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ABSTRACT In order to obtain the depth information of the target in the scene and realize
three-dimensional (3D) reconstruction, in this paper, a target reconstruction method combining monocular
focus stack image and deep neural network is proposed. This method makes full use of the advantages of light
field imaging technology and can generate the all focus image. The method first collects multiple frames
of continuous images at different focal lengths of the scene, using a divide and conquer algorithm strategy,
uplink uses YOLO neural network to identify the target in 3D space and track the position information;
the downlink reconstructs the four-dimensional (4D) light field data based on the focus stack image
frequency domain back projection, and then uses light field imaging technology to invert the scene parallax;
subsequently, achieve scene depth estimation and reconstruction of all focus image; finally, the uplink and
downlink are merged to realize the reconstruction of the 3D point cloud of the space target. Experimental
results on real scenes show the effectiveness of the proposed algorithm.

INDEX TERMS Focus stack image, deep learning, light field reconstruction, all focus image,

3D reconstruction.

I. INTRODUCTION

Scene target detection and three-dimensional reconstruction
based on visual sensor terminals have received extensive
attention in the field of mobile robot industrial detection and
exploration. First, appropriate sensors are needed to capture
the three-dimensional information of the world, binocular
and RGB-D cameras are widely used, they are limited by
the large size and lack of depth information; structured light
obtains three dimensional scene information through the prin-
ciple of triangle, which has short detection distance and low
reconstruction accuracy; although the monocular camera is
small in size, it has scale uncertainty, and can only record the
two-dimensional (2D) space of the scene, with almost no
angle information, as a result, conventional 3D vision is
sensitive to the local structure of the scene.
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As an emerging technology, light field imaging expands
the field of computational imaging and computer vision,
provides new methods for high-precision 3D vision sensing
technology. Light field data can realize the simultaneous
collection of light irradiation and direction information, there
is a coupling relationship between light direction and scene
depth information, which contains rich depth information
and can reconstruct the scene depth image with higher accu-
racy than stereo vision [1], [2]. It can further realize the
three-dimensional reconstruction of the scene. Light field
imaging data can be obtained by direct methods of main lens-
microlens array [3] and camera array [4], [5], indirect meth-
ods such as encoding mask [6], [7] or focus stack image [8]
can also be used to reconstruct the light field. The focus stack
is the compressed information of the light field data, which
is achieved by keeping the imaging parameters constant by
shifting the lens, achieving flexible acquisition of the real
scene, and reconstructing the light field data at any angular
resolution. Using light field data to reconstruct scene depth
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information is dense and pixel-by-pixel, at the same time,
it can generate all focused image of the scene, and project the
all focus image into the scene to restore the 3D point cloud of
rich colors and textures.

In the actual work of robots, 3D reconstruction is not
applied to the whole scene but only at specific target areas,
if the reconstruction of the whole scene is time-consuming
and the effect is not obvious. In this case, machine learning
will become the best choice for target recognition in the
scene, in recent years, target detection and positioning based
on deep neural networks have developed rapidly and have
obvious advantages. Therefore, this paper proposes a fusion
method to achieve 3D accurate reconstruction of the target
area in the scene, the main contributions of the method mainly
include the following three aspects:

o An algorithm framework is proposed, which fuses target
detection of deep learning and scene reconstruction of
light field imaging technology through up-down link
parallel method, and finally restates 3D point cloud of
specific target in the scene.

o Proposed a monocular passive 3D visual sensing tech-
nology suitable for small-dimensional robots, this tech-
nology is based on the back-projection of the focus stack
image to form a 4D light field and performs scene depth
estimation to achieve the reconstruction of the all focus
image.

« Experimental studies are carried out in two different
real scenes, and the influencing factors of target recon-
struction are analyzed and discussed, finally recon-
structed 3D point clouds with different set goals in the
scene.

Il. RELATED WORK
Passive and contactless measurement of visual information as
feedback is highly valued for robot exploration and rescue,
which can realize scene depth estimation and 3D recon-
struction. Singh Mahesh Kr et al. used Kinect to obtain
distance information and realized 3D reconstruction of scene
by classifying the statistical thick and thin areas, but the TOF
sensor was limited in resolution [9]. Yang et al. proposed
a 3D reconstruction system combining binocular and TOF
depth cameras to accurately identify the distance between
objects and the camera, promote the scene acquisition resolu-
tion and stereo matching effect, and improve the reconstruc-
tion accuracy, however, the system adopts an active sensing
method with large scale and high power consumption [10].
Compared with binocular and RGB-D camera, monocular
camera has high adaptability and low power consumption.
Newcombe et al. proposed a monocular vision pose estima-
tion and sparse point cloud generation method, the method
uses structure from motion (SFM) for scene basic grid pre-
diction, and is distorted into a depth image to finally achieve
scene model reconstruction, the algorithm needs to predict
and update the optical flow of the scene [11].

