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ABSTRACT High impedance faults (HIFs) in distribution networks are hard to describe and be detected
precisely because of the complexity and randomness of their features. Therefore, traditional feature analysis
methods may lack sufficient reliability and generalization, which makes data-based methods a more appro-
priate option. However, according to previous statistical analyses, in practical scenarios, only a small quantity
of historical HIF data (less than 20%) can be recorded and utilized. In this article, a transfer learning-based
HIF detection method is proposed under a cloud-edge collaboration framework of the Internet of Things,
which can solve the problem of insufficient data by integrating historical data from multiple distribution
networks. Through the cloud-edge collaboration framework, all features from different distribution networks
are first integrated to form a basic cloud convolutional neural network model for HIF detection. The features
are extracted and updated by edge computers based on the accurate synchronous measurements provided by
distribution-level phasormeasurement units. To uniform the data scales of the different distribution networks,
principal component analysis is adopted during feature extraction. Specific to each distribution network,
the target HIF detection model is transferred from the basic cloud model by fine-tuning. Furthermore, a data
augmentation method based on locality sensitive hashing is proposed to improve the performance of the
transferred model. The proposed HIF detection method can be operated in both online and offline modes.
The performance was verified by seven different distribution networks in numerical simulations and one
practical experimental distribution network.

INDEX TERMS High impedance faults, cloud-edge collaboration, distribution-level phasor measurement
units, transfer learning.

I. INTRODUCTION
High impedance faults (HIFs) are a common type of fault in
distribution networks. They always occur when distribution
network conductors break and touch highly resistive sur-
faces, such as soil or tree branches. HIFs often act as arcing
grounded faults with unstable and low-fault currents. Nor-
mally, HIFs have higher than 600� resistance and produce
fault current levels in the 0 to 50 ampere range in distribution
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networks, which are difficult to protect with common protec-
tive devices, such as conventional overcurrent relays. How-
ever, HIFs may lead to equipment damage, significant fire
hazards, and even threats to human lives [1].

HIF detection methods can be essentially divided into
three approaches: 1) model-based methods, 2) feature-based
methods, and 3) data-based methods. The model-based meth-
ods directly analyze and describe the arc process of HIFs
to achieve HIF detection. However, different contact sur-
faces can affect the arcing phenomenon of HIFs. Therefore,
existing methods have mainly been proposed for detecting
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one specific type of HIF, such as vegetation HIFs [2], [3],
soil-grounding HIFs [4], underwater cable HIFs [5], etc.
However, an accurate model representing all types of HIFs
is almost impossible. To expand the scope of application of
detection methods, feature-based methods have been pro-
posed. This type of method extracts the general features of
HIFs using mathematical algorithms and determines HIFs by
setting fixed thresholds. Fourier transform [6] and wavelet
transform [7] are the two most common algorithms used for
fault feature extraction. Additionally, other time-frequency
analyses [8] and mathematical morphology [9], [10] algo-
rithms have been used to extract fault features. However,
the discrimination threshold is usually difficult to determine,
and fixed thresholds also have poor reliability. By contrast,
threshold-free data-based HIF detection methods are more
reliable and have strong generalization ability and thus are
receiving increased attention from researchers.

In previous studies of data-based HIF detection methods,
most have adopted supervised learning (SL) methods, such
as decision trees [2], random forest [10], support vector
machine (SVM) [11], [12], neural networks [13], deep learn-
ing algorithms [14], etc. The performance of these methods
is mainly affected by the differentiation of extracted features
and the scale of the labeled data. In fact, however, only
a small amount of HIF data can be recorded and utilized.
Approximately 25% to 30% of distribution network faults
are considered HIFs [1], but less than 20% of HIFs can
be recorded and cleared by conventional protection meth-
ods [15]. Recently, some researchers have proposed different
methods to solve these problems. In [16], a graph con-
volutional network (GCN)-based fault detection and loca-
tion method was proposed by taking system topology into
account, which can reduce the required amount of training
data to some extent. In [17], a semi-supervised learning
(SSL)-based HIF detection method was proposed, which can
achieve fault detection using a combination of a small set of
labeled data and additional, unlabeled data.

Most of the existing data-based HIF detection methods
only utilize the labeled data generated by the target distri-
bution network itself. However, HIF events occurring in a
single distribution network are not sufficient to train a reli-
able detection model. Meanwhile, HIF events occurring in
different distribution networks share similar but not identical
features. Therefore, in this article, we proposed a transfer
learning-based high impedance fault detection method. Our
approach establishes a basic detection model by integrating
available HIF event data from multiple distribution networks,
identifying common features among different HIF events.
Then, specific models are obtained by combining the basic
model and local data, reflecting the unique features of each
distribution network. As a result, the proposed method can
achieve high accuracy even though the data collected from
each distribution network are limited. The cloud-edge collab-
oration framework brought by the development of the power
distribution Internet of Things (IoT) provides a suitable
deployment platform for the proposed HIF detection method.

