Ø). It can be presumed that
f (Ø,{yk}|{xk−1}, Ø}) = 0. Define:

pS (xk−1,Ø) : =
∫
f ({xk},Yk |{xk−1},Ø)δYkdxk (75)

f (xk |xk−1,Ø) : =

∫
f ({xk},Yk |{xk−1},Ø)δYk∫

f ({xk},Yk |{xk−1},Ø)δYkdxk
(76)

pD(xk |xk−1,Ø) : =

∫
f ({xk}, {yk}|{xk−1},Ø)dyk∫
f ({xk},Yk |{xk−1},Ø)δYk

(77)

f (yk |xk , xk−1,Ø) : =
f ({xk}, {yk}|{xk−1},Ø)∫
f ({xk}, {yk}|{xk−1},Ø)dyk

(78)

where we abbreviate p̃S (xk−1)! = pS (xk−1,Ø) and
f̃ (xk |xk−1)! = f (xk |xk−1,Ø) and p̃D(xk )! = pD(xk |xk−1,Ø)
and f̃ (yk |xk )! = f (yk |xk , xk−1,Ø).
Remark 4: To simplify notation, it will be assumed in

Section VI-C that pD(xk |xk−1,Ø) does not depend on xk−1
and that f (yk |xk , xk−1,Ø) does not depend on xk−1 or Ø; in
which case pD(xk |xk−1,Ø) = pD(xk ), f (yk |xk , xk−1,Ø) =
f (yk |xk ).

Then it is easily shown that

f ({xk}, {yk}|{xk−1},Ø)

= p̃S (xk−1) · p̃D(xk ) · f̃ (xk |xk−1) · f̃ (yk |xk ) (79)

f ({xk},Ø|{xk−1},Ø)

= p̃S (xk−1) · (1− p̃D(xk )) · f̃ (xk |xk−1) (80)

f (Ø,Ø|{xk−1},Ø)

= 1− p̃S (xk−1). (81)

For future reference, the p.g.fl. of f (Xk ,Yk |{xk−1}, Ø) is

G̃E [hk , gk |{xk−1},Ø]

= 1− p̃S (xk−1)+ p̃S (xk−1) · M̃hk (1−p̃D+p̃DL̃gk )
(xk−1)

(82)

where M̃hk (xk−1) :=
∫
hk (xk ) · f̃ (xk |xk−1)dxk and

L̃gk (xk−1) :=
∫
gk (yk ) · f̃ (yk |xk )dyk . For,

G̃E [hk , gk |{xk−1},Ø]

=

∫
hXkk · g

Yk
k · f (Xk ,Yk |{xk−1},Ø)δXkδYk (83)

= f (Ø,Ø|{xk−1},Ø) (84)

+

∫
hk (xk )·f ({xk},Ø|{xk−1},Ø)dxk

+

∫
gk (yk )·f (Ø, {yk}|{xk−1},Ø)dyk

+

∫
hk (xk ) · gk (yk )·f ({xk}, {yk}|{xk−1},Ø)dxkdyk

= 1− p̃S (xk−1)

+ p̃S (xk−1)
∫
hk (xk ) · (1− p̃D(xk )) · f̃ (xk |xk−1)dxk

+ p̃S (xk−1)
∫
hk (xk ) · p̃D(xk )

(∫
gk (yk )f (yk |xk )dyk

)
·f̃ (xk |xk−1)dxk . (85)

G. EVOLUTION OF (Ø, Ø)
Consider the MPMM transition f (Xk ,Yk |Ø,Ø) where,
as usual, f (Ø,{yk}|Ø,Ø) = 0. The evolutions (Ø,Ø) →
({xk},{yk}) or (Ø,Ø)→ ({xk}, Ø) describe the target’s first
appearance or its subsequent reappearance. Define

qBk (Ø,Ø) : =
∫
f ({xk},Yk |Ø,Ø)δYkdxk (86)

sBk (xk |Ø,Ø) : =

∫
f ({xk},Yk |Ø,Ø)δYk∫

f ({xk},Yk |Ø,Ø)δYkdxk
(87)

pD(xk |Ø,Ø) : =

∫
f ({xk}, {yk}|Ø,Ø)dyk∫
f ({xk},Yk |Ø,Ø)δYk

(88)

f (yk |xk ,Ø,Ø) : =
f ({xk}, {yk}|Ø,Ø)∫
f ({xk}, {yk}|Ø,Ø)dyk

(89)

where we abbreviate q̃Bk ! = qBk (Ø,Ø) and s̃Bk (xk )! =
sBk (xk |Ø,Ø) and p̃D(xk )! = pD(xk |Ø,Ø) and f̃ (yk |xk )! =
f (yk |xk ,Ø,Ø).
Remark 5: To simplify notation, it will later be assumed in

Section VI-C that qBk (Ø,Ø) = qBk and s
B
k (xk |Ø,Ø) = sBk (xk )

and pD(xk |Ø,Ø) = pD(xk ) and f (yk |xk ,Ø,Ø) = f (yk |xk ).
Then it is easily shown that

f ({xk}, {yk}|Ø,Ø) = q̃Bk s̃
B
k (xk ) · p̃D(xk ) · f̃ (yk |xk ) (90)

f ({xk},Ø}|Ø,Ø) = q̃Bk s̃
B
k (xk ) · (1− p̃D(xk )) (91)

f (Ø,Ø}|Ø,Ø) = 1− q̃Bk . (92)

Here, q̃Bk is the ‘‘birth’’ probability—i.e., the nonexistent
target Ø at time tk−1 transitions to a target with state xk at
time tk—and sBk (xk ) is its spatial distribution.
Remark 6: The obvious choice for qBk s