Compared with the traditional imaging function that
only preserves 2D information, light field imaging can
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obtain richer information during processing and reconstruc-
tion. The complete light field information of the scene
is expressed by the seven-dimensional all-light function
L(Vy,Vy,V,, 0,9, A,t) proposed by Adelson in 1991. The
two-plane parametric model of the light field proposed
by Levoy and Gortler et al. simplifies seven-dimensional
function approximately to the four-dimensional light field
L(x,y,u,v), plane (x, y) records spatial information, plane
(u, v) records directional. The two-plane parametric model
can be used to generate images with different parameters,
which are widely used in actual imaging systems to achieve
digital refocusing [12]-[14], depth reconstruction [15], [16],
and high-precision 3D scene reconstruction [17], [18]. Ren
N achieved 4D light field data through the lens-microlens
array, further reconstructed the scene depth and arbitrary
focus images, formed the Lytro handheld light field camera.
The angular resolution was acquired at the expense of the
spatial resolution by using a single sensor, resulting in a
low final imaging resolution [19]. Raghavendra R et al. cap-
tured images with different focal points in the scene through
the 4D light field camera, further rendered the attributes of
multiple depth images, and improved the performance of 3d
reconstruction and recognition of scene faces through the
new resolution enhancement technology of discrete wavelet
transform [20]. Camera array can realize light field data
acquisition with rich visual angle by using multi-camera array
or single camera combined with precision mobile platform,
due to the large equivalent aperture, the resolution can be
higher and the sampling density can be flexibly controlled
artificially, but it has a large system and high cost. Disadvan-
tages. Wang et al. used the camera array system to render
the unfocused areas in the scene based on the anisotropy
of the depth estimation, and then generated the refocused
image through the reconstructed super-resolution method [5].
Xu et al. indirectly captured high-resolution optical field data
by using two attenuation masks, and used a two-dimensional
(2D) camera sensor to encode and sample a four-dimensional
(4D) spectrum [7]. Based on the focal stack projection model,
Liu et al. proposed the filtered-back-projection (FBP) algo-
rithm for reconstructing the 4D light field, and get it accord-
ing to the reconstruction formula [21]. Tao et al. used gradient
detection to establish focus measure, and then fused matching
consistency for global optimization of depth reconstruction,
which could reconstruct high-precision scene depth [22].
Julia R. Alonso et al. proposed a refocusing method based
on arbitrary shapes and sizes in the focus stack image, which
realized the high-resolution refocusing of defocusing images
by considering the visual information reorganization of the
depth point transformation extension function [8].

The light field imaging system based on the focus stack
provides better applicability to the detection and rescue of
the robot industry in terms of theory, environmental adapt-
ability, and micro-grouping. Most of the existing application
scenarios only deal with detection and rescue targets (such
as target finding and location). The deep neural network
identified candidate frames of multiple target regions in the
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FIGURE 1. The algorithm framework of this paper.

scene, extracts features from the candidate frames and clas-
sifies information, finally returns to obtain the coordinate
information of the target. With the continuous development
of deep neural network, various types of network update and
iteration, the target detection rate and positioning accuracy of
scene image are constantly improved. Combining the target
detection information of the deep neural network and the light
field imaging of the focus stack, can implement a variety of
imaging effect by flexible calculation, including scenes of
various kinds of target depth estimation, refocus and scene
reconstruction, have great potential in many fields, There
are huge potentials in many fields, such as Virtual Real-
ity (VR), robot navigation, and simultaneous localization and
mapping (SLAM).

lll. ALGORITHM

The frame diagram of the 3D reconstruction algorithm for
specific targets in the scene proposed in this paper is shown
in Fig. 1.

The algorithm of this paper first transmits the collected
series of scene focus stack images to the deep neural net-
work and scene reconstruction estimation model, the uplink
is based on YOLO deep neural network to detect and locate
the target area to be tested and obtain the optimal location
information, which will be introduced in Section 3.1. Down-
link generates scene depth estimation and all focused image
based on focus stack image, which is executed in two steps,
first, based on the projection model, the reconstructed light
field data analysis algorithm (FBP) and iterative algorithm
(Landweber) are formed, which are detailed in Section 3.2.1;
then, light field imaging technology is used to reconstruct
the scene parallax, depth information is estimated and all
focus image of the scene is formed, this part is introduced
in Section 3.2.2. Finally, Section 3.3 introduces the fusion
of target detection and scene depth of up-downlink, and the
reconstruction of the 3D point cloud of the target to be tested
by perspective projection model.

