
Received August 6, 2020, accepted August 23, 2020, date of publication September 8, 2020, date of current version September 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022633

InSDN: A Novel SDN Intrusion Dataset
MAHMOUD SAID ELSAYED , NHIEN-AN LE-KHAC , (Member, IEEE), AND ANCA D. JURCUT
School of Computer Science, University College Dublin, Dublin 4, Ireland

Corresponding author: Nhien-An Le-Khac (an.lekhac@ucd.ie)

This research is funded by the University College Dublin, School of Computer Science. This article is based upon work from COST Action
17124 DigForAsp, supported by COST (European Cooperation in Science and Technology). www.cost.eu.

ABSTRACT Software-Defined Network (SDN) has been developed to reduce network complexity through
control and manage the whole network from a centralized location. Today, SDN is widely implemented in
many data center’s network environments. Nevertheless, emerging technology itself can lead to many vulner-
abilities and threats which are still challenging formanufacturers to address it. Therefore, deploying Intrusion
Detection Systems (IDSs) to monitor malicious activities is a crucial part of the network architecture.
Although the centralized view of the SDN network creates new opportunities for the implementation of IDSs,
the performance of these detection techniques relies on the quality of the training datasets. Unfortunately,
there are no publicly available datasets that can be used directly for anomaly detection systems applied in
SDN networks. The majority of the published studies use non-compatible and outdated datasets, such as
the KDD’99 dataset. This manuscript aims to generate an attack-specific SDN dataset and it is publicly
available to the researchers. To the best of our knowledge, our work is one of the first solutions to produce
a comprehensive SDN dataset to verify the performance of intrusion detection systems. The new dataset
includes the benign and various attack categories that can occur in the different elements of the SDNplatform.
Further, we demonstrate the use of our proposed dataset by performing an experimental evaluation using
eight popular machine-learning-based techniques for IDSs.

INDEX TERMS Dataset, intrusion detection system (IDS), OpenFlow, SDN, security, threat vectors,
machine learning.

I. INTRODUCTION
In conventional distributed networks, the functionality
of decision making processes known as control plane
and, the forwarding of network traffic (data plane) are
implemented within the network devices (e.g. routers or
switches). The network operators configure traffic policies
(e.g. routing, switching, quality of service) on each device
independently.

Recently, SDN has come to prominence to solve the inher-
ent problems of conventional distributed networks. The key
benefits of SDN ismaking the networkmore flexible and easy
for management by decoupling the control plane and data
plane. Thus, the new paradigm can control the entire system
from a centralized remote device named the controller. The
benefits of SDN encourage many commercial and industrial
companies to deploy SDN solutions in their network environ-
ment for several reasons, including:
• Separating the control plane from the data plane facili-
tates network systemmanagement. Besides, the network

The associate editor coordinating the review of this manuscript and

approving it for publication was Weipeng Jing .

becomes easier for any change or update, and therefore
reducing the human mistakes.

• IT administrators can implement network devices or
upgrade the network infrastructure easily without any
restraint to a specific vendor.

• Centralized view of the entire network allows the SDN
controller to provide a global view of the whole network.

• Developers can deploy various applications in the upper
layer of the SDN system to perform network services in
a virtual environment [1].

• The underneath infrastructure devices do not need any
programming language. As a result, the operation cost
will be decreased significantly compared to the conven-
tional network. These enormous benefits of SDN are
making its market continuously growing. As a result,
it achieved more than $9.5 billion at the end of 2019 [2],
and this value is expected to reach $13.8 billion by 2021,
as shown in Fig. 1.