B
k (xk ) is the multiob-

ject version of (40):

qBk s
B
k (xk ) := f ({xk}|Y1:k−1)=

∫
f ({xk},Yk |Y1:k−1)δYk . (93)
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This might seem theoretically questionable since from (86,87)
it would seem to imply that f ({xk}, Yk |Ø,Ø) depends on
Y1:k−1. However, the choice of qBk s

B
k (xk ) is arbitrary and so

we can choose (93) as we please.
For future reference, the p.g.fl. of f (Xk ,Yk |Ø,Ø) is

G̃E [hk , gk |Ø,Ø] = 1− qBk + q
B
k s
B
k [hk (1− p̃D + p̃DL̃gk )]

(94)

where L̃gk (xk ) =
∫
gk (yk ) · f̃ (yk |xk )dyk . For,

G̃E [hk , gk |Ø,Ø]

=

∫
hXkk · g

Yk
k · f (Xk ,Yk |Ø,Ø)δXkδYk (95)

= f (Ø,Ø|Ø,Ø)k (96)

+

∫
hk (xk ) · f ({xk},Yk |Ø,Ø)dxk

+

∫
gk (yk ) · f (Ø, {yk}|Ø,Ø)dyk

+

∫
hk (xk ) · gk (yk ) · f ({xk}, {yk}|Ø,Ø)dxkdyk

= 1− qBk + q
B
k s
B
k [hk (1− p̃D)]+ q

B
k s
B
k [hk p̃DL̃gk ] (97)

= 1− qBk + q
B
k s
B
k [hk (1− p̃D + p̃DL̃gk )]. (98)

H. EVOLUTION OF (Ø,{yk−1})
Consider the MPMM transition f (Xk ,Yk |Ø,{yk−1}) where,
as usual, f (Ø,{yk}|Ø,{yk−1}) = 0. As in Section V-G,
the transitions (Ø,{yk−1})→ ({xk},{yk}) or (Ø,{yk−1})→
({xk}, Ø) describe the target’s first appearance or its reap-
pearance after having disappeared. Thus the reasoning in this
section is the same as in Section V-G. Define

qBk (Ø, yk−1) : =
∫
f ({xk},Yk |Ø, {yk−1})δYkdxk (99)

sBk (xk |Ø, yk−1) : =

∫
f ({xk},Yk |Ø, {yk−1})δYk∫
f ({xk},Yk |Ø, {yk})δYkdxk

(100)

pD(xk |Ø, yk−1) : =

∫
f ({xk}, {yk}|Ø, {yk−1})dyk∫
f ({xk},Yk |Ø, {yk−1})δYk

(101)

f (yk |xk ,Ø, yk−1) : =
f ({xk}, {yk}|Ø, {yk−1})∫
f ({xk}, {yk}|Ø, {yk−1})dyk

(102)

where we abbreviate q̃Bk ! = qBk (Ø, yk−1) and s̃Bk (xk )! =
sBk (xk |Ø, yk−1) and p̃D(xk )! = pD(xk |Ø, yk−1) and
f̃ (yk |xk )! = f (yk |xk ,Ø, yk−1).
Remark 7: To simplify notation, it will later be assumed in

Section VI-C that qBk (Ø, yk−1) = qBk and s
B
k (xk |Ø, yk−1) =

sBk (xk ) and pD(xk |Ø, yk−1) = pD(xk ) and f (yk |xk ,Ø,
yk−1) = f (yk |xk ).
As in Section V-G it follows that

f ({xk}, {yk}|Ø, {yk−1}) = q̃Bk s̃
B
k (xk ) · p̃D(xk ) · f̃ (yk |xk )

(103)

f ({xk},Ø}|Ø, {yk−1}) = q̃Bk s̃
B
k (xk ) · (1− p̃D(xk )) (104)

f (Ø,Ø}|Ø, {yk−1}) = 1− q̃Bk (105)

and that the corresponding p.g.fl. is

G̃E [hk , gk |Ø, {yk−1}]=1− qBk+q
B
k s
B
k [hk (1−p̃D+p̃DL̃gk )]

(106)

from which we conclude that

G̃E [hk , gk |Ø,Yk−1]=1− qBk+q
B
k s
B
k [hk (1−p̃D+p̃DL̃gk )].

(107)

VI. THE BERNOULLI MPMM FILTER
The section is organized as follows: the Bernoulli filter
(Section VI-A); the Bernoulli MPMM filter (Section VI-B);
transition p.g.fl.’s for the Bernoulli MPMM filter
(Section VI-C); summary of the Bernoulli MPMM filter
(Section VI-D); derivation of the Bernoulli MPMM fil-
ter update when Yk−1 = Ø (Section VI-E); and derivation
of the Bernoulli MPMM filter update when Yk−1 6= Ø
(Section VI-F).

A. THE BERNOULLI FILTER
The Bernoulli filter [1], [2, Sec. 14.7] is the special case of
the multitarget Bayes filter

. . .→ f (Xk−1|Z1:k−1)→ f (Xk |Z1:k−1)→ f (Xk |Z1:k )→ . . .

when at most a single target is present—i.e., when
|Xk−1|, |Xk | ≤ 1 for all k ≥ 1. Since

f (Ø|Z1:k−1) = 1−
∫
f ({xk}|Z1:k−1)dxk ,

f (Ø|Z1:k ) = 1−
∫
f ({xk}|Z1:k )dxk , (108)

the Bernoulli filter is mathematically equivalent to a filter
that propagates the PHD’s Dk|k−1(xk ) != D(xk |Z1:k−1) !=
f ({xk}|Z1:k−1) and Dk|k (xk ) != D(xk |Z1:k ) != f ({xk}|Z1:k ).
The time-update equation and measurement-update equation
are, respectively,

Dk|k−1(xk )= qBk s
B
k (xk ) · (1− Dk−1|k−1[1])+Dk−1|k−1[pSMxk ]

(109)

Dk|k (xk ) =
`Zk (xk ) · Dk|k−1(xk )

1− Dk|k−1[1]+ Dk|k−1[`Zk ]
. (110)

where `Zk was defined in (2).
Note that, as presented in [2, Sec. 14.7], the Bernoulli

filter propagates two items, not one: the probability of target
existence pk|k = ∫ f ({xk}|Z1:k )dxk and the target spatial
distribution fk|k (xk ) = f ({xk}|Z1:k )/pk|k . But it is clear that
the filter in (109,110) differs from that in [2, Sec. 14.7] only
by a change of notation (although the former is significantly
simpler in form). A tutorial on the (original) Bernoulli filter
can be found in [22].