The measurement data are generated by distribution-level
phasor measurement units (D-PMUs). In the edge, synchro-
nized transient HIF characteristics are introduced as the fea-
tures, which are extracted from the zero-sequence current
by discrete wavelet transform (DWT). Meanwhile, principal
component analysis (PCA) is adopted to uniform different
scales of features from multiple distribution networks. Then,
in the cloud, a basic convolutional neural network (CNN)
model is trained by these features. For one target distribution
network, a special HIF detectionmodel is transferred from the
basic cloudmodel by fine-tuning through edge computing. To
improve the performance of deployment in the target distri-
bution network, a locality sensitive hashing (LSH)-based data
augmentation method is proposed.

Contributions of this article are as follows:
(1) Propose a transfer learning-based HIF detection struc-

ture under the cloud-edge collaboration framework, which
can integrate and utilize data from multiple distribution
networks.

(2) Introduce PCA to uniform different data scales and
improve the CNN model based on the requirements of prac-
tical application.

(3) Propose a LSH-based data augmentation method to
improve the performance of the deployment from cloud
model to the target distribution network.

This article is organized as follows: An overview of the
detection structure is presented in Section II. The HIF fea-
ture extraction method and the cloud CNN model are intro-
duced in Section III. In Section IV, the deployment from the
cloud to the target distribution network is explained in detail.
Section V gives the setting of the verification scenarios, and
the verification results are shown, compared, and explained.
Finally, conclusions are drawn and future prospects are sug-
gested in Section VI.

II. THE CLOUD-EDGE COLLABORATION FRAMEWORK
AND HIF DETECTION STRUCTURE
Power distribution IoT has become a global development
trend. According to the definition from the State Grid Cor-
poration of China (SGCC), power distribution IoT is a new
operational pattern for power distribution networks based on
the integration of traditional power industry technology and
next-generation information technologies, such as the IoT,
the cloud, big data analysis, and artificial intelligence [18].
Many institutions have already studied and developed related
IoT platforms. Schnerider provides a power distribution
IoT platform called EcoStruxure Power for medium- and
low-voltage electrical distribution networks [19]. Siemens
and General Electric have also produced open industrial
IoT systems, MindSphere [20] and Predix [21], respectively.
In 2019, the SGCC published a white paper about the IoT
in electricity in China. In distribution networks, the power
distribution IoT and the cloud model can be introduced for
many applications, including topology identification, fault
handling, power quality management, electric vehicle charg-
ing management, and power line loss monitoring.
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FIGURE 1. The cloud-edge collaboration framework of the proposed HIF detection method.

In this article, a cloud-edge collaboration framework based
on the power distribution IoT is employed to utilize data
from multiply distribution networks for HIF detection. The
whole framework includes three layers: terminals, edges,
and the cloud. The terminals provide awareness about the
operation status and execute grid commands and controls.
The edge is an edge computing platform close to the data
source, which is an extension of the cloud server. The cloud
is the master platform, which adopts technologies such as
cloud computing, big data analysis, and machine learning.
Fig. 1 shows the schematic of the cloud-edge collabora-
tion framework and information flow of the proposed HIF
detection method. In the cloud-edge system, the edge node
and cloud server can achieve effective collaboration through
hierarchical computing. The tasks processed at the edge node
are targeted to achieve lower latency and better efficiency.
And the offloaded, computationally intensive tasks will be
processed in the cloud server to take advantage of its abundant
computation capacity [22].

The communication system is important for the actual
deployment of the cloud-edge collaboration framework.
Based on the demonstration project of the supported program
and recommended architecture of the SGCC, the communi-
cation system is shown in Fig. 1. The communication system
can be divided into two parts: edge-terminal communication
and cloud-edge communication.
Edge-terminal communication: In this article, the termi-

nals mainly consist of D-PMUs. There are two ways to com-
municate between D-PMUs and edges. One common way is
to adopt the phasor data concentrator (PDC) to collect the data
from D-PMUs in a distribution network. According to the