Despite the numerous benefits of SDN technology, SDN is
susceptible to new security threats that can be exploited by
attackers to perform different malicious tasks. If the attacker
successfully accesses the SDN controller, the whole system

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 165263

https://orcid.org/0000-0003-2416-7481
https://orcid.org/0000-0003-4373-2212
https://orcid.org/0000-0002-2705-1823
https://orcid.org/0000-0001-7933-6946

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

FIGURE 1. SDN market size prediction [2].

can be exposed to critical threats. Therefore, deploying IDS
techniques to detect anomalies in the SDN network traffic is
an essential part of the network architecture. Generally, IDSs
can be one of two approaches: signature-based or anomaly-
based solutions. While signature-based is widely used in
commercial products due to its high detection rate and low
false alarms, it fails to discover the new or unknown network
attacks that are produced daily. In contrast, the anomaly-
based detection system has gained the attention of many aca-
demic researchers due to its ability to discover novel attacks.
Despite existing work conducted on the anomaly detection
systems for the SDN network, unfortunately, there are still
many challenges for developing efficient IDS systems on the
SDN standard. One of the significant challenges for deploy-
ing IDS is the fact that there is no public dataset generated
directly from SDN networks and can be used for training
and evaluation of anomaly detection systems. Most of the
research community uses intrusion detection datasets, which
are generated for conventional networks. However, the virtu-
alized behavior of the SDN makes the network susceptible
to new attacks, which are different from those found in the
conventional network.

Although some previous efforts [3]–[8] have been tried
to simulate the SDN network and generate an acceptable
dataset, the existing datasets only outline a few types of
attacks i.e. only focus on DoS/DDoS threats without consid-
ering the different attack classes existing in the SDN network.
In addition, these datasets describe intrusions that can be
generated in one element of the SDN network without rep-
resenting attack vectors in different SDN layers. In this work,
we address the lack of available SDN datasets by generating
a comprehensive dataset that contains full network traces
and reflects Internet traffic. We consider the common attack
classes in conventional networks, besides the new attacks data
that are generated in SDN during its centralized design. The
ultimate goal of this work is to create a public dataset that
can be used to evaluate IDSs for the SDN environment. The
contributions of this paper are summarized as follows:

• Reviewing and classifying attacks in different SDN lay-
ers.

• Studying the limitations of the existing IDS datasets.

• Proposing a virtualized network testbed to generate a
new SDN dataset, namely InSDN.

• Generating a significant dataset covers various attacks
that can be found in all SDN elements from the proposed
network testbed. Further, the impact of the generated
attacks on the different elements of SDN is reviewed.
This can help the researchers to identify potential holes,
and therefore, they can propose several countermeasures
based on these requirements.

• Demonstrating how to use the new dataset with popular
Machine Learning (ML) techniques applied in anomaly
detection systems for the SDN network.

II. BACKGROUND
A. LITERATURE REVIEW
This section reviews the existing publicly datasets generated
from conventional networks. These datasets are widely used
for intrusion detection in conventional networks, and they
have been used for evaluating ML algorithms designed for
anomaly detection approaches in SDN networks.

• KDD’99 [9], [10]: one of the most well-known datasets
which is used widely for intrusion systems evaluation.
KDD’99 was derived from the DARPA packet traces.
The dataset contains 41 traffic features which are classi-
fied into three groups: basic features, traffic features and
content features. In addition, the dataset contains four
attack categories, besides the normal data. Themalicious
traffic can be one of the following classes Denial of
Service (DoS), Remote to Local (R2L), User to Root
(U2R), or probe attacks. One of the inherent problems
in the KDD’99 dataset is the redundancy records, where
the duplicated records in the training set reached to 78%
and about 75% in the testing file. The high degree of
duplication data prevents the detection techniques to
give high accuracy for low attack categories like R2L
and U2R. Thus, the detection systems are biased toward
frequent records like DoS attacks.

• NSL-KDD [11]: NSL-KDD is the modified version of
KDD’99 dataset. It was produced to solve some inher-
ent problems in the KDD’99 dataset, such as duplicate
records. NSL-KDD contains two subsets, training set
and testing set. The distribution of attacks in the testing
set is higher than the training one, with an additional
17 attacks that are not represented in the training set.
Although many studies have employed KDD’99 and
NSL-KDD in the domain of intrusion detection, both
datasets are not realistic to represent the current network
traffic since they were generated two decades ago and
cannot reflect the current attack trends. Besides, the orig-
inal DARPA dataset was generated using an outdated
version of the TCP protocol. Using the old TCP version
makes the header field ‘‘IPv4 Type of Service (ToS)’’
invalid according to modern standards [12].
Besides the previous limitations of KDD’99 and NSL-
KDD datasets for IDS evaluation, they also have a large