A. SCENE TARGET DETECTION AND LOCATION OF UPLINK
The focus stack image within the visual range of the scene
is realized by the precision servo controlling the micro
movement of the monocular camera lens, the schematic
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scene.

Diagram of acquisition system and partially focused images of

diagram of the image acquisition system and the partially
focused images of the scene are shown in Fig. 2.

Each frame of focused image is input into the deep
learning neural network algorithm to realize target detec-
tion. The previous algorithms are two-step R-CNN algorithm
(R-CNN [23], Fast R-CNN [24], Faster R-CNN [25]), which
requires the use of the heuristic method or CNN network
before classification and regression. This paper uses the clas-
sic YOLO algorithm, which uses a single CNN end-to-end
process to handle object detection and frame positioning,
which has higher computational efficiency than other meth-
ods. Algorithm mainly includes three aspects, first, the size
of the image to be detected is adjusted to 448 x 448, and the
image is divided into S x S grids, each grid is responsible
for predicting whether the object center is detected, the grid
containing the detected center of the object is taken as the
initial condition to predict the border and confidence of the
corresponding object, including five parameters, where (w, h)
represents the border size, (x, y) represents the distance of

168101



IEEE Access

Y. Hu et al.: Scene Target 3D Point Cloud Reconstruction Technology Combining Monocular Focus Stack and Deep Learning

the center of the border offset from the corresponding grid,
and confidence refers to the accuracy of the border and the
possibility of the embedded object of the box. For the object
classification, the probability value of prediction category is
given for each cell, representing the probability that the object
within the border predicted by the cell belongs to various
categories.

FIGURE 3. The framework of YOLO algorithm.

As shown in Fig. 3, the YOLO algorithm framework con-
sists of 24 convolutional layers and 2 full-connection layers.
The convolutional layer is composed of two different kernels,
including 3 x 3 and 1 x 1 kernels, and the network outputs a
vector of size 7 x 7 x 30.

The target search and detection in the actual scene is based
on the performance of the equipment carrying the monocular
camera and the target data set. The target data set is composed
of the actual image of the scene and the public data set. Based
on the target detection result of the scene focus stack image
obtained, erroneous detection and position information with
low confidence are eliminated. In order to ensure that the
position information covers the complete target, the maxi-
mum value of the frame of multiple sets of position informa-
tion is taken as the final target position optimal information.

B. SCENE DEPTH ESTIMATION AND RECONSTRUCTION
OF ALL FOCUSED IMAGE BASED ON FOCUS

STACK IMAGE

This part is realized in two steps. First, the focus stack
image is used to reconstruct the 4D light field, and a projec-
tion model is established to depict the relationship between
the light field and the focus stack data space. Under this
projection model, the filtered-back-projection method (FBP)
of light field reconstruction is derived, and the Landweber
method is used to achieve the optimal iteration of the light
field data target functional. Second, reconstruct the scene
parallax based on the above light field data and iteratively
realize the minimization of the parallax mesh functional to
complete high-precision scene depth estimation, and finally
combine the focus stack image to form the scene all focus
image.

1) RECONSTRUCTION OF 4D LIGHT FIELD DATA

BASED ON FOCUS STACK IMAGE

a: DESCRIBE THE POSITIVE PROCESS OF FORMING THE
FOCUS STACK E(s, Xs, ys) BY THE 4D LIGHT FIELD

Ls(xs, ys, u,v) BASED ON THE PROJECTION OPERATOR P
The 2D focus image is a form of focus description of a 3D
scene, and each image is a 2D projection of a 4D light field.
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FIGURE 5. Focused imaging of different imaging planes.

The 4D light field Lg(x;, ys, u, v) can be parametrically repre-
sented by the (x;, ys) and (u, v) two-plane [26], [27], as shown
in Fig. 4, (x4, y5,) and (x,, y5) denote the reference imaging
plane and arbitrary imaging plane, respectively, (¢, v) is the
lens plane. The focusing imaging diagrams of different imag-
ing planes are shown in Fig. 5, where E(s, x;, y5) represents
the focal stack imaging plane at depth s, s and s¢ are the dis-
tances from (u, v) to (x,, y5) and (X, ys,) planes, respectively.