application of the demonstration project, the communication
protocol is the National Standard of the People’s Republic
of China/Recommended (GB/T) 26865.2-2011 [23], which
operates over the Transmission Control Protocol (TCP).
Through the PDC, the data from the D-PMUs can be trans-
mitted to the remote terminal unit (RTU) and PCs in the
edge computing platform. Another way to transmit the data
is to establish direct communication from the D-PMUs to
edges. The D-PMUs can bypass the PDC and transmit the
data to the edge computers by using the same communication
protocol as that used for transmission from the D-PMUs to
PDCs. Meanwhile, the D-PMUs can also transmit the data
through the constrained application protocol (CoAP), which
is a lightweight communication IoT protocol recommended
for edge-terminal communication by the SGCC [24]. CoAP
uses the user datagram protocol (UDP) as the underlying
network protocol. The communication between the D-PMUs
and edges mainly relies on Ethernet and wireless private
networks. There are also other terminals in the cloud-edge
collaboration framework, such as smart meters, temperature
humidity sensors, and line circuit breakers. Some communi-
cation can rely on power line communication (PLC).
Cloud-edge communication: Based on the recommenda-

tion of the SGCC, cloud-edge communication is performed
with the message queue telemetry transport (MQTT) com-
munication protocol, which is suitable for communication
between multiple edges and the cloud server [25]. MQTT
operates over the TCP/Internet Protocol (IP). Through the
MQTT broker, the framework can easily realize communi-
cation from one sender to multiple clients and from mul-
tiple publishers to a single subscriber. There are many
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communication methods between the cloud and edges,
including Ethernet Passive Optical Network (EPON), indus-
trial Ethernet, electric wireless private networks, wireless
public networks, and satellite communication.

Based on the cloud-edge collaboration framework, we pro-
pose a transfer learning-based HIF detection method by inte-
grating data from multiply distribution networks. The whole
structure is shown in Fig. 1. A basic model is trained in
the cloud server using HIF data from multiple distribution
networks and sent to the edges associated with each individ-
ual distribution network. Then, the basic model is cast into
specific models in the edges using local data. Pre-existing
labeled features need to be uploaded to the cloud at first as
the initial training data. The proposed method has a relatively
low communication system requirement. The uploading of
labeled data from the edges to the cloud and cloud model
deployment from the cloud to the edges do not require
real-time communication. Given the various communication
conditions and possible restrictions of different distribution
networks, two different operating modes, online and offline,
are provided. In online operation mode, the edge nodes will
detect the HIF in real time. If a period of data is detected as a
fault or HIF and verified in an actual site, these data will be
labeled and uploaded to the cloud, whether they are faults,
disturbances or normal situations, to adjust the parameters
of the basic model. Meanwhile, after a period of time, such
as one or two weeks, the target models of all distribution
networks can update the parameters of the basic cloud model
and retransfer the model. If some distribution networks are
operated in offline mode, they will only need to regularly
update the target models and not upload the operational data.

In such a computational structure, duplicated computation
is avoided because the cloud server takes care of common
computations and shares the results. As a result, the edges
remain computationally inexpensive and cost effective. The
integration of data from multiply distribution networks not
only solves the shortage of insufficient training data effec-
tively but also covers more types of HIFs than one distribu-
tion network. Along with continuous operation, the proposed
method will gradually improve the ability to identify general
HIF features and the level of adaptation to the target distribu-
tion network.

III. FROM EDGE TO CLOUD: CLOUD CNN
MODEL TRAINING
A. HIF FEATURE EXTRACTION
HIF is a typical type of weak-feature fault. Given the lim-
itations of the sampling frequency and accuracy of tradi-
tional distribution network measurement devices, it has been
difficult to make headways with traditional HIF detection
methods. The development of D-PMUs has resulted in the
acquisition of high sampling-rate three-phase voltage and
current phasor data with less error. All the measurements
are GPS time stamped to provide time-synchronized observ-
ability, which means that the transient information from

multiple D-PMUs can be used uniformly as a feature [26].
D-PMU devices provided by different manufacturers may
vary in terms of measurement variables, sampling rate, and
data accuracy and precision. The D-PMUs employed in this
article were developed by a project supported by the Chinese
government. The sampling rate is 6400 samples/s and the
zero-sequence currents are provided.

The transient features of HIFs can contain more effec-
tive information than steady-state features, especially when
affected by disturbances of and noise in the distribution
network. In this article, synchronous transient HIF feature
matrices are extracted in the edge. The transient features
are extracted from the zero-sequence currents by DWT. For
convenience of integrating the information from different
distribution networks, PCA is utilized here to unify the data
scales. The feature extraction can be divided into 3 steps
as follows:

(1) Extract the transient features from the zero-sequence
current of each D-PMU by DWT.