State estimation using Dk|k is as in [2]. The target exists if
pk|k > τ for some threshold τ > 1/2 ; and if it exists, its state
is the MAP estimate argsupxDk|k (x).
Eqs. (109,110) can be consolidated by substitution into the

single-step update equation, (111), as shown at the bottom of
the next page, where M`Zk

(xk−1) was defined in (8).
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B. THE BERNOULLI MPMM FILTER
This is a special case of the MPMM filter

. . .→ f (Xk−1,Yk−1|Y1:k−2)→ f (Xk ,Yk |Z1:k−1)→ . . .

when |Xk−1|, |Xk | ≤ 1 for all k ≥ 1. Section V-G
described a simplified target-appearance model. This model
will allow us to avoid the factor GB in (61) by assuming that
GB[hk ] = 1 identically.
Remark 8: Note that this simplified target-appearance

model would not be acceptable in the multitarget case, since
then the number of targets could never increase.
Given that GB[hk ] = 1, the p.g.fl. (61) of the MPMM

transition density reduces to:

G[hk , gk |Xk−1,Yk−1] = Gκ [gk ] · G̃E [hk , gk |Xk−1,Yk−1]

(112)

where either Xk−1 = Ø or Xk−1 = {xk−1} for all k ≥ 1. From
(44), the p.g.fl. update for the Bernoulli MPMM filter is

G[hk , gk |Y1:k−1]

=

∫
G[hk , gk |Xk−1,Yk−1] · f (Xk−1,Yk−1|Y1:k−2)δXk−1∫

f (Xk−1,Yk−1|Y1:k−2)δXk−1
(113)

where the numerator is∫
G[hk , gk |Xk−1,Yk−1] · f (Xk−1,Yk−1|Y1:k−2)δXk−1

= Gκ [gk ] · G̃E [hk , gk |Ø,Yk−1] · f (Ø,Yk−1|Y1:k−2)

+Gκ [gk ]
∫
G̃E [hk , gk |{xk−1},Yk−1]

·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (114)

and the denominator is∫
f (Xk−1,Yk−1|Y1:k−2)δXk−1 = f (Ø,Yk−1|Y1:k−2)

+

∫
f ({xk−1},Yk−1|Y1:k−2)dxk−1. (115)

C. STATE-TRANSITION P.G.FL.’s FOR THE
BERNOULLI MPMM FILTER
We therefore need formulas for G̃E [hk , gk |Xk−1,Yk−1] in the
following four cases:
1. Xk−1 = Ø and Yk−1 = Ø: By (94),

G̃E [hk , gk |Ø,Ø]=1− qBk+q
B
k s
B
k [hk (1−p̃D+p̃DL̃gk )]

(116)

where (see (86-89)): p̃D(xk )! = pD(xk |Ø,Ø) and
f̃ (yk |xk )! = f (yk |xk ,Ø,Ø) and L̃gk (xk ) =

∫
gk (yk )·

f̃ (yk |xk )dyk . To simplify notation, in what follows
we will:

a. further abbreviate pD(xk ) != pD(xk |Ø,Ø) and
f (xk |xk−1) != f (xk |xk−1,Ø,Ø).

2. Xk−1 = {xk−1 } and Yk−1 = Ø: By (82),

G̃E [hk , gk |{xk−1},Ø] = 1− p̃S (xk−1)+ p̃S (xk−1)

·M̃hk (1−p̃D+p̃DL̃gk )
(xk−1)

(117)

where (see (75-78): p̃S (xk−1)! = pS (xk−1|Ø),
f̃ (xk |xk )! = f (xk |xk ,Ø), p̃D(xk )! = pD(xk |xk−1,Ø),
f̃ (yk |xk )! = f (yk |xk , xk−1,Ø), M̃hk (xk−1) =

∫
hk (xk ) ·

f̃ (xk |xk−1)dxk , L̃gk (xk ) =
∫
gk (yk ) · f̃ (yk |xk )dyk .

To simplify notation, in what follows we will:
a. further abbreviate pS (xk−1) != pS (xk−1,Ø) and
f (xk |xk−1) != f (xk |xk−1,Ø); and

b. assume that pD(xk |xk−1,Ø) = pD(xk |Ø,Ø) =
pD(xk ) and f (yk |xk , xk−1,Ø) = f (xk |xk−1,Ø,Ø) =
f (xk |xk−1).

3. Xk−1 = Ø and Yk−1 6= Ø: By (107),

G̃E [hk , gk |Ø,Yk−1] = 1− qBk + q
B
k s
B
k [hk (1− p̃D

+p̃DL̃gk )]. (118)

4. Xk−1 = {xk−1 } and Yk−1 6= Ø: By (62),

GE [hk , gk |{xk−1},Yk−1]

= M̄1−pS+pShk (1−pD+pDgk )(xk−1,Yk−1) (119)

where (see (69-71): p̃S (xk−1)! = pS (xk−1, yk−1)
and p̃D(xk )! = pD(xk |xk−1, yk−1) and where
M̄1−pS+pShk (1−pD+pDgk )(xk−1,Yk−1) was defined in (59).
To simplify notation we will:
a. assume that pS (xk−1, yk−1) = pS (xk−1,Ø) =
pS (xk−1) and pD(xk |xk−1, yk−1) = pD(xk |xk−1,Ø) =
pD(xk |Ø,Ø) = pD(xk ).

