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ABSTRACT In this paper, the multi-objective Hybrid Taguchi-Genetic Algorithm is used to search for
the best processing parameters with specified processing accuracy. The experimental cutting parameters
used for the L9 orthogonal table process are cutting depth, cutting velocity and feed rate. The surface
roughness of the machined workpiece surface was measured according to the standard of centerline average
roughness. The Material Removal Rate will be calculated by measuring the diameter of the processed
workpiece from the formula to give the Material Removal Rate. A linear regression model is constructed
from the processed quality and the processing parameters of the orthogonal table, and the reliability of the
model is confirmed by analysis of variance. A Hybrid Taguchi-Genetic Algorithm was used to calculate
the optimal cutting parameters for multi-objective processing. The results of the experiments indicate that
Hybrid Taguchi-Genetic Algorithm gave better convergence and robustness than the conventional Genetic
Algorithm using the same number of iterations. This process produces multiple combinations of optimal
cutting parameters for material removal rate and surface roughness. As the enhancement of material removal
rate improved efficiency on the production line, the optimal cutting parameters were based on the tolerance
range of Ra 1.6µm to 3.2µm according to the international standard of surface roughness. After actual
processing with the selected optimum cutting parameters, the quality of processing is even better than the
experimental design of the L9 Orthogonal table.

INDEX TERMS Regression analysis, genetic algorithm, multi-objective optimization.

NOMENCLATURE
Ra Surface roughness
MRR Material Removal Rate
ANOVA Analysis of variance
HTGA Hybrid Taguchi-Genetic Algorithm
GA Genetic Algorithm
y, x dependent variable
β0 intercept of the prediction model
ε error value of the prediction model
βi, βij simulated parameters based on the measured

value of the dependent variable for the model
DfB degree of freedom for the model
DfW residual degree of freedom
DfT total degree of freedom

The associate editor coordinating the review of this manuscript and
approving it for publication was Yunhua Li.

SSB sum of squares of the model
SSW residual sum of squares
SST total sum of squares
a value obtained by calculation using the

created regression model and the independent
variable

ā mean of a
b value of the dependent variable
MSB sum of mean squares of the model
MSW sum of mean squares of the residual

difference
F − value value for the determination of the model
R2 coefficient of determination of the model
R2(adj) coefficient of determination after model

adjustment
f1(x) objective functions Ra
f2(x) objective functions MRR
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maxf1(x) maximum values of the objective function
Ra

maxf2(x) maximum values of the objective function
MRR

f (x) multi-objective function
w1 value of the weight 1
w2 value of the weight 2
Dbefore diameter before processing
Dafter diameter after processing
l processing length
T processing time
d cutting depth
Vc cutting velocity
f feed rate

I. INTRODUCTION
CNC machined workpieces must reach a certain level of
precision to be considered as a primary processing and the
parameters are often chosen by an experienced machine
operator who then sets the machine accordingly. Although
this method frequently produces the required specifications,
it may not be the best for large scale production [1]. In the
machinery industry, one of the most important measures of
finished product quality is surface roughness. The roughness
tolerance range is an important indicator of the completeness
of the cutting surface. That the finished surface roughness
should be within the required tolerance depends on the
settings, and these in turn, depend on the experience of the
person making them [2]. Another processing quality indictor
that needs attention is the MRR. The faster the removal rate
the better the efficiency of the production line. Therefore,
the highestMRR that will give the required surface roughness
should be used [3]. The cost of the production process also
needs consideration as well as the overall cost of the process
to the environment and of the materials generated [4].