When the distance between the two imaging planes is the
same, L(x, y, u, v) and Lg(x;, s, u, v) represent the same ray,
the affine transformation expressions from (x, u) to (x, u) and
(v, v) to (yg, v) are:

(5)-(3 7)) ()= 15)(3(1))

Introduce Lemma: The positive process of the four-
dimensional light field L(x, y, u, v) forming the focus stack
E(s, x5, ys) 1s the focusing imaging process described by the
projection operator.

E(Sv Xs, yY) = P[L(xv y’ u, V)]

= // // L(x,y,u, v)S(%x + (1 - é)u — Xs,

Sy = 2y =y dudvdxdy ?)
50 S0

Here: P denotes the focused imaging process and is a
bounded linear projection operator, x; = (s/50)x+ (1 —s/5,)u
and y; = (s/s,)y+(1—s/s,)vis the projected integration path.
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b: ANALYTICAL MODEL OF RECONSTRUCTING 4D LIGHT
FIELD DATA BY FOCUS STACK IMAGE

The forward projection process establishes the projection
model relationship from the 4D light field to the focus stack.
Introducing CT ideas and techniques in the solution process
of the reverse focus stack reconstruction of the 4D light
field. On the one hand, based on the Fourier slice theorem,
the FBP method of inversely deducing the focus stack to
reconstruct the 4D light field; on the other hand, starting from
solving the integral equation corresponding to the focus stack,
the Landweber method is used for reconstruction and iterative
optimization.

Fourier slicing theorem shows that the two-dimensional
Fourier transform of the image E(s, x;, y;) at depth s is a 2D
slice of the four-dimensional Fourier transform of the light
field L(x, y, u, v) [14], [21].

FLE(s, x5, y5)] = L(wy, wy, oy, a)y) 3

where F[E(s, x5, ys)] is the 2D Fourier transform of image
E(s, x5, ¥5), L(wy, wy, oy, wy) tepresents the 4D Fourier
transform of the light field L(x, y, u, v).

The corresponding frequency domain slice is selected as:

Wy = (5/So)W1, Wy = (§/50)w2,
wy = (1 =(s/sp))w1,  wy = (1 = (s/50))w2

Which is:
S S S S
F[E(s, x5, )] = L((1 — —)w1, (1 — —)wz, —w1, —w2)
S0 S0 S0 S0
4

Integral variable substitution based on slice selection:
dwydwy = Jidwids and dw,dw, = Jodw,ds, where J; and
Jo are the Jacobian determinant, the available variables are
replaced by:

1 1
dw,dwy = —|wildwids  dw,dwy = —Iwaldwads  (5)
) S0

Based on the frequency-domain projection relationship
between the 4D light field space and the focused stack space,
the inversion analytical expression is calculated to form a
filtered-back-projection (FBP) algorithm [21].

1
L(x,y,u,v) = (5>2 / F~ Y (F(E(s, x5, yo))|o1 ||w2])ds  (6)

Here, F and F~! represent the Fourier transform and
inverse Fourier transform, respectively, and |w;||w2| is the
optimized filter function.

C: REALIZATION OF 4D LIGHT FIELD RECONSTRUCTION
BASED ON LANDWEBER ITERATIVE

OPTIMIZATION ALGORITHM

The problem of reconstructing the light field focusing on the
stack image is to solve the integral equation E(s, xg, ys) =
P[L(x,y, u,v)], the Landweber method [28] adopted in this
paper is the descent method for solving quadratic objec-
tive functional ||E (s, xg, ys) — P[L(x,y, u, v)]||2. In the actual
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calculation, it is converted to the approximate solution of
discrete linear equations, the discrete expression is as fol-
lows: AX = B, A = (a;)uxn is the projection matrix and
B = (b1, by--- ,by)T € RM is the discrete focused image
M-dimensional vector, b; is the i —th focused pixel value, X =
(x1,x2---,xy)T € RV is the N-dimensional finite vector of
reconstructed light field, and x; is the j—th reconstructed pixel
value. In the W-norm and V-norm, the discretized form of the
equation is equivalent to the weighted least squares method
to solve the optimization problem:

1
X* =argm1n{§||B—AX||%V’V} @)

The Landweber iterative expression for reconstructing the
4D light field is:

X(n+l) _ X(n) + anvflATW(B —AX(n)) (8)

Here, «,, denotes a relaxation factor, the smaller «,, is,
the smaller the reconstruction artifact, and the larger «,
is, the faster the convergence rate, V and W represent two
positive-definite diagonal matrices.