(2) Reduce the dimensionality of the extracted transient
features under the same decomposition level of all D-PMUs
to the same scale by PCA.

(3) Combine the dimension-reduced features as the
fixed-scale feature matrix of the distribution network.

FIGURE 2. The whole process of HIF feature extraction.

The whole process is shown in Fig. 2. After extraction,
the transient information from the corresponding time win-
dow can be formed as a fixed-scale feature matrix, which
can be easily integrated into a cloud model. The details are
as follows.

1) STEP 1: EXTRACT THE WAVELET COEFFICIENTS
Assume that a distribution network includes N D-PMUs
and the time window is T . Therefore, for D-PMU ni
(i = 1, . . . ,N ), because the D-PMUs adopted here can
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generate zero-sequence current directly, the original transient
measurement is I0i =

[
I0i1, I0

i
2, . . . , I0

i
t , . . . , I0

i
T

]
. The

central idea of DWT is to decompose a time series γ into lev-
els of multiple resolutions. At different resolutions, the details
of a signal can characterize different physical structures. The
low-resolution details can generally characterize large struc-
tures of information, and as the resolution increases, finer
details are obtained.

The multiple resolution analysis proposed by Mallat
can quickly achieve wavelet decomposition and reconstruc-
tion. Detailed descriptions of the algorithm can be found
in [27], [28]. In DWT decomposition, two factors should be
considered: the wavelet function and the number of decom-
position levels M. For HIF detection, db4 is considering as
one of the most suitable choice of wavelet [7], which is
also adopted in this article. For the number of decomposition
levels (M), γ can be decomposed into detail coefficients
Dm[γ ], m ∈ [1,M ] and approximation coefficients AM [γ ].
The corresponding frequency bands are fs/2m+1 ∼ fs/2m,
m ∈ [1,M ] and 0 ∼ fS/2M+1. Considering that disturbances
may produce low-frequency harmonics, including second
harmonics and third harmonics, the lower frequency spectrum
should be subdivided as much as possible to better distin-
guish HIFs and disturbances. Therefore, in this article, M is
set to 5, resulting in an acceptable calculation complexity.
Finally, the decomposition coefficients are reconstructed as
recDm[γ ] and recAM [γ ]. To retain comprehensive informa-
tion on faults or disturbances, all reconstructed coefficients
are kept as features. For an individual D-PMU, the extracted
feature matrix I0iWT is shown below, where J = M + 1:

I0iWT (j, :) =

{
recAJ−1

[
I0i
]
, j = 1

recDj−1
[
I0i
]
, j ∈ [2, J ]

(1)

2) STEP 2: REDUCE THE DIMENSIONALITY BY PCA
In different distribution networks, the topologies and the
number of D-PMUs are different. To unify the data scales,
PCA is utilized in this article. PCA can be thought of
as a method that reveals internal structure of the data in
a way that best explains its variance [29]. By maximiz-
ing the variance in the data, PCA captures the dominant
features in an N-dimensional dataset in descending order
through an orthogonal transformation. Thus, the trans-
formed data are linearly independent and are referred
to as the principal components (PCs). In this article,
we adopt PCA to reduce the dimensionality of the wavelet
coefficients under the same decomposition level of all
D-PMUs X j

= [I01WT (j, :); I0
2
WT (j, :); . . . ; I0

i
WT (j, :); . . . ;

I0NWT (j, :)] to the same scale. The PCs are obtained through
singular value decomposition (SVD) of the covariance matrix
Sj
(
Sj = X jX jT ). The transformed PCs, Zj, are calculated

from the covariance matrix Sj, where it satisfies

W ′SjW = Lj, (2)

where Lj
(
l j1, l

j
2, . . . , l

j
p

)
are the eigenvalues of Sj, which

can be solved from the characteristic equation |Sj-lI| = 0.

The eigenvalues l j1, l
j
2, . . . , l

j
p are also the variances of each

PC, and the sum of Lj equals the sum of the variance of the
original variables. After obtaining these eigenvalues, the cor-
responding eigenvectors W = {wi}, where wi is a column
of W , wi = (w1 i,w2 i, . . . ,wNi) , i = 1, . . . ,N , can be cal-
culated. The eigenvectors W are referred to as the loadings,
representing the correlations between the variables and PCs.
The relationship between the PCs, Zj

(
zj1, z

j
2, . . . , z

j
N

)
, and

the datasetX j(T×N ) is expressed as Zj = WX j. By retaining
the first σ (σ < N ) PCs, the dimensionality of the data can be
reduced significantly, with only minor data variability being
sacrificed.