The design of the experiment needed a means of verifi-
cation and the famous Taguchi method was used to search
for the best parameter combinations [5]. The Taguchi method
involves the use of an orthogonal table of the experimental
control factors which greatly reduces the time and cost
of an experiment [6] and there have been a vast number
of academic applications of the Taguchi method [7], [8].
In addition, the experimental data in the table were used to
perform regression analysis to create a prediction model [9].
Xiao, et al. [10] derived a surface roughness prediction model
for the discharge turning of stainless steel using an orthogonal
table and the Response Surface Method (RSM) with good
results. In their project an L9 orthogonal table was used
for the experimental design of processing parameters. The
Ra and MRR data and the processing parameters obtained
in their discharge turning experiments were used in an
orthogonal table to create an Ra and MRR prediction model
using linear regression. In another study, Alharthi, et al. [11],
used an Artificial Neural Network (ANN) to create a
surface roughness prediction model for the discharge turning

of an AZ61 magnesium alloy and this was also verified
by regression analysis which indicated good consistency.
To verify the prediction model, some researchers have used
the analysis of variance to verify the confidence of a model.
For example, Gohil and Puri [12] created a surface roughness
prediction model for the electrical discharge turning of a
Ti-6Al-4V alloy where regression analysis was used to verify
the confidence of the model by the analysis of variance.
Davoodi and Tazehkandi [13] used a coated carbide tool to
process an Inconel 738 alloy and simulated a quadratic model
using the feed, thrust and cutting forces as well as surface
roughness in the RSM. The confidence of their model was
checked by ANOVA.

The created prediction model was used to find the
best solution based on the optimization objective, and
different optimization algorithms can be seen in the literature.
Zeelanbasha, et al. [14] developed a prediction model for
measurement of temperature rise and surface roughness.
The Multi-Objective Genetic Algorithm (MOGA) found 18
sets of optimal processing parameters and confirmed the
best processing parameters for achieving the minimum tem-
perature rise and surface roughness. The discharge turning
experiments made by Gupta, et al. [15] on Inconel-800 alloy
employed Particle Swarm Optimization (PSO) and Teaching
Learning-Based Optimization (TLBO) to find the optimal
processing parameters. Solarte-Pardo, et al. [16] developed a
system for the selection of tool and cutting parameters to find
the lowest power consumption, the shortest processing time,
and the most acceptable surface roughness for the working
specifications using an Artificial Neural Network (ANN) and
Genetic Algorithm (GA) optimizedmodelling. The use of GA
combined with several other methods has shown to be better
than the use of conventional GA alone. Garg [17] proposed
a new penalty guided hybrid approach called PSO-GA. The
optimization issue is treated under nonlinear constraint and
PSO-GA gave better results that either method alone. The
position of a space manipulator was investigated by Jiang
and Wang [18] who used a hybrid LM-GA algorithm, a
combination of the Levenberg-Marqurdt algorithm with the
Genetic Algorithm, to find precise requirements for camera
calibration. Their results showed that the hybrid LM-GA
gave more precise non-linear camera error reduction. Among
other optimization algorithms, we used HTGA as proposed
by Jinn-Tsong, et al. [19] to search for multi-objective
optimization. HTGA was derived from a hybrid of GA and
the Taguchi method. The famous Taguchi method for finding
the best combination of parameters through the experimental
design of the orthogonal table and the experimental results.
At HTGA, the Taguchi method is used to select better com-
binations of genes, while the Taguchi method’s experiment
has been used in most of the literature. As traditional GA is
randomly selected for gene search, which makes them easier
getting into local optimization, the use of HTGA can stabilize
the results and prevent them from getting stuck in a local
optimal solution [20] Hasan, et al. [21] howed that the use
of HTGA for the adjustment of ACG controller parameters

VOLUME 8, 2020 169577



W.-L. Chu et al.: Optimization of Lathe Cutting Parameters Using a Hybrid Taguchi-Genetic Algorithm

gave more stability than the conventional Genetic Algorithm.
In addition, HTGA search is robust and has been used by
many others [22], [23] and is useful for multi-objective
optimization. Pirpinia, et al. [24] used the weighted combi-
nationmethod to studymulti-objectivemachine learning with
different combinations of weight. Zhang, et al. [25] proposed
a cutting cost model and used the processing parameters as
decision variables. They chose energy saving, noise reduction
and cost saving for a multi-objective optimization model, and
used the Non-dominant Sort Genetic Algorithm (NSGA-II)
to choose the most suitable Pareto-optimal solution by
multi-objective optimization of weighted combinations. The
algorithm used in this article first compared the output
results of GA and HTGA to ensure stable results. Finally,
the Pareto-optimal solution obtained from the HTGA was
chosen based on the tolerance range of surface roughness.
The data measured after the processing was compared with
the experimental design of the L9 orthogonal table to obtain
a better material removal rate.