The Landweber iterative algorithm firstly generates initial
light field image Po[L(x, y, u, v)] with resolution angle u x u
based on multi-frame focusing image E(s, x5, y5) through
backward projection matrix. Project the initial light field
image forward to the focused image position to form the
corresponding estimated focus image E’(s, xs, ys), and cal-
culate the error E(s, x5, y5) — E'(s, X5, y5), it’s the correction
artifact. Finally, back-projection to the initial image of the
light field to form a correction, and complete an iteration. The
relaxation factor «;, affects the speed of iteration convergence
and the size of artifacts, the optimal selection is based on the
actual scene image reconstruction effect. The quality of the
light field reconstructed image is not directly proportional to
the number of iterations, after reaching a certain number of
iterations, the image reconstruction quality will decline if the
iteration continues.

2) SCENE DEPTH ESTIMATION AND ALL FOCUS IMAGE
RECONSTRUCTION USING LIGHT FIELD DATA

The depth information of the scene is further retrieved by
using the light field data. First, the scene parallax dis*(x, y)
is reconstructed from the light field L(x, y, u, v), and then
the scene depth dep(x, y) is reconstructed, finally, dep(x, y)
combined with the focus stack image to generate the all focus
image.

In actual scene depth estimation, the estimation error is
mainly composed of structural variable error and random
error amount. As the real distance of the scene increases,
the scene defocus becomes stronger and the focusing ability
becomes weaker. At the same time, the lens rotation angle
becomes smaller when the focused image is collected, and
the micro lens structure variable error increases, resulting in
lower depth estimation accuracy at long distances. On the
other hand, light field vision measurement is affected by
random errors such as image noise and lighting conditions,
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and the presence of uniform areas such as weak textures in
the scene causes the focus and defocus to be similar, which
affects the accuracy of scene depth estimation.

a: RECONSTRUCTION OF SCENE PARALLAX

BY LIGHT FIELD DATA

Based on the multi-view advantages of the 4D light field data,
a pixel-by-pixel scene depth estimation can be obtained, that
is, each pixel contains a depth value. In this paper, a target
functional [29] with the matching term as the initial term, the
gradient term and the classification term as the regular term
is established to optimize the target functional to smooth the
weak texture region on the basis of preserving the image edge,
which is expressed as follows:

Func(dis(x, y))
= ||E(dis)||L2 + a||Label(dis)| |1 + BTV (dis)||lL1  (9)

Here, ||E(dis)||12 is the matching term, ||TV (dis)||11 is the
gradient term, ||Label(dis)||11s the classification item. @ and
B represent the adjustment scale.

The expression of classification item ||Label(dis)||L1 is:

1 if conf(dis) < t1 and E(dis) < 1p
Label(dis) { —1 if conf(dis) < 1| and E(dis) > 1o (10)
0 others

Here, conf (dis) is the confidence function, represents the
number of pixels in the regional neighborhood A(W(x, y))
meeting the matching conditions.

By setting threshold parameters t; and 1, Label(dis) is
divided into exact match and mismatch, where 1 represents
the smooth mismatching area, —1 represents the occlusion
mismatching area, and O represents the accurate matching
area.

Transform the depth of the reconstructed scene into the
objective functional optimization iteration problem, and
the scene parallax dis*(x,y) is obtained by solving the
optimization:

dis*(x, y) = arg min(Func(dis(x, y))) (11

The algorithm first obtains the initial parallax image by
minimizing the block matching ||E(dis)||z2 of the recon-
structed image in the light field. On this basis, the parallax
image of the scene is obtained by iteratively minimizing the
regular terms ||TV (dis)||r1 and ||Label(dis)||L1.

b: SCENE DEPTH ESTIMATION AND ALL FOCUS
IMAGE RECONSTRUCTION
The scene depth dep(x, y) can be calculated from the scene
parallax image dis*(x, y) through the view point interval:
d/
dep(x,y) = —— 12
PN = Tt (12)

Here, d’ represents the viewpoint interval.

The schematic diagram of scene depth estimation is shown
in figure 6.
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FIGURE 6. Schematic of scene depth estimation.

The scene depth image based on the reconstruction of the
4D light field data, although iterative optimization of the
regular items is performed, due to the complexity of the actual
scene, the pixels in the block area still have inaccurate depth
estimation, which affects the accuracy of 3D reconstruction.
In this paper, the non-local mean filtering (NL-means) algo-
rithm [30] is used to perform the second optimization of the
depth estimation image, the algorithm is based on the block
area in the parallax reconstruction, and look for similar areas
in the depth image to find the sum of the weighted average of
pixels to filter and denoise, it has an optimized effect on the
existence of structurally similar targets in the scene.
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FIGURE 7. Diagram of all focus reconstruction.