3) STEP 3: COMBINE THE DIMENSION-REDUCED
FEATURES AS A MATRIX
Finally, the dimension-reduced features of the same wavelet
decomposition level can be expressed as [PC j

1,PC
j
2, . . . ,

PC j
σ ]. For a distribution network, a (σ × J ) × T

fixed-scale feature matrix is created by combining the
dimension-reduced features to represent the situation during
the corresponding time window. The parameter σ is related
to the scale of the distribution network, electrical parameters,
and HIF features. Based on the results of simulation exper-
iments, when σ is set to 3, 95% of the original data can
be explained under most scenarios. In this article, the time
window T is set to 64 (half cycle under 50Hz).With amoving
time window, the feature matrix can be generated in real time
and then detected.

B. BASIC CLOUD CNN MODEL
After HIF feature extraction, we adopt the CNN to establish
the basic model in the cloud. CNNs are a class of deep neural
networks in deep learning. The architecture of a CNN can
take advantage of the 2D structure of the input data, such
as an image or a matrix. A CNN is easier to train and has
fewer parameters than a fully connected network with the
same number of hidden units [30], [31]. For a fundamental
CNN model, convolution layers, pooling layers, activation
function, and fully connected layers (FCs) are the four main
components.

For the basic cloud CNN model, it is important to prevent
overfitting, meaning that the trained model works well on
the training set but not on the test set. To prevent overfitting
and enhance the generalization ability of the model, some
improvements, including L2 regularization and dropout, are
adopted accordingly to adapt the model to practical HIF
detection scenarios. L2 regularization is a common form of
regularization that can be implemented by penalizing the
squared magnitude of all parameters directly in the objec-
tive function [32]. The fitting degree can be impacted by
modifying the scale factor. Dropout is a common and the
easiest-to-implement method to address overfitting by ran-
domly dropping a percentage of units (along with their con-
nections) from the neural network, which can prevent units
from co-adapting too much.
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FIGURE 3. Structure of basic cloud CNN model and fine-tuning.

Here, the CNNmodel includes three convolutional & pool-
ing layers and two FCs. The rectified linear unit (ReLU)
is chosen as the nonlinear activation function to address
nonlinear problems. Max pooling is chosen for the pooling
layer, and the softmax function is chosen for the loss func-
tion. Detailed introductions, improvements, and parameter
settings for CNNs can be found in our previous research [33].
In this method, the tags of the features are set as N (nor-
mal situation), F (fault situation), and D (disturbance). The
establishment of the D tag can better distinguish HIFs from
disturbances.

IV. FROM CLOUD TO EDGE: DATA AUGMENTATION
AND DEPLOYMENT
Direct application of the basic cloud CNN model to a tar-
get distribution network will probably fail to obtain good
results because of the differences between different distri-
bution networks. To obtain better performance, we perform
fine-tuning to deploy the cloud model from the cloud to the
edge. Fine-tuning is a process of retaining the parameters
of some layers (frozen layers) in the pretrained model and
retraining other layers (retrained layers), which is a feasible
method for transferring the pretrained model to other sce-
narios. In a CNN, the earlier layers contain more generic
features, and later layers become progressively more specific
to the details of the classes. The last FC layers can be regarded
as a classifier. Therefore, in this article, we freeze all the
hidden layers and fine-tune the last two FCs in the target edge.
The fine-tuning architecture is shown in Fig. 3.
To further improve the performance of fine-tuning, it is

necessary to adopt some data augmentation tricks to expand
the data. In the field of HIF detection, only a small amount

of the data in the target distribution network is available, but
the extracted feature matrices may have high similarity. Here,
the data argumentation is divided into two steps: search for
similar feature data in the cloud server and expand the data
by a proportional coefficient in the target edge. Along with
this detection system movement, the data in the cloud will
become a large-scale dataset. Therefore, choosing traversal
searches will result in high time and computational resource
costs, especially for high-dimensional feature searches.

In this article, we adopt LSH to efficiently find similar
data in the cloud. LSH is an approximation technique for the
similarity search problem, which uses a set of specific hash
functions to build hash tables for a set of data objects [34].
LSH can make the mapping of similar objects to the same
area more likely than that of non-similar objects under a
certain similarity measure. Specifically, LSH can map similar
objects into the same bucket with high probability. When
performing a data search, data objects in the same bucket are
used as candidate objects, and the distance between the can-
didate object and the query object is calculated sequentially.
To prevent the candidate object being hashed into the bucket
from being different from its nearest neighbor, LSHmaintains
multiple hash tables by using different hash functions. It is
an effective algorithm for dealing with high-dimensional data
approximation problems.