II. METHODS
This sections has three part. In the first part an orthogonal
table was used to design the experiment to find the optimal
processing parameters. In the second part, regression analysis
was conducted to obtain a prediction model for workpiece
quality and ANOVA was used to verify the confidence of the
model. In the third part the optimization algorithm is used to
output the optimal processing parameters. The experimental
processes are as shown in Figure 1. The design of the
orthogonal table is described in detail section A of part III,
the regression analysis model section B of part III, and the
multi-objective Genetic Algorithm section C of part III.

FIGURE 1. Experiment flow chart.

A. DESIGN OF THE ORTHOGONAL TABLE
First, we established the design method of the turning
experiments and used the orthogonal table proposed by RA
Fisher [26]. This method makes the levels of each control
factor orthogonal to the others based on the scale of the
experiment. It is important that the contribution level of the
control factors are evenly distributed in order to conduct
the experiment in a more efficient way. This paper refers
to the often used application of L9 orthogonal table in
mechanical processing for the application of such experi-
mental research [27]. The selected processing parameters in

the table for the lathe used in this study are: cutting depth,
cutting velocity and feed rate. Three different levels within
the processing range of each parameter are set, and the design
of orthogonal table is as shown in Table 1.

TABLE 1. The experimental L9 orthogonal table.

B. REGRESSION ANALYSIS MODEL
The processing parameters of L9 Orthogonal table in section
A of part III were used as the independent variables
to prepare a prediction model of processing quality (Ra
and MRR). An interactive prediction model of surface
roughness and material removal rate was obtained as shown
in formula (1) [28]–[31].

y = β0 +
k∑
i=1

βixi +
k∑
i=j

k∑
j=2

βijxixj + ε (1)

y is the dependent variable; β0 is the intercept of the
prediction model; k is the number of independent variables
for the model; x is the independent variable; ε is the error
value of the prediction model; βi and βij are the simulated
parameters based on the measured value of the dependent
variable for the model. In this paper the MATLAB toolbox
linear regression model was used to solve β0, βi, βij and ε.
ANOVA [32] was used to evaluate the precision of the

prediction model. The degree of freedom for the analysed
ANOVA value was determined using formulas (2), (3)
and (4):

DfB = k − 1 (2)

DfW = N − k (3)

DfT = N − 1 (4)

DfB is the degree of freedom for the model; DfW is
the residual degree of freedom; DfT is the total degree of
freedom; k is the number of groups; N is the number of
samples.

After the degree of freedom of ANOVA was decided,
the sum of squares could be used to calculate the coefficient
of determination of the model. The sum of squares of the
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analysis value of ANOVAwas determined using formulas (5),
(6) and (7).

SSB =
N∑
i=1

(ai − ā)2 (5)

SSW =
N∑
i=1

(ai − bi)2 (6)

SST = SSB + SSW (7)

SSB is the sum of squares of the model; SSW is the residual
sum of squares; SST is the total sum of squares; a is the value
obtained by calculation using the created regression model
and the independent variable; ā is the mean of a; b is the value
of the dependent variable.

Divide the sum of squares by the corresponding degree
of freedom to get the sum of mean squares, and then divide
by the sum of mean squares of the model and the residual
difference. The sum of mean squares for the analysed value
of ANOVA was obtained using formulas (8), (9) and (10).

MSB =
SSB
DfB

(8)

MSW =
SSW
DfW

(9)

F − value =
MSB
MSW

(10)

MSB is the sum of mean squares of the model;MSW is the
sum of mean squares of the residual difference; F − value is
the data for the determination of the model.

The coefficient of determination R2 of the model and the
coefficient of determination R2(adj) after model adjustment
can be found using formulas (11) and (12).