The all focus image is obtained by merging the focus stack
image with the depth information of each point in the depth
image, the schematic diagram of the all focus reconstruction
is shown in Fig. 7, the darker the color in the figure, the clearer
the focus, each target in the all focus image is in focused.

The all focus model expression is:

I(x,y) = E(dep(x, ), x,y) (13)

where I(x, y) represents the all focus image, and the pixel
value of (x, y) at the depth dep(x, y) is the focal point. Assign
the corresponding color value of E(dep(x, ), x,y) to I(x,y)
to get the all focus image.

C. SCENE TARGET 3D POINT CLOUD RECONSTRUCTION
WITH UPLINK AND DOWNLINK FUSION

Fusion of uplink target detection information with downlink
scene depth estimation information, the all focus and depth
information of the target in the scene was obtained, and the
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3D point cloud image of the target was reconstructed by
perspective projection model. The expression of 3D point
cloud coordinate (x,, y,, zyy) generated from depth image
dep(x, y) and all focus image I(x, y) [31]:

Xyw(x,y) = —(dep(x, yY*x)/f
Yw(x,y) = —(dep(x, y)*y)/f (14)
Zw(x,y) = dep(x, y)

where f is the focal length of the camera, each pixel value
of the target all focus image is rendered to the target 3D
point cloud coordinate to form the 3D point cloud image
f Gews Y, 2o) Of the target:

S s yws zw) =1(x, y) s)

IV. TEST VERIFICATION

Experiment uses a high-precision servo motor to drive the
lens to rotate to capture the focus stack image and perform
scene target detection, scene depth estimation and target 3D
point cloud reconstruction. The focus stack image acquisition
system includes a camera module, a highly mobile servo
module and a power supply module, the camera module con-
sists of a Point Grey industrial camera (GS3-U3-60S6M-C)
and a Kowa fixed focus lens (LM35JC10M) with a focal
length of 25mm, the servo module contains a 32-bit ARM
embedded chip and lens drive circuit. The exposure time of
each image captured by the camera is 15ms, the aperture
value F takes a value of 1.6, and the gain value is set to 0.
The depth range of the first two actual scenes selected in
the experiment was 5 meters, and a frame of focus images
were collected at an interval of 300mm, respectively. A total
of 17 focus images were collected in each scene to form the
scene focus stack image. In order to analyze the influence
of strongly defocused stack image on the algorithm of this
paper, collects 20 focused images in a scene with a depth of
field of 13 meters to conduct depth estimation and all focus
comparison experiments.

(b) Border
determination

(b) Border
determination

(a) 2D point (a) 2D point

FIGURE 8. Target detection and location.

The target detection experiment of uplink focus stack
image was completed with Dell PowerEdge R740 server and
independent video card, the YOLO deep network learning
rate parameter is set to 0.005, batch size is set to 16 according
to server performance, the optimizer parameter is set to 0.95,
and the number of iterations is set to 80 according to the
actual training target size of the scene set. The red part
in Fig. 8a shows the target detection and location of multiple
focusing images in two actual scenes, respectively. Fig. 8b
shows the optimal target area determined for multiple sets of
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target positioning information, the four corner information is
obtained after target selection and frame maximization.

The light field image of the downlink focus stack recon-
struction is realized by (7)-(8), in the experiment, the angle
of view resolution of the light field back projection recon-
struction in the experiment are usually 3 x 3,5 x Sand 7 x 7,
and the angle of view resolution shown in Fig. 9is 5 x 5 and
3 x 3’s schematic diagram of light field reconstruction.

(a) 5%5 (b) 3%3

FIGURE 9. Reconstructed light fields with different resolution angles.
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(a) 3 iterations (b) 8 iterations

FIGURE 10. Light field reconstruction iteration result.

Fig. 10 shows the reconstruction iteration results of 3 and 8
resolving angles at 5 x 5 and enlarged views of some targets.

According to the above figure, as the number of iterations
increases, it can be seen from the partially enlarged view
that the trees, walls, and buildings are clearer in 8 iterations
than in 3 iterations. In this iterative algorithm, sinusoidal
window function is selected as the filter to improve the
detail description of the original image and reduce the fuzzi-
ness. Fig. 11 shows the light field reconstruction diagram
after sinusoidal window filtering under the iteration times
of Fig. 10.

According to the figure above, the iteration results under
the sinusoidal window filter function have obvious improve-
ment in clarity and detail compared with the original. This
paper selects the average gradient value of the reconstructed
image as the evaluation index of the light field reconstruction
clarity, Table 1 and Fig. 12 and show the average gradient of
the light field image under different iteration times.