The LSH scheme relies on the existence of locality-
sensitive hash functions. Consider a family of hash functions
H mapping <d to some universe U . For any two points
p and q, consider a process in which we choose a function
h from H uniformly at random and analyze the probability
such that h(p) = h(q). The definition of LSH is given
below:
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FIGURE 4. The topologies of eight distribution networks and the locations of D-PMUs.

A family H is called (R, c R, p1, p2)-sensitive if for
any p, q ∈ <d (p1 > p2).
if ‖p− q‖ ≤ R then PrH[h(q) = h(p)] ≥ p1,
if ‖p− q‖ ≥ cR then PrH[h(q) = h(p)] ≤ p2.
Therefore, in the cloud, LSH will be used first to establish

several hash tables with buckets to save the hash values of all
features. When the target distribution network sends intro-
ductions to the cloud, the cloud server will search a certain
number of similar features by LSH and send them to the
edge computer. Then, in the target edge, all the feature matri-
ces, including the original data and similar data downloaded
through LSH, are multiplied by a proportional coefficient k
between 0.94 and 1.05 in steps of 0.01. This step can expand
the data easily and effectively by multiplying by k (roughly
equal to 1) to improve the generalization ability to different
fault locations and impedances.

V. SIMULATION AND VERIFICATION
A. SIMULATION SETTING
In this article, we verified the proposed HIF detection method
with eight different distribution networks, including seven
distribution networks in PSCAD/EMTDC and one actual
10 kV experimental distribution network. The eight distribu-
tion networks are numbered 1-8. No. 1, 2, and 3 are 10 kV
resonant ground distribution networks. The overcompensa-
tion rate is 8%. No. 4 and 5 are two 380 V low-resistance
ground distribution networkswith two outgoing lines. No. 6 is
an IEEE 13-node 4.16 kV distribution network with heavy
load. No. 7 is a typical IEEE 34-node distribution network
with two PVs added at nodes 844 and 852. No. 8 is an
actual experimental 10 kV distribution network that is used
to test several general faults and HIFs in contact with dif-
ferent surfaces under three different grounding methods. The
topologies of all eight distribution networks and the locations
of the D-PMUs are shown in Fig. 4.

FIGURE 5. HIF model structure.

The HIF model in this article is based on the anti-parallel
DC-source model [9], as shown in Fig. 5. An anti-parallel
connection of two sets of variable resistors and DC voltage
sources along with diodes was considered to simulate the real
HIF characteristics. For the purpose of increasing nonlinear-
ity, the resistor and DC source values vary with a frequency
of 1 kHz between predefined values, creating a nonlinear
current waveform. The HIF model is simple but contains a
large portion of possible HIFs due to the randomly and rapidly
varying parameters.

We set ten different fault locations in the seven
non-experimental distribution networks (i.e., all except the
No. 8 distribution network). At each fault location, we sim-
ulate ten types of faults, including six HIFs and four general
faults.We change the parameters of theHIFmodel to simulate
the six different types of HIF by comparing their V-I charac-
teristics with those obtained from the real field tests in [35].
Take theNo.1 20-node distribution network, for example. The
V-I characteristics of the No. 1 distribution network (at a fault
location 50% of line 2) are shown in Fig. 6. The three-phase
voltage and current waveforms of a dry tile-grounding HIF
are shown in Fig. 7. Meanwhile, one metallic fault and three
nonmetallic faults (fault impedances 5 �, 10 �, and 30 �)
are set in each location. As a convenience, these four types
of faults are represented as general faults. All faults are
single-phase ground faults. We also set 10 different distur-
bances for each distribution network, including capacitors,
DGs, and load switching. All the faults and disturbances
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FIGURE 6. The V-I characteristics of different types of HIFs in
No.1 distribution network: (a) dry tiles, (b) damp tiles, (c) damp sand,
(d) dry rubber (e) damp rubber, and (f) dry gravel.

FIGURE 7. Three-phase voltage and current waveforms of a dry
tile-grounding HIF in No.1 distribution network: (a) voltage waveforms,
(b) current waveforms.

occur at 0.6 s/0.602 s/0.605 s/0.61 s to simulate the different
initial phase angles. The feature extraction time window is a
half circle (64 points), and the step size is 10 points. Each
scenario records 0.3 s from 0.1 s before fault/disturbance
occurrence. Note that tag D is listed separately, but the
disturbance in a distribution network occurs in a normal
situation.