R2 = 1−
SSW
SST

(11)

R2(adj) = 1−
SSW
DfW
SST
DfT

(12)

Finally if the F − value based on ANOVA is greater than
the F − value of 95% confidence, this can be used to decide
the confidence level of the prediction model [33].

C. MULTI-OBJECTIVE GENETIC ALGORITHM
The Genetic Algorithm ‘‘imitates’’ biological evolution.
It can quickly calculate linear and nonlinear optimization
issues and is widely used in engineering [34]. From and
initial number of genes, the fitness value of the environment
is first evaluated before the required number of evolutions.
Genes must selected for duplication, the higher the fitness
of the gene the greater the probability of its being selected.
This goes on until the number of duplications is equal to the
initial number. The self defined crossover rate determines
whether mating occurs. The mating process is a random
selection of two genes which are rearranged as two newly
generated ones. The new gene combination mutates and

the proportion of genes is changed. The mutated gene is
evaluated to determine whether it meets the environmental
requirements; if not, duplication, mating and mutation will
continue until the environmental fitness value, or the required
number of evolutions, has been reached [35].

In this present study the Hybrid Taguchi-Genetic Algo-
rithm proposed by Jinn-Tsong, et al. [19] was used for
the optimization calculation. HTGA uses the roulette wheel
method to select two genes at random during the cross
selection. The size of the Taguchi orthogonal table was
determined by the self defined variable and the better gene
combinations were found. These gene combinations and the
genes selected by the roulette wheel method were then used
for cross selection. The selected genes mutated and evolved
new genes based on the fitness value. Better combinations
of genes were selected by the Taguchi method. Convergence
was faster and the process was less likely to be stuck
in a local optimal solution than the conventional Genetic
Algorithm [36].

Consideration was given to two processing quality factors
such as surface roughness and material removal rate, and
multi-objective optimization was used to find the optimal
processing parameters. It was necessary to optimize several
objectives at the same time and this inevitably sacrificed
other objectives. It was decided to find a set of compromise
solutions based on the range of one important objective
using the Pareto non-inferior solution (sometimes called
the Pareto-optimal solution) [37]. The Das and Dennis
method [38] was used for multi-objective optimization. This
employs the weighted combination of two single objective
issues to form amulti-objective function. The functions of the
two objectives were conducted for normalization setting to
prevent one from reaching the target value too fast as a result
of the division of the maximum value. The original objective
function was converted to the same range of output and then
weighted to form a multi-objective function, as shown in the
following formula(13), (14) and (15).

f1(x) =
f1(x)

maxf1(x)
(13)

f2(x) =
f2(x)

maxf2(x)
(14)

f (x) = w1× f1(x)+ w2× f2(x) (15)

f1(x) and f2(x) are two different objective functions, Ra and
MRR; maxf1(x) and maxf2(x) are the maximum values of the
objective function; f (x) is the multi-objective function after
the combination; w1 and w2 are the objective functions with
the weighted pattern w1+ w2 = 1 respectively.

III. EXPERIMENTAL RESULTS AND DISCUSSION
The experiments in this study were conducted by straight
turning. The workpiece was clamped out 60mm long in the
lathe collet and the turning portion was 30mm long. As the
material diameters are a little different from the factory,
the workpiece needs to be processed to the same diameter
before the experiment in order to reduce the error of the
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experiment. Next, set the cutting parameters for the design
of the orthogonal table in section A of part III to complete
the machining for this experiment. The actual values of
surface roughness and material removal rate were measured
after turning to derive a prediction model for both using
regression analysis. By using the Hybrid Taguchi-Genetic
Algorithm for multi-objective optimization, we get many sets
of cutting parameters from the results of the multi-objective
optimization, and we choose the best processing parameters
according to the quality of the surface roughness.

A. EQUIPMENT USED IN THE EXPERIMENTS
The lathe used in this study was a MC4200BLMike Machine
spherical CNC lathe with a SYNTEC 21-TA controller,
as shown in Figure 2(a). The main shaft collet was a Posa
TAC-10-CY, and the processing tool used was a CHAIN
ETQNL-2020K16 as shown in Figure 2(b).