The analysis results show that the average gradient of the
image increases with the increase of iteration times in the first
8 times, and decreases slightly after the 8 times, although the
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(a) 3 iterations (b) 8 iterations
FIGURE 11. Iterative reconstruction results under sinusoidal window
filtering.

TABLE 1. Average gradient of light field images with different iteration
times.

Numberof 3 5 8 9 10 12 13
iterations

AVerage 5 4o) 26,020 26.183 26.233 26.214 26208 26203 26210
gradient

26202 2523 26208 26203
26.104 g @ OO g
o p1as B2 W24 26199 2621
26

Average gradient

25.452

25.018 2 4 6 8 10 12
Number of iterations

FIGURE 12. Relationship between the number of iterations and the
average gradient.

average gradient increases slightly in the 13th iteration, it is
still lower than the result of the 8 iterations.

The increase of the relaxation factor «;, makes the iteration
convergence speed faster, but the use of a larger «,, increases
the correction error in the iterative correction, making the
image divergence easy to produce artifacts. The experiment
iterated for 5 times under the sinusoidal window filtering
function, &, was used to reconstruct the light field with 0.1,
0.5, 1, 2 and 3 respectively, and the results were shown
in Fig. 13.

It can be seen from the figure that when «,, increases to 3,
the artifact in the reconstructed figure has been very obvious,
oy, is set as 2 to reduce the operation time while ensuring that
the influence of the artifact is small.

The above 4D light field image are used to achieve the
depth estimation of the scene by (9)-(12). Fig. 14 shows that
the viewpoint interval is 4 mm, A = 1.5, and the image block
area size are 3 x 3 and 5 x 5 depth estimation, respectively.

The two figures can resolve the depth well in the edge
region, and the depth estimation can be reconstructed at the
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FIGURE 13. Reconstruction results under different values of relaxation
factor.

(a) 3x3

(b) 5x5

FIGURE 14. Scene depth estimation for different size block areas.
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(a) 3x3 (b) 5%5

FIGURE 15. NL-means optimization of different block regions.

weak texture of the image. There are still error depth esti-
mation areas in the scene (pixels in the rectangle and ellipse
boxes), NL-means can be used for secondary depth optimiza-
tion, Fig. 15 shows the block area parameters optimization
results.

The optimization of NL-means can improve the consis-
tency and estimation accuracy of depth information. Depth
estimation and actual measurement of the three marked points
in the depth image. Table 2 shows the results of two depth
estimations for three target points.

The table above shows that the depth information of the
scene obtained by 3D vision sensor is highly consistent and
can achieve millimeter accuracy. In order to analyze the
influence of strong defocusing on depth estimation under
deeper depth of field, this article uses the method of scene 3
to estimate the depth. The original focus image and depth
estimation image of scene 3 are shown in Figure 16.
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TABLE 2. 3D visual depth estimation of scene.

Marks  Actual target distance (cm) 3D visual sensing (cm)

1 160 161.8 161.3
2 275 2774 276.8
3 500 497.6 4983

(a) Original focus image (b) Depth estimation image

FIGURE 16. Original focus image and depth estimation of scene 3.

It can be seen from the figure that although this article sets
iterative optimization to reduce the defocusing effect of weak
texture areas, but at the same time, due to the increase in field
depth and uneven illumination, the depth estimation accuracy
of scene 3 is lower than that of scene 1. Especially in the
long-distance uniform area depth estimation error is large,
and some pixel depth estimation information is lost, as shown
in the red box in the figure. The depth estimation information
of the three target points in the selected figure is compared
with the actual measurement. Table 3 shows the results of two
depth estimations for the three target points.

TABLE 3. 3D visual depth estimation of scene.

Marks  Actual target distance (cm) 3D visual sensing (cm)

1 225 2233
2 510 514.8
3 1100 1108.7

The reconstruction of the all focus image of the scene is
realized by (13)-(14), Fig. 17 shows the all focus image of
the three scenes.

The figure above show that the four enlarged sections in
each figure have high resolution and are all focused. In the
experiment, the all focus image of scene 1 and scene 3 respec-
tively and the initial focus images were selected to evaluate
the fuzziness. The gradient values of the focus images orig-
inally collected in the two scenes are shown in Fig. 18a and
Fig. 18c. Fig. 18b and Fig. 18d are the average gradient values
of the all focus images after the two scenes are reconstructed
5 times.

The gradient values of the original focus images in Fig. 18a
are in the range of 3.18~4.16, and the average value is 3.55,
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(c) Scene 3

FIGURE 17. All focus image and enlarged image of three scenes.