165264 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

set of features that are not relevant to SDN networks. For
example, some of the previous works [13] and [14] used
six out of 41 features when deploying the NSL-KDD
dataset under the SDN context. The both studies selected
subset features that can be derived directly through the
SDN OpenFlow protocol. However, the performance of
the classifier model indicates a low detection rate and
a high false alarm as the used features are not being
able to find the suspicious behavior of malicious traffic.
In addition, we can find most of the previous works
in SDN networks deployed KDD’99 and NSL-KDD
datasets to identify DoS attacks only. This is because the
other attack traffic like U2R and R2L are embedded in
the packet’s data, and the content features are required to
identify these types of attacks. However, the content fea-
tures are not directly accessible in the current OpenFlow
protocol.

• Kyoto dataset 2006+ [15]: was collected from hon-
eypot servers in Kyoto University. It contains the real
network traffic in the period between (Nov. 2006 to
Aug. 2009). Kyoto dataset comprises of 24 statistical
features, 14 of them are shared with the KDD dataset.
The background or normal trafficwas created simultane-
ously with malicious traffic by deploying an additional
server in the same honeypots network to produce a
more realistic dataset. The imbalanced class distribu-
tion of the dataset is considered the main limitation
of Kyoto 2006+ since the traffic data was obtained
from honeypot servers, and the majority of the traffics
data are malicious. Besides, the attack types in the
dataset are unknown. The shortcoming to identify the
attack types gives a limited view to evaluate intrusion
detection performance when using this dataset. Further-
more, the normal traffic in Kyoto 2006+ covered only
the mailing and DSN traces. In addition, the size of
normal traffic in the dataset, i.e. between 3% and 4%
of the whole dataset, does not reflect the Internet traffic.
Besides, normal and malicious traffics were created in
two different environments causing to the dataset being
unrealistic and uncorrelated [16]. Although the Kyoto
2006+ dataset was built on real traffic data, it does not
consider any information regarding the dataset attacks
types. As a result, we can find difficulties in evaluating
the impact of these attacks on the SDN network services.

• ISCX2012 [17]: The authors used two profiles to gen-
erate data traffic based on a simulated network environ-
ment. The Alpha-profiles are used to create attack traffic
and Beta-profiles for normal traffic generation. The
dataset includes two main types of network attacks, DoS
and brute force attacks with 20 collected packet features.
However, the diversity of the DoS attacks in the data is
slightly small and does not cover the vulnerabilities that
can be happened in different OSI layers. Furthermore,
the dataset includes only HTTP traffic, which does not
reflect modern traffics, where the majority of current
Internet traces are based on HTTPS traffic [18]. Again,

similar to KDD’99 and NSL-KDD datasets, the number
of features that can be extracted from the OpenFlow
protocol are not enough for machine learning eveluation.

• CICIDS 2017 [18]: This dataset is the closest one to
our study due to it covers a comprehensive range of
attack scenarios that are not addressed in the previous
datasets, besides it contains the same number of gathered
flow-based features. Although the CICIDS 2017 dataset
is considered one of the recent datasets that attracts
many researchers to develop and analyze their new
models, it contains many problems and shortcomings
as the following: (i) Firstly, the CICIDS 2017 dataset
was released based on the foundation of ISCX2012,
published in 2012. The significant difference between
both datasets is the total number of extracted features.
Where the CICIDS 2017 dataset contains more than
80 flow-based features compared to 20 packet features
in ISCX2012. In addition, the HTTPS Beta profile
was added to the CICIDS 2017 dataset to keep the
adoption of HTTPS growth on the web. (ii) Secondly,
normal traffic behavior was generated based on profile
scripts. However, applying the concept of profiling could
be problematic due to their innate complexity [19].
Furthermore, Panigrahi et al. (2018) highlighted some
problems and shortcomings in CICIDS 2017 data [20].
The dataset has 288602 missing class labels and 203
missing information instances. In addition, the size of
the CICIDS 2017 dataset is extremely huge and contains
many redundant records that seem to be irreverent for
any IDS training.