FIGURE 2. Equipment used in the experiment.

The cutting tools used were SUMITOMO TNMG1604-
04N-GE tungsten steel blade, see Figure 3(a). The S45C
medium carbon steel workpieces were 30mm in diameter and
175 mm long, see Figure 3(b).

FIGURE 3. The tungsten steel blade and a workpiece.

A Mitutoyo SJ-210 surface roughness tester was used to
measure workpiece roughness. The workpiece was supported
in V-groove block on a surface plate and the average
of six different measurements, taken at different angles,
along the centre-line of the workpiece was used, as shown
in Figure 4 (a). The calculation of MRR was done using
formula (16).

MRR =
(Dbefore − Dafter )2 × π × l

4× T
(16)

Dbefore is the diameter (mm) before processing; Dafter
is the diameter (mm) after processing; l is the processing
length (mm); T is the processing time (min).

FIGURE 4. Measuring the workpiece.

A Mitutoyo micrometer was used to measure the work-
piece diameter used to calculate the MRR, see Figure 4 (b).

B. CREATING A PREDICTION MODEL FOR WORKPIECE
QUALITY
An L9 orthogonal table as described in Section A of
part IV was used and the processing parameter levels
were set according to the range of processing parameters
recommended by the tool manufacturer. The measured
workpiece quality data after processing is shown in Table 2.

TABLE 2. L9 direct table and actual measures.

A regression model, as described in Section B of part IV,
was used with the data in Table 2 to derive a first-order poly-
nomial prediction model. This was based on the relationship
between surface roughness and material removal rate using
and as dependent variables, and cutting depth (d), cutting
velocity (Vc) and feed rate (f ) as independent variables. See
formula (17) and (18):

Ra = −1.2778+ 5.0764× d + 0.0120× Vc

. . . ,−48.3805× f − 0.0252× d × Vc

. . . ,+23.5029× d × f + 0.1370× Vc× f (17)

MRR = 4116.1024− 4314.9735× d − 13.9828× Vc

. . . ,−23208.2733× f + 14.4309× d × Vc

. . . ,+23120.4× Vc× f + 74.144× Vc× f (18)

The predictive range of the model is the upper and lower
limits of the processing parameters 0.5mm ≤ d ≤ 1.5mm;
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270m/min ≤ Vc ≤ 350m/min; 0.1mm/rev ≤ f ≤
0.2mm/rev.

On the basis of the model verification method described in
Section B of part IV, the analysis results of surface roughness
of the prediction model are as shown in Table 3. Assuming
95% confidence in the statistics, the validity of the ANOVA
model generation and the degrees of freedom for residual
differences, the prediction model had reached an F-value of:
19.32953 or higher.

TABLE 3. ANOVA (analysis of variance) of the prediction model for
surface roughness.

Results of the analysis of material removal rate for the
prediction model are shown in III-C. On the basis of 95%
confidence in the statistics, as well as validity of the ANOVA
model generation and the degrees of freedom for residual
difference, the prediction model had reached an F-value of:
19.32953 or higher.

TABLE 4. ANOVA (analysis of variance) of the prediction model for
material removal rate.

C. MULTI-OBJECTIVE OPTIMIZATION
To prove the superiority of the Hybrid Taguchi-Genetic
Algorithm described in Section C of part IV, the conventional
GA and HTGA were both run using the same parameters
and comparisons were made at specific numbers of iterations.
The setting of parameters were: initial population size 60,

FIGURE 5. Pareto-optimal solutions after 100 iterations.

FIGURE 6. Pareto-optimal solutions after 1000 iterations.

and the number of iterations used were 100, 1000 and 5000;
the crossover rate was 0.7; the mutation rate 0.2; Set the w1
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FIGURE 7. Pareto-optimal solutions after 5000 iterations.

FIGURE 8. The Pareto-optimal solution for material removal rate and
surface roughness.

weights of formula (7), the range of weighted adjustment was
from 0.01 to the end of each iteration by increasing the value
of 0.005 to 0.99 to the end. Each of the optimal parameter
values of the weighted output were substituted into formula
(17) and (18), to obtain the Pareto-optimal solution, as shown
in Figure 5, Figure 6, and Figure 7.