Fig. 18b is the gradient values of the five times all focused
reconstruction images, the sizes are 10.85, 10.83, 10.79,
10.82 and 10.86. The gradient values of the original focus
images in Fig. 18c are in the range of 1.09~1.80, and the aver-
age value is 1.67, Fig. 18d is the gradient values of the five
times all focused reconstruction images, the sizes are 3.76,
3.72, 3.83, 3.65and 3.84. It is found that the all focus image
has better global resolution and small detail presentation than
the original stack diagram. Affected by conditions such as the
range of depth of field and on-site care, the gradient value of
the original focus image and the full focus image collected
when the depth of field is deeper is smaller than the value of
shallow depth of field, and the reconstruction accuracy and
details are lower.

Based on the above analysis, the algorithm framework pro-
posed in this paper is more suitable for scene depth estimation
and target point cloud reconstruction in the small scene range.
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Image average gradient value
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The number of focus stack image acquisition
(a) Original images gradient value of Scene 1

Image average gradient value

0 2 4 B 8 10 12 14 18 18 20
The number of focus stack image acquisition
(c) Original images gradient value of Scene 3

FIGURE 18. Average gradient of original images and all focus image.
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(‘a) Multi-frame focus stack image. (b ) Target recognition in the scene. (¢ ) All focus image. (d) Multi-frame image target positioning.

(‘e ) Target depth images and all focus images. ( f) Target 3D reconstruction.

FIGURE 19. Scene 1 target reconstruction experiment diagram.

The experiment carries out the target 3D point cloud recon-
struction experiment for the actual scene 1 and 2, the experi-
ment flow chart is shown in Fig. 19 and Fig. 20 respectively.

The 3D reconstruction of the target of the two scenes
mainly includes the following steps. Fig. 19a and Fig. 20a
capture the focus stack image of the two scenes, and the
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comparison shows that the focus in the image is from near to
far. Multi-target detection and positioning of the image (a) are
performed through the YOLO neural network, scene 1 detects
two targets in each frame of the image, including a building
and a tree, and is marked with a light blue and red rectangular
frame, as shown in Fig. 19b; Scene 2 detects a house in
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(a) Multi-frame focus stack image. (b ) Target recognition in the scene. (¢ ) All focus image. (d) Multi-frame image target positioning.

(e ) Target depth images and all focus images. ( f) Target 3D reconstruction.

FIGURE 20. Scene 2 target reconstruction experiment diagram.

each frame of the image and marks it with a red rectangular
frame, as shown in Fig. 20b. Fig. 19 d and Fig. 20d show
images of multi-frame target detection and optimal position
information. Fig. 19c and Fig. 20c are depth estimation image
and all focus image reconstructed based on image Fig. 19a
and Fig. 20a. Fig. 19e and Fig. 20e are the target all focus
image and depth information obtained after fusion of ¢ and d.
Finally, the 3D point cloud images of the two detection targets
were reconstructed, as shown in Fig. 19f and Fig. 20f.

V. CONCLUSION

To effectively solve the problem of target detection, depth
estimation and 3D reconstruction in a specific area of the
scene, a fusion method based on deep learning for target
detection and focus stack image reconstruction is proposed.
In the algorithm framework, 3D visual perception acquires
focus stack image through monocular lens, combines the
advantages of deep learning and light field imaging, detects
specific target area of stack image, reconstructs 4D light field
and scene depth estimation, and fuses the target location and
depth information of scene to achieve 3D reconstruction of
the target. The algorithm in this paper is affected by the depth
of field of the scene and the on-site lighting environment.
In the long-distance scene, the adjustment accuracy of the
micro lens is limited, and the information obtained has a
large error. It can obtain more accurate depth estimation
and reconstruction effects in the small scale scene. This
method is not only applied in the field of robot industrial
detection and rescue, but also suitable for 3D face recon-
struction and recognition in the scene. The previous related
work has introduced the high-resolution reconstruction and
recognition of human faces based on the images collected by
the 4D light field camera. The theory and algorithm flow of
face recognition and 3D reconstruction based on the scene
focus stack image are consistent with this article. In the
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actual operation, a reasonable number of focused images are
selected according to the actual scene size to reconstruct the
depth estimation image in the scene. Combine the YOLO
algorithm to identify different human facial features in the
scene, and detect facial location information, finally achieve
the point cloud reconstruction of the face target. The future
work includes extending the algorithm framework fusion of
multiple perspectives of the scene, conducting more extensive
research on target detection and reconstruction based on the
background of 3D point cloud confidence assessment, and
completing the reconstruction of the whole scene, provide
theoretical basis and related experimental verification for the
follow-up robot visual navigation and SLAM research work.
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