B. VERIFICATION IN SIMULATION
1) ESTABLISHMENT OF BASIC CLOUD MODEL
According to the settings of all simulations, each distri-
bution network obtains 410 scenarios, including different

fault/disturbance types, locations, and initial phase angles.
To imitate the actual scene, the basic cloud models are trained
by random chosen scenarios from No. 1 to No. 6 distribution
networks (no more than 50 scenarios of each distribution net-
work). Three basic cloud models, Cloud Model I, II, and III,
are trained by different number of initial data. The proportion
of chosen scenarios from each distribution network is listed
in Table 1. No.7 and No.8 distribution networks are remained
to verify the offline mode.

TABLE 1. The proportion of chosen scenarios from each distribution
network for the basic cloud model establishment.

In order to quantify performance of the proposed method,
the accuracy is defined in Equation (3), with |TP| being the
amount of true positive classifications; |TN |, the amount of
true negative classifications; |FP|, the amount of false posi-
tive classifications, e.g., a false alarm, and |FN |, the amount
of false negative classifications, like missed faults.

accuracy =
|TP| + |TN |

|TP| + |FP| + |FN | + |TN |
(3)

After training three basic cloud models, the accuracy rates
are all higher than 98%, which shows the cloud models have
good performances for the initial chosen scenarios.

2) HIF DETECTION PERFORMANCE IN ONLINE MODE
In online mode, the basic cloud model is trained by data
from target distribution networks and adjusted by the updated
data after a period of operation. For most of distribution
networks, the online mode will be the first priority operation
mode. In this section, a comprehensive verification of the
online model is conducted from the following three aspects:
effectiveness, robustness, and accuracy.

Firstly, we established four comparable CNN models for
the No. 1 20-node distribution network to verify the effec-
tiveness of online mode. The first one is individually trained
by data of the No. 1 distribution network (chosen scenarios
are same as the basic cloud model I). And the CNN structure
is also same as the cloud CNN model. The second one is
direct-transferred from the basic cloud model I, which means
just fine-tuning the detection model by the data of the target
distribution network without any data argumentation. To ver-
ify the performance of proposed LSH-based data argumenta-
tion, the third and fourth CNN models were transferred with
exhaustive search (ES)-based and LSH-based data argumen-
tation, respectively. The ES algorithm is enumerating all the
distance of features and choosing the features of minimum
distance. In this article, the chosen similar data account for
5% of cloud data. The transferred models with ES-based and

165106 VOLUME 8, 2020



Y. Zhang et al.: Transfer Learning-Based HIF Detection Method Under a Cloud-Edge Collaboration Framework

LSH-based data argumentation are all the same except the
data search methods.

TABLE 2. Comparisons of HIF detection models under different training
methods.

Table 2 shows the details of comparison. The individual-
trained model has bad performance, which shows that direct
training by small sample data can hardly get a high accuracy
rate. Comparing with the direct-transferred model, the pro-
posed data argumentation can improve the accuracy rate
by about 6%. The transferred models with ES-based and
LSH-based data argumentation both have great performance
with over 95% accuracy rate. But the LSH search just costs
0.64s, which can increase the search speed by around ten
times comparing with 5.87s by ES search. When several
different edges execute searching task in the cloud at the same
time, the LSH-based data argumentation will contribute more
benefits than ES-based in computational efficiency.

To verify the robustness of the proposed method, we tested
the accuracy rate of transferred model of No.1 distribution
network in scenarios with different measurement noises and
load uncertainty. The measurement noises are generated by
adding different signal-to-noise ratios (SNRs)Gaussianwhite
noises to the original data. For validation of load uncertainty,
we simulated two groups of data under 50% capacity of
phase A load loss at node 2 and node 14, respectively. The
verification results are shown as Table 3. It is observed that
the proposed method can keep over 90% accuracy rate under
the setting scenarios. For D-PMUs, the amplitude error is
usually less than ±0.2%, which corresponds to about 54dB.
Therefore, the proposed method has good performance in
robustness to normal D-PMU measurement noises and load
uncertainty.

TABLE 3. The accuracy rate of target model I under different
measurement noises and load uncertainty.

To verify the accuracy of the proposedmethod under online
mode, 18 target HIF detection models of No. 1 to No. 6 dis-
tribution networks are transferred from 3 cloud models.

The performances are verified by data of all scenarios of each
distribution network. The detection accuracy rates of differ-
ent types of faults and disturbances of all target transferred
models are shown in Table 4.