D. SUMMARY OF THE BERNOULLI MPMM FILTER
We are given f (Ø,Yk−1|Z1:k−2), f ({xk−1}, Yk−1|Z1:k−2) and
that

KYk−1:=f (Ø,Yk−1|Z1:k−2)+
∫
f ({xk−1},Yk−1|Z1:k−2)dxk−1.

(120)

Then the updates f (Ø,Yk |Z1:k−1) and f ({xk}, Yk |Z1:k−1) are
given by the following two recursive formulas:
1. If Zk−1 = Ø is collected then:

f (Ø,Yk |Z1:k−1)

= AYk (Ø) · f (Ø,Ø|Z1:k−2)

+

∫
BYk (xk−1) · f ({xk−1},Ø|Z1:k−2)dxk−1 (121)

Dk|k (xk ) =
`Zk (xk ) ·

(
qBk s

B
k (xk ) · (1− Dk−1|k−1[1])+ Dk−1|k−1[pSMxk ]

)(
(1−qBk s

B
k+q

B
k s
B
k [`Zk ]) · (1−Dk−1|k−1[1])

+Dk−1|k−1[1− pS+pSM`Zk
]

) (111)
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f ({xk},Yk |Z1:k−1)

= AYk (xk ) · f (Ø,Ø|Z1:k−2)

+

∫
BYk (xk |xk−1) · f ({xk−1},Ø|Z1:k−2)dxk−1

(122)

where

AYk (Ø) = K−1Ø κk (Yk ) · (1− qBk ) (123)

BYk (xk−1) = K−1Ø κk (Yk ) · (1− pS (xk−1)) (124)

AYk (xk ) = K−1Ø κk (Yk ) · `Yk (xk ) · q
B
k s
B
k (xk ) (125)

BYk (xk |xk−1) = K−1Ø κk (Yk ) · `Yk (xk ) · pS (xk−1)

·f (xk |xk−1) (126)

`Yk (xk ) = 1− pD(xk )+ pD(xk )

×

∑
yk∈Yk

Lyk (xk ) ·
κk (Yk − {yk})

κk (Yk )
.

(127)

2. If Zk−1 6= Ø is collected then:

f (Ø,Yk |Z1:k−1)

= K−1Zk−1
κk (Yk ) · (1− qBk ) · f (Ø,Zk−1|Y1:k−2)

+K−1Zk−1
κk (Yk )

·

∫
(1− pS (xk−1)) · f ({xk−1},Zk−1|Z1:k−2)dxk−1

(128)

f ({xk},Yk |Z1:k−1)

= K−1Zk−1
κk (Yk ) · `Yk (xk )

·qBk s
B
k (xk ) · f (Ø,Zk−1|Y1:k−2)

+K−1Zk−1
κk (Yk )

·

∫
pS (xk−1) · `Yk ,Zk−1 (xk |xk−1)

·f ({xk−1},Zk−1|Z1:k−2)dxk−1 (129)

These equations are derived in Appendix A.
Remark 9: In regard to (129), consider the following spe-

cial case: κk (Yk ) = 0 identically (no clutter); pS (xk−1) = 1
(target never disappears); and pD(xk ) = 1 (perfect detec-
tion); in which case |Xk | = |Yk | = 1 for all k ≥ 1. Then Eq.
(129) should reduce to (31)—which is indeed the case.

VII. CONCLUSION
The Bernoulli filter is a general solution for tracking a
single disappearing and reappearing target, using a sensor
whose observations are corrupted by missed detections and
a general, known clutter process. The Bernoulli filter pre-
sumes restrictive independence assumptions, namely a hid-
den Markov model (HMM) structure. That is, the current
target state depends only on the previous target state; and
the measurement that it generates depends only on its current
state.
Pieczynski’s pairwise Markov model (PMM) relaxes these

restrictions. In it, the current target state can additionally

depend on the previous measurement; and the current mea-
surement can additionally depend on the previous measure-
ment and the previous target state.
In this paper we: (i) generalized PMMs to the multitarget

case (MPMM); (ii) devised a theoretically rigorous formula
for the ‘‘standard’’ MPMM transition density (see (60,61));
(iii) derived transition models for the elementary MPMM
pairs (Xk ,Yk ) with |Xk |, |Yk | ≤ 1 (Sections V-D through
V-H); (iv) used them to derive the Bernoulli MPMM filter
(anMPMMgeneralization of the Bernoulli filter, SectionVI);
and then used it to derive the PMM Bernoulli filter (a gener-
alization of the Bernoulli filter that obeys PMM rather than
HMM sensor and target statistics.
Future work will be devoted to generalization of the PMM

Bernoulli filter to multiple correlated sensors.

APPENDIX A
DERIVATION OF THE BERNOULLI MPMM FILTER
The derivation has two parts: when Yk−1 = Ø
(Appendix A.1) and when when Yk−1 6= Ø (Appendix A.2).

1) DERIVATION OF THE BERNOULLI MPMM FILTER
UPDATE WHEN Yk−1 = Ø
Let us turn to the derivation of the Bernoulli MPMM filter
update when Yk−1 = Ø. Let

K ! =
∫
f (Xk−1,Ø|Y1:k−2)δXk−1

= f (Ø,Ø|Y1:k−2)+
∫
f ({xk−1},Ø|Y1:k−2)dxk−1.