• CSE-CIC-IDS2018 [21]: The dataset is the result of
a collaborative project between the Communications
Security Establishment (CSE) and the Canadian Institute
for Cybersecurity (CIC). Similar to CICIDS 2017 but
instead, it was implemented on AWS (Amazon Web
Services) computing platform. The notion of profiles
is used to generate the dataset in a systematic manner.
Where this dataset has two general classes of profiles,
B-profiles is used to generate the normal traffic, and
M-Profiles is used for attack scenarios. The dataset cov-
ers the same attack scenarios as in CICIDS 2017 dataset.
However, the dataset suffers from the same inherent
problems of CICIDS 2017, and also the use of synthetic
traffic.

In addition to datasets described above, many data reposi-
tories have been published to cover various security domains,
such as botnets [22], [23],Malware [24], [25], Port scans [26],
etc. While the structure and the type of those repositories
are different, we exclude them from our comparison. More
details about these datasets descriptions and discussion prop-
erties can be found in [27], [28].

An important note is that although all datasets described
above are normally used for IDS research on SDN network-
based, these datasets were not generated from SDN plat-
forms. This would cause a compatible problem since the

VOLUME 8, 2020 165265

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 1. Comparison between produced dataset and publicly available datasets according to the principal objectives.

TABLE 2. Attacks vectors between generated dataset and public datasets with the used tools if available.

conventional network and SDN are different in nature. In
addition, each dataset has its own requirements for security
systems and benchmark datasets should be adapted to the
specific environment [27]. This means that the deployment
of the attack vectors should consider the new architecture.
Besides, each dataset emphasizes different properties. For
example, some datasets represent certain attack types such
as DDoS attack, while other datasets are concerning on the
label accuracy such as ISCX2012 dataset, etc.

It should also be noted that each attack has different
working principles. For example, ‘‘IPsweep’’ and ‘‘Portscan’’
attacks are not considered as DDoS attacks by the con-
ventional intrusion detection techniques [29]. However,
the aforementioned attacks can be utilized to generate an
extensive amount of network flows and exhaust the SDN
component resources (e.g., the bandwidth of the southbound
interface gets saturated). In addition, decoupling the con-
trol plane and data plane brings some new threats that are
unique to SDN. Thus, selecting the improper features can
lead to a significant drawback on the performance attain-
able by most well-known classifiers. For better illustra-
tion, Santos et al. [30] demonstrated that the SDN controller
attacks have the worst classifications results achieved by dif-
ferentmachine learning algorithms. This return to the fact that
some of the important features used to detect the new SDN
attack types are similar to normal traffic patterns due to the
unique SDN architecture. For example, flow duration, which

implies alive connection time (in nanoseconds), is equal to
normal flow in case of SDN controller attacks. Although this
attribute is widely used in the conventional networks to detect
different attack types such as bandwidth attacks, this solution
is inefficient to detect the SDN controller attacks.

The comparison between the public datasets and InSDN
dataset is described in Table 1, while the information of attack
types and their used tools are reported in Table 2.

B. REVIEWER-2: COMPARISON OF EXISTING TESTBEDS
WITH PROPOSED MODEL
We created the InSDN testbed to generate a benchmark
dataset for SDN. This section compares this InSDN testbed
with the existing methods in the literature. The testbed is
an environment designed that can incorporate real network
facilities and real traffic [31]. Table 3 represents the different
testbeds that are introduced in the literature to the one we
developed and used to create an attack traffic dataset.

Braga et al. (2010) [32] simulated the SDN network to
test ML models against DDoS flooding attacks [32]. In their
work, they used 16 GB RAM and Xeon server to create an
SDN testbed in order to generate an SDN intrusion dataset.
The simulated network composites of three virtual Open-
Flow switches connected to the SDN NOX controller. The
Stacheldraht tool was used to generate the DDoS flooding
attacks, where the total number of extracted samples are
32425 and 39071 for DDoS and normal traffic, respectively.

165266 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 3. Comparison of existing testbeds and their characteristics.