As the table shows, the detection accuracy rates of the
target models transferred from basic cloud model I, II, and
III can reach 94%, 95%, and 97% on average, respectively.
The results show that this method is not affected by the
initial angles, fault locations/impedances, and time windows.
Meanwhile, the proposed method has good performance in
robustness to disturbances, which is important for fault detec-
tion in distribution networks. In general, the proposedmethod
under online mode has great performance.

3) HIF DETECTION PERFORMANCE IN OFFLINE MODE
The No. 7 34-node distribution network is adopted to verify
the offline mode. As the instruction in Section II, the dis-
tribution network which works at offline mode just updates
the target model without uploading its own data. Based on
the cloud model III, three target models are transferred by
data of randomly chosen scenarios of the No. 7 distribution
network (same proportion as Table 1). The verification results
are shown in Table 5.

The result shows that the offline mode can also achieve
HIF detection with a good performance. For general faults,
the proposed method under offline mode can almost achieve
100% fault detection. Compared with the online mode,
the robustness of disturbances under offline mode is rela-
tively poor. And the accuracy rates of HIF detection under
offline mode have a higher sensitivity to the number of
available data.

C. VERIFICATION IN PRACTICAL EXPERIMENT
DISTRIBUTION NETWORK
To verify the proposed method, we obtain 32 groups of fault
data under three grounding modes in a practical experimental
distribution network. The fault locations are set in F1 and F2
shown in Fig. 3 (h). For the HIF, the contact surfaces have five
different types, including dry/damp soil, dry/damp cement,
and asphalt concrete. And other 17 general fault scenarios
include different fault impedances from 0 to 5000� and
different initial phase angles. A target model is transferred
from the cloud model III by data of five HIFs and five general
faults. For comparison, the cloudmodel III is directly adopted
as another target model (without fine-tuning).

For the general faults under 3000�, both models can
achieve 100% fault detection. And the transferred model can
also achieve fault detection with 100% accuracy rate under
5000� grounding fault in the resonant grounding mode,
which is 9.14% higher than the cloud model III. For HIFs,
the transferred model has a 91.67% accuracy rate, which is
just 83.41% for the cloud model III. Fig. 8 shows the zero
sequence current waveform of the HIF contacted with the dry
soil surface occurred at 0s. The transferred model can detect
the HIF during the whole progress except the last two cycles
of the first unstable arcing period. By contrast, the cloud
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TABLE 4. HIF detection accuracy rates of No.1 to No.6 distribution networks.

TABLE 5. HIF detection accuracy rates under offline mode of
No.7 distribution network.

FIGURE 8. The zero sequence current of HIF contacted with dry soil
surface in No.8 practical experiment distribution network.

model can not detect the HIF during the stable arcing period
until it progressing to the second unstable arcing periodwith a
higher level of fault current after about 0.3s. The result shows

that the proposed transferringmethod can effectively improve
the reliability of the HIF detection.

VI. CONCLUSION
In this article, a transfer learning-based HIF detection method
is proposed with the application of D-PMUs. The verifica-
tion results illustrate that the proposed method can achieve
high accurate HIF detection by just a small amount of avail-
able data and not affected by measurement noises, load
uncertainty, disturbances, time windows, and fault initial
angles/locations/impedances. Through the adoption of this
cloud-edge collaboration framework, the proposed method
can integrate the data from different distribution networks
to address the issue of unavailable actual data and insuffi-
cient HIF types. The whole information flow of the proposed
method and the recommend communication system of the
cloud-edge collaboration framework are given in this article.
For a specific distribution network, we design online and
offline mode to adapt to the requirements of different dis-
tribution networks. The online mode has better performance
because the proposed LSH-based data argumentation method
can effectively improve the performance of deployment from
a cloud model to the target distribution network. Along with
the continuous operation, the proposed method can benefit
from its self-learning ability. Meanwhile, the offline mode
provides another alternative for various communication con-
ditions or possible restrictions of different distribution net-
works. With the development of IoT, more new functions can
be integrated into the edge-cloud collaboration framework.
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The proposed method can detect the HIFs effectively,
and the detection results can be used as the start-up cri-
terion of further location algorithms. For decision makers,
appropriate protection and recovery measures can usually be
implemented only if the exact location is determined. The
accuracy HIF location is considered as the crucial future
work. Distribution networks are allowed to operate with the
existence of HIFs, which means that a second fault may
occur before an existing HIF is cleared. The proposed method
cannot be directly applied to detect the consecutive or simul-
taneous faults. Further research on the detection of consec-
utive or simultaneous faults and distinguish them from a
single HIF is required to deal with such scenarios. Finally,
methods based on data-knowledge fusion may be the best
solution of HIFs, which worth more attention and need to be
further studied.
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