(130)

Then from (114), (116), and (117),

K · G[hk , gk |Y1:k−1]

= Gκ [gk ] · G̃E [hk , gk |Ø,Ø] · f (Ø,Ø|Y1:k−2)

+Gκ [gk ]
∫
G̃E [hk , gk |{xk−1},Ø] · f ({xk−1},

Ø|Y1:k−2)dxk−1 (131)

= Gκ [gk ] ·
(
1− qBk
+qBk s

B
k [hk (1− pD + pDLgk )]

)
·f (Ø,Ø|Y1:k−2)

+Gκ [gk ]
∫ (

1− pS (xk−1)
+pS (xk−1) ·Mhk (1−pD+pDLgk )

(xk−1)

)
·f ({xk−1},Ø|Y1:k−2)dxk−1. (132)

For fixed hk , abbreviate

L[gk ]! =
(
1− qBk + q

B
k s
B
k [hk (1− pD + pDLgk )]

)
·f (Ø,Ø|Y1:k−2)

+

∫ (
1− pS (xk−1)
+pS (xk−1) ·Mhk (1−pD+pDLgk )

(xk−1)

)
·f ({xk−1},Ø|Y1:k−2)dxk−1 (133)

in which case

K · G[hk , gk |Y1:k−1] = Gκ [gk ] · L[gk ]. (134)
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For W ⊆ Yk , note that

δL
δW

[gk ] =


L[gk ], if W = Ø
l(y), if W = {y}
0, if |W | > 1

(135)

where

l(y)! = qBk s
B
k [hkpDLy)] · f (Ø,Ø|Y1:k−2)

+

∫
pS (xk−1) ·MhkpDLy (xk−1) · f ({xk−1},

Ø|Y1:k−2)dxk−1 (136)

and where Ly(x) != f (y|x). Thus from the product rule for
functional derivatives [2, p. 389],

K ·
δG
•δYk

[hk , gk |Y1:k−1]

=

∑
W⊆Yk

(
δ

δ(Yk −W )
Gκ [gk ]

)
·
δL
δW

[gk ] (137)

=

∑
W⊆Yk

(
δGκ

δ(Yk −W )
[gk ]

)
·
δL
δW

[gk ] (138)

=

∑
W⊆Yk :|W |≤1

δGκ

δ(Yk −W )
[gk ] ·

δL
δW

[gk ] (139)

=
δGκ

δYk
[gk ] · L[gk ]+

∑
yk∈Yk

δGκ

δ(Yk − {yk})
[gk ] · l(yk )

(140)

=
δGκ

δYk
[gk ] ·

L[gk ]+ ∑
yk∈Yk

δGκ
δ(Yk−{yk })

[gk ] · l(yk )
δGκ
δYk

[gk ]


(141)

and so substituting gk = 0 and using the fact that

δGκ

δYk
[0] = κk (Yk ),

δGκ

δ(Yk − {y})
[0] = κk (Yk − {y})

(142)

we get

K ·
δG
•δYk

[hk , 0|Y1:k−1] = κk (Yk ) ·

L[0]+ ∑
yk∈Yk

l(y)

·
κk (Yk − {yk})

κk (Yk )

)
(143)

where

L[0] =
(
1− qBk + q

B
k s
B
k [hk (1− pD)]

)
· f (Ø,Ø|Y1:k−2)

+

∫ (
1− pS (xk−1)
+pS (xk−1) ·Mhk (1−pD)(xk−1)

)
·f ({xk−1},Ø|Y1:k−2)dxk−1 (144)

and

l(y) = qBk s
B
k [hkpDLy)] · f (Ø,Ø|Y1:k−2)

+

∫
pS (xk−1) ·MhkpDLy (xk−1)

·f ({xk−1},Ø|Y1:k−2)dxk−1. (145)

Thus after substitution and collection of like terms we get:

δG
•δYk

[hk , 0|Y1:k−1]

= Ahk · f (Ø,Ø|Y1:k−2)

+

∫
Bhk (xk−1) · f ({xk−1},Ø|Y1:k−2)dxk−1 (146)

where

Ahk
= K−1κk (Yk )

·

(
1− qBk + q

B
k s
B
k [hk (1− pD)]

+
∑

yk∈Yk q
B
k s
B
k [hkpDLyk ] ·

κk (Yk − {yk})
κk (Yk )

)
(147)

Bhk (xk−1)
= K−1κk (Yk )

·

 1− pS (xk−1)
+pS (xk−1) ·Mhk (1−pD)(xk−1)

+pS (xk−1)
∑

yk∈Yk MhkpDLyk
(xk−1)]

κk (Yk − {yk})
κk (Yk )

 .
(148)

Consequently, and as claimed,

f (Ø,Yk |Z1:k−1)
= AYk (Ø) · f (Ø,Ø|Z1:k−2)

+

∫
BYk (xk−1) · f ({xk−1},Ø|Z1:k−2)dxk−1 (149)

f ({xk},Yk |Z1:k−1)
= AYk (xk ) · f (Ø,Ø|Z1:k−2)

+

∫
BYk (xk |xk−1) · f ({xk−1},Ø|Z1:k−2)dxk−1 (150)

where

AYk (Ø) = K−1κk (Yk ) · (1− qBk ) (151)
BYk (xk−1) = K−1κk (Yk ) · (1− pS (xk−1)) (152)
AYk (xk ) = K−1κk (Yk ) · `Yk (xk ) · q

B
k s
B
k (xk ) (153)

BYk (xk |xk−1) = K−1κk (Yk ) · `Yk (xk ) · pS (xk−1) ·Mxk (xk−1)
(154)

and

`Yk (xk )=1−pD(xk )+ pD(xk )
∑
yk∈Yk

Lyk (xk ) ·
κk (Yk−{yk})
κk (Yk )

.