Although the significant amount of samples are generated
for normal and attack traffic, the collected data is limited to
DDoS flooding attacks.

Amaral et al. (2016) created a testbed with a small
topology to collect network traffic data using an Open-
Flow protocol for ML-based traffic classification solu-
tions [33]. The authors used HP VAN SDN controller with
a single HP E3800 OpenFlow-enabled switch to generate
their dataset.

The switch is connected to the non-SDN network to receive
copies of the upstream-link traffic through the mirroring port.
Two different datasets were created from the testbed to rep-
resent various traffic applications such as YouTube, Vimeo,
Facebook, LinkedIn, etc. The first dataset is relatively small
and labeled under a controlled environment to represent eight
different application traffic. The second dataset is unlabeled
and contains all traffic data generated from the monitored
room. However, the collected data highlights only normal
application traffic without any representation for attack sce-
narios. The intrinsic dataset should cover normal and mali-
cious traffic.

Ajaeiya et al. (2017) Used the RYU SDN controller with
a single Open vSwitch (OVS) for the experimental pur-
pose [34]. The authors used publicly available PCAP files,
which were collected from different experiments for their
work. TCP Replay tool was used to replicate the network
traffic into the SDN network, while the Wireshark tool was
used to capture the traffic samples. The authors successfully
collected 16,624 and 36,654 samples for normal traffic and
attack traffic, respectively. The attack samples include the
Brute Force credential attack, TCP DoS, ICMP Flood, and
port san traffic. However, their work is mainly focused on
re-modeling traffic replay instead of addressing actual traffic
generation.

In 2018, Cheng et al. created a testbed network topology
using the Mininet tool on the Ubuntu server [5]. Five hosts
are used to create network traffic. Two hosts act as bots, and
two different hosts are dedicated to normal traffic, while the
last host represents the victim machine. Hping3 tool is used
to generate different types of flooding attacks such as ICMP
flood, UDP flood, and TCP SYN food. The same tool is also

used to create the normal traffic. More than 30000 samples
are collected to train the ML-based models. However, their
proposed work is limited for DDoS flooding attacks only.

In 2018, Prakash et al. used the Mininet tool to build a
topology from four virtual hosts and two virtual switches
in order to generate a dataset for ML classification pur-
poses [3]. TCPDump tool is used to collect the network
traffic, while the Hping3 tool is utilized to simulate DDoS
attacks. In their work, 2000 and 4000 samples are collected
for normal and attack traffic, respectively. However, this work
focused mainly on DDoS attacks without any consideration
of other attacks that can happen in the SDN network.

In 2019, Santos et al. created an SDN testbed to generate
the attack traffic dataset for analyzing the performance of
some ML techniques [30]. The SDN network was simulated
using the POX controller and Mininet tool. Scapy, a packet
generation tool, is utilized to generate both normal and mali-
cious traffic. The network topology is composed of a single
OpenFlow switch and six hosts. The same hosts are used
to generate normal and malicious traffic in two different
experiments. The normal traffic represents HTTP and ICMP
traffic only, while the malicious traffic is limited to DDoS
attacks. The data flow size is 20000 samples, with 10000 for
each traffic type.

Similar to the previous work, the SDN testbed is created
to simulate two types of flooding attacks: UDP flooding
and SYN flooding attacks [6]. Scapy tool is used to create
2000 samples for each attack type. The Miniedit (GUI editor
for Mininet emulator tool) is used on the Ubuntu server to
create different virtual hosts for normal and attack scenarios.
The authors utilized scapy tool also to generate both normal
and attack traffic. However, their work is limited to DDoS
attacks only.

In 2020, Polat et al. created a testbed using six virtual hosts,
two virtual machines (VM) switches, and one OVS switch
to generate a normal and malicious dataset for ML training
purposes [35]. They used Ubuntu 18.04 server with 1 GB
RAM and I CPU on VirtualBox-KVM. The generated dataset
has 65000 samples for DDoS attacks and 64,000 samples
for normal traffic with 12 feature attributes and one labeled
class. Hping3 tool was used to generate three DDoS attack