Figure 5 shows that, after 100 iterations, the division of
Pareto-optimal solutions for GA is rather messy while the

TABLE 5. The optimal cutting parameters and Pareto-optimal solution.

division of Pareto-optimal solutions for HTGA has started
to become completely stable. Figure 6 shows that, after
1000 iterations, the division of Pareto-optimal solutions
for GA starts to become stable, while the division of
Pareto-optimal solutions for HTGA is apparently completely
stable. From Figure 7, it shows that after 5000 iterations,
the Pareto-optimal solutions of GA and HTGA are clearly
the same, but we can see that the Pareto-optimal solutions
of HTGA are almost the same as those of 1000 iterations,
which means that HTGA has completely converged at
1000 iterations, so we can know that HTGA has a faster
convergence speed and better robustness when it is used
for multi-objective optimization. It is clear the convergence
speed of HTGA is faster and far more robust for multi-
objective optimization.
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TABLE 6. HTGA parametric actual processing and L9 experiment conform
the quality of tolerance.

D. THE MULTI-OBJECTIVE OPTIMIZATION OF THE HYBRID
TAGUCHI-GENETIC ALGORITHM
It is clear that HTGA provides superior multi-objective
searches and in this section HTGA was used exclusively
for this purpose. The parameters used were population size
60; iterations: 1000; crossover rate: 0.7; mutation rate: 0.2;
Set the w1 weights of formula (7), the range of weighted
adjustment was from 0.01 to the end of each iteration
by increasing values of 0.04 to 0.99 to the end. Each
of the optimal parameter values of the weighted output
were substituted in formulas (17) and (18), to obtain the
Pareto-optimal solution shown in Figure 8.

The corresponding processing parameters, surface rough-
ness and material removal rate of all Pareto-optimal solutions
obtained using HTGA objective optimization are shown
in Table 5.

The experiments carried out in this study were based on the
international standard ISO4287-1997 for surface roughness
and Ra 1.6µm to 3.2µm were used as the tolerance range
for workpiece quality [39]. The Ra value in Table 5 that was
closest to the value of 3.2µm was selected to carry out the
turning experiments, the processing parameters were: cutting
depth 1.5 (mm); cutting velocity 349.923 (m/min); feed rate
0.168 (mm/rev), the quality of the workpiece: Ra 3.186µm;
MRR 662.5677 (mm3/min). The quality of the workpiece
obtained after the processing was as shown in IV.
The enhancement of MRR is a clear demonstration of

an improvement in processing efficiency. The experimental
data shown in the L9 orthogonal table shows that working
efficiency was higher using the processing parameters
obtained from multi-objective optimization with HTGA.

IV. CONCLUSION
This study used workpiece surface roughness and material
removal rate to model multi-objective optimization. The
experiment is based on the Pareto-optimal solution obtained
from the multi-objective optimization of weighted combina-
torial method with HTGA, and the best process parameters
for the specified accuracy have been found. This method can
be implemented in other machine tools and with different
materials. The prediction model of surface roughness and
material removal rate can be found using an orthogonal
table and a linear regression model. The confidence rate

of the model was better that 95% and this was verified by
ANOVA. For the algorithm part, after the same parameters
are compared by the number of iterations of 100, 1000 and
5000, the HTGA can make the division of Pareto-optimal
solution completely stabilize with only 1000 iterations
as shown by the Pareto-optimal solutions, so the use of
HTGA can get better convergence and robustness. Finally,
the processing parameters of Pareto-optimal solution were
selected according to the surface roughness range of tolerance
for the turning experiment, and the quality of the measured
workpieces was compared with that of the L9 orthogonal
table experiment, and a better material removal rate was
obtained by the multi-objective optimization of HTGA.
Therefore a global search of the cutting parameters of a lathe
based on the HTGAmulti-objective optimization method can
be used to obtain the best possible process parameters.
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