(155)

2) DERIVATION OF THE BERNOULLI MPMM
FILTER UPDATE WHEN Yk−1 6= Ø
Now turn to the derivation of the Bernoulli MPMM filter
update when Yk−1 6= Ø. From (114), (119), and (59) we have
the following:

K · G[hk , gk |Y1:k−1]

= Gκ [gk ] · G̃E [hk , gk |Ø,Yk−1] · f (Ø,Yk−1|Y1:k−2)

+
Gκ [gk ]
|Yk−1|

×

∫  ∑
yk−1∈Yk−1

M̈1−pS+pShk (1−pD+pDgk )(xk−1, yk−1)


·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (156)
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with normalization factor

K =
∫
f (Xk−1,Yk−1|Y1:k−2)δXk−1 = f (Ø,Yk−1|Y1:k−2)

+

∫
f ({xk−1},Yk−1|Y1:k−2)dxk−1 (157)

and where, by (118), GE [hk , gk |Ø,Yk−1] = 1 − qBk +
qBk s

B
k [hk (1− pD + pDLgk )]. Thus

K · G[hk , gk |Y1:k−1]

= Gκ [gk ] · (1− qBk + q
B
k s
B
k [hk (1− pD + pDLgk )])

·f (Ø,Yk−1|Y1:k−2)

K · G[hk , gk |Y1:k−1]

= Gκ [gk ] · (1− qBk + q
B
k s
B
k [hk (1− pD + pDLgk )])

·f (Ø,Yk−1|Y1:k−2). (158)

First note that, setting hk = 0,

K · G[0, gk |Y1:k−1]

= Gκ [gk ] · (1− qBk ) · f (Ø,Yk−1|Y1:k−2)

+
Gκ [gk ]
|Yk−1|

∫  ∑
yk−1∈Yk−1

M̈1−pS (xk−1, yk−1)


·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (159)

where

M̈1−pS (xk−1, yk−1)

=

∫
(1− pS (xk−1))·f (xk , yk |xk−1, yk−1)dxkdyk

= 1− pS (xk−1) (160)

and so

K · G[0, gk |Y1:k−1]

= Gκ [gk ] · (1− qBk ) · f (Ø,Yk−1|Y1:k−2)

+Gκ [gk ]
∫

(1− pS (xk−1)) · f ({xk−1},

Yk−1|Y1:k−2)dxk−1. (161)

Taking δ/δYk of both sides with respect to gk and then setting
gk = 0 we get:

K · f (Ø,Yk |Y1:k−1)

= κk (Yk )

·

(
(1− qBk ) · f (Ø,Yk−1|Y1:k−2)
+
∫
(1− pS (xk−1)) · f ({xk−1},Yk−1|Y1:k−2)dxk−1

)
.

(162)

Now note that

K ·
δG
δx•k

[hk , gk |Y1:k−1]

= Gκ [gk ] · qBk s
B
k [δxk (1− pD + pDLgk )] · f (Ø,Yk−1|Y1:k−2)

+
Gκ [gk ]
|Yk−1|

×

∫ ∑
yk−1∈Yk−1

δ

δx•k
M̈1−pS+pShk (1−pD+pDgk )(xk−1, yk−1)


(163)

·f ({xk−1},Yk−1|Y1:k−2)dxk−1

=
Gκ [gk ]
|Yk−1|

∫  ∑
yk−1∈Yk−1

M̈pSδxk (1−pD+pDgk )
(xk−1, yk−1)


·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (164)

and so

K ·
δG
δx•k

[0, gk |Y1:k−1]

= Gκ [gk ] · qBk s
B
k [δxk (1− pD + pDLgk )] · f (Ø,Yk−1|Y1:k−2)

+
Gκ [gk ]
|Yk−1|

∫  ∑
yk−1∈Yk−1

M̈pSδxk (1−pD+pDgk )
(xk−1, yk−1)


·f ({xk−1},Yk−1|Y1:k−2)dxk−1. (165)

Thus

K ·
δG

δx•kδYk
[0, gk |Y1:k−1]

=

(
δ

δYk

(
Gκ [gk ] · qBk s

B
k [δxk (1− pD + pDLgk )]

))
·f (Ø,Yk−1|Y1:k−2)

+
1
|Yk−1|

∑
yk−1∈Yk−1

∫
δ

δYk

×

(
Gκ [gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)

·f ({xk−1},Yk−1|Y1:k−2)dxk−1. (166)

For the first term in this sum, note that

δ

δYk

(
Gκ [gk ] · qBk s

B
k [δxk (1− pD + pDLgk )]

)
=

∑
W⊆Yk

(
δGκ

δ(Yk −W )
[gk ]

)
×

(
δ

δW
qBk s

B
k [δxk (1− pD + pDLgk )]

)
+

1
|Yk−1|

∑
yk−1∈Yk−1

∫
δ

δYk

×

(
Gκ [gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)

·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (167)

where, for W ⊆ Yk ,

δ

δW
qBk s

B
k [δxk (1− pD + pDLgk )]

=


qBk s

B
k [δxk (1− pD + pDLgk )], if W = Ø

qBk s
B
k [δxkpDLyk ], if W = {yk}

0, if otherwise
(168)
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and so[
δ

δYk

(
Gκ [gk ] · qBk s

B
k [δxk (1− pD + pDLgk )]

)]
gk=0

= Gκ [gk ] · qBk s
B
k [δxk (1− pD)]

+

∑
yk∈Yk

κk (Yk − {yk})·qBk s
B
k [δxkpDLyk ] (169)

where

qBk s
B
k [δxk (1− pD)] = (1− pD(xk )) · qBk s

B
k (xk ) (170)

qBk s
B
k [δxkpDLyk ] = pD(xk ) · Lyk (xk ) · q

B
k s
B
k (xk ) (171)

and so[
δ

δYk

(
Gκ [gk ] · qBk s

B
k [δxk (1− pD + pDLgk )]

)]
gk=0

= κk (Yk )

·

1− pD(xk )+ pD(xk )
∑
yk∈Yk

Lyk (xk ) ·
κk (Yk − {yk})

κk (Yk )


·qBk s

B
k (xk ) (172)

= κk (Yk ) · `Yk (xk ) · q
B
k s
B
k (xk ). (173)

For the second term in (166), note that

δ

δYk

(
Gκ [gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)

=

∑
W⊆Yk

(
δGκ

δ(Yk −W )
[gk ]

)

×

(
δ

δW
M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)

(174)

and where for W ⊆ Yk ,

δ

δW
M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)

=


M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1), if W = Ø

M̈pSδxk pDδyk
(xk−1, yk−1), if W = {yk}

0, if otherwise.
(175)

Thus

δ

δYk

(
Gκ [gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)

=
δGκ

δYk
[gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)

+

∑
yk∈Yk

δGκ

δ(Yk − {yk})
[gk ] · M̈pSδxk pDδyk

(xk−1, yk−1)

(176)[
δ

δYk

(
Gκ [gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)]

gk=0

= κk (Yk ) · M̈pSδxk (1−pD)
(xk−1, yk−1)

+

∑
yk∈Yk

κk (Yk−{yk}) · M̈pSδxk pDδyk
(xk−1, yk−1) (177)

where

M̈pSδxk (1−pD)
(xk−1, yk−1)

=

∫
pS (xk−1) · δxk (uk ) · (1− pD(uk ))

·f (uk , vk |xk−1, yk−1)dukdvk (178)

= pS (xk−1) · (1− pD(xk )) · f (xk |xk−1, yk−1) (179)

f ({xk},Yk |Y1:k−1) = κk (Yk ) · `Yk (xk ) · q
B
k s
B
k (xk ) · f (Ø,Yk−1|Y1:k−2)+

K−1κk (Yk )
|Yk−1|

·

∑
yk−1∈Yk−1

∫ 
pS (xk−1) · (1− pD(xk )) · f (xk |xk−1, yk−1)

+
∑

yk∈Yk

(
f (xk , yk |xk−1, yk−1)
·pS (xk−1) · pD(xk ) · κk (Yk − {yk})

)
κk (Yk )

 (183)

·f ({xk−1},Yk−1|Y1:k−2)dxk−1. = κk (Yk ) · `Yk (xk ) · q
B
k s
B
k (xk ) · f (Ø,Yk−1|Y1:k−2)

+K−1κk (Yk )
∫
pS (xk−1)

·


1− pD(xk )
|Yk−1|

∑
yk−1∈Yk−1

f (xk |xk−1, yk−1)

+
pD(xk )
|Yk−1|

∑
yk−1∈Yk−1

∑
yk∈Yk

f (xk , yk |xk−1, yk−1) ·
κk (Yk − {yk})

κk (yk )


·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (184)

= κk (Yk ) · `Yk (xk ) · q
B
k s
B
k (xk ) · f (Ø,Yk−1|Y1:k−2)

+K−1κk (Yk )
∫
pS (xk−1) · `Yk ,Yk−1 (xk |xk−1)

·f ({xk−1},Yk−1|Y1:k−2)dxk−1 (185)
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M̈pSδxk pDδyk
(xk−1, yk−1)

=

∫
pS (xk−1) · δxk (uk ) · pD(uk ) · δyk (vk )

·f (uk , vk |xk−1, yk−1)dukdvk (180)
= pS (xk−1) · pD(xk ) · f (xk , yk |xk−1, yk−1) (181)

and so[
δ

δYk

(
Gκ [gk ] · M̈pSδxk (1−pD+pDgk )

(xk−1, yk−1)
)]

gk=0
= κk (Yk ) · pS (xk−1)

·

(
(1− pD(xk )) · f (xk |xk−1, yk−1)
+pD(xk )

∑
yi∈Yk

f (xk , yk |xk−1, yk−1) ·
κk (Yk−{yk })
κk (Yk )

)
.

(182)

Thus setting gk = 0 in (166) and substituting (173) and (182),
we get (129), (183)–(185), as shown at the bottom of the
previous page, where

`Yk ,Yk−1 (xk |xk−1)

=
1− pD(xk )
|Yk−1|

∑
yk−1∈Yk−1

f (xk |xk−1, yk−1)

+
pD(xk )
|Yk−1|

∑
yk−1∈Yk−1

∑
yk∈Yk

f (xk , yk |xk−1, yk−1)

·
κk (Yk − {yk})

κk (Yk )
. (186)

APPENDIX B
DERIVATION OF THE PMM BERNOULLI FILTER
The derivation has two parts: when Zk−1 = Ø (Appendix B.1)
and when Zk−1 6= Ø (Appendix B.2).

1) DERIVATION OF THE THE PMM BERNOULLI
FILTER WHEN Yk−1 = Ø
We are to verify (10) assuming that Zk−1 = Ø. The multitar-
get version of (38) is

f (Xk |Z1:k ) =
f (Xk ,Zk |Z1:k−1)∫
f (Xk ,Zk |Z1:k−1)δXk

=
f (Xk ,Zk |Y1:k−1)
f (Zk |Zk−1)

.

(187)

For a Bernoulli filter, |Xk | ≤ 1 and so the updated PHD is

Dk|k (xk ) = f ({xk}|Z1:k )

=
f ({xk},Zk |Z1:k−1)

f (Ø,Zk |Z1:k−1)+
∫
f ({xk},Zk |Z1:k−1)dxk

. (188)

Recall from (120) that

KZk−1= f (Ø,Zk−1|Z1:k−2)+
∫
f ({xk−1},Zk−1|Z1:k−2)dxk−1.

(189)

Thus on the one hand, (121) can be written as:

KØ · f (Ø,Ø|Z1:k−1)

= κk (Yk )

(
(1− qBk ) · f (Ø,Ø|Z1:k−2)

+
∫
(1− pS (xk−1)) · f ({xk−1},Ø|Z1:k−2)dxk−1

)
(190)

= κk (Yk ) ·

(
(1− qBk ) · f (Ø|Z1:k−1)

+
∫
(1− pS (xk−1)) · f ({xk−1}|Z1:k−1)dxk−1

)
(191)

= κk (Yk ) ·

(
(1− qBk ) · f (Ø|Z1:k−1)

+
∫
(1− pS (xk−1)) · Dk−1|k−1(xk−1)dxk−1

)
(192)

= κk (Yk ) ·
(
(1−qBk ) ·

(
1−Dk−1|k−1[1]

)
+Dk−1|k−1[1− pS ]

)
. (193)

On the other hand, (122) can be written as:

KØ · f ({xk},Zk |Z1:k−1)

= κk (Yk ) · `Zk (xk ) (194)

·

qBk sBk (xk ) · f (Ø,Ø|Z1:k−2)
+
∫
pS (xk−1) ·Mxk (xk−1) · f ({xk−1},Ø|Z1:k−2)dxk−1


= κk (Yk ) · `Zk (xk ) ·

(
qBk s

B
k (xk ) · (1− Dk−1|k−1[1])

+Dk−1|k−1[pDMxk ]

)
.

(195)

Note that

KØ

∫
f ({xk},Zk |Z1:k−1)dxk

= κk (Yk ) ·
(
qBk s

B
k [`Yk ] · (1− Dk−1|k−1[1])

+Dk−1|k−1[pDM`Zk
]
)
. (196)

Thus adding (193) and (195) we get:

KØ · f (Zk |Z1:k−1)

= κk (Yk ) ·


(1− qBk ) ·

(
1− Dk−1|k−1[1]

)
+Dk−1|k−1[1− pS ]
+qBk s

B
k [`Yk ] · (1− Dk−1|k−1[1])

+Dk−1|k−1[pDM`Zk
]

 (197)

= κk (Yk ) ·
(
(1− qBk + q

B
k s
B
k [`Zk ]) ·

(
1− Dk−1|k−1[1]

)
+Dk−1|k−1[1− pD + pDM`Zk

]

)
.

(198)

Consequently, the single-step PHD update is, (199), as shown
at the bottom of the page, which is identical to (111),

Dk|k (xk ) =
`Zk (xk ) ·

(
qBk s

B
k (xk ) · (1− Dk−1|k−1[1])+ Dk−1|k−1[pSMxk ]

)(
(1− qBk s

B
k + q

B
k s
B
k [`Zk ]) · (1− Dk−1|k−1[1])

+Dk−1|k−1[1− pS + pSM`Zk
]

) (199)
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KZk−1 · f ({xk},Zk |Z1:k−1) = κk (Yk ) ·

(
`Zk (xk ) · q

B
k s
B
k (xk ) · f (Ø,Zk−1|Y1:k−2)

+
∫
(pS (xk−1) · `Zk ,Zk−1 (xk |xk−1) · f ({xk−1},Zk−1|Z1:k−2)dxk−1

)
(204)

= κk (Yk ) ·

(
`Zk (xk ) · q

B
k s
B
k (xk ) · f (Ø|Z1:k−1)

+Dk−1|k−1[pS`Zk ,Zk−1,xk ]

)
(205)

= κk (Yk ) ·

(
`Zk (xk ) · q

B
k s
B
k (xk ) · (1− Dk−1|k−1[1])

+Dk−1|k−1[pS`Zk ,Zk−1,xk ]

)
(206)

Dk|k (xk ) =
`Zk (xk ) ·

(
qBk s

B
k (xk ) · (1− Dk−1|k−1[1])+ Dk−1|k−1[pS`Zk ,Zk−1,xk ]

)(
(1− qBk s

B
k + q

B
k s
B
k [`Zk ]) · (1− Dk−1|k−1[1])

+Dk−1|k−1[1− pS + pS ˜̀Zk ,Zk−1 ]

) . (210)

the conventional Bernoulli filter single-step update. But when
Zk−1 = Ø,

`Zk ,Zk−1,xk (xk−1)

= `Zk ,Zk−1 (xk |xk−1) = `Zk (xk ) ·Mxk (xk−1),

˜̀Zk ,Zk−1 (xk−1)

= M`Zk
(xk−1) (200)

and thus (10) reduces to (119) when Zk−1 = Ø.

2) DERIVATION OF THE PMM BERNOULLI
FILTER WHEN Yk−1 6= Ø
We are to verify (10) assuming that Zk−1 6= Ø. On the one
hand, (138) can be written as:

KZk−1 · f (Ø,Zk |Z1:k−1)

= κk (Yk )

·

(
(1− qBk ) · f (Ø,Zk−1|Y1:k−2)

+
∫
(1− pS (xk−1)) · f ({xk−1},Zk−1|Z1:k−2)dxk−1

)
(201)

= κk (Yk )

·

(
(1− qBk ) · f (Ø|Z1:k−1)

+
∫
(1− pS (xk−1)) · Dk−1|k−1(xk−1)dxk−1

)
(202)

= κk (Yk ) ·
(
(1− qBk ) · (1− Dk−1|k−1[1])

+Dk−1|k−1[1− pS ]
)
. (203)

On the other hand, (139) can bewritten as (204)–(206), shown
at the top of the page, and so∫

f ({xk},Zk |Z1:k−1)dxk

= κk (Yk ) ·

(
qBk s

B
k [`Zk ] · (1− Dk−1|k−1[1])

+Dk−1|k−1[pS ˜̀Zk ,Zk−1 ]

)
. (207)

Thus adding (203) and (207) we get:

f (Zk |Zk−1)

= κk (Yk ) ·


(1− qBk ) · (1− Dk−1|k−1[1])

+Dk−1|k−1[1− pS ]

+qBk s
B
k [`Zk ] · (1− Dk−1|k−1[1])

+Dk−1|k−1[pS ˜̀Zk ,Zk−1 ]

 (208)

= κk (Yk ) ·

( (
1− qBk + q

B
k s
B
k [`Zk ]

)
· (1− Dk−1|k−1[1])

+Dk−1|k−1[1− pS + pS ˜̀Zk ,Zk−1 ]

)
.

(209)

Thus the single-step PHD update does result in (10), (210),
as shown at the top of the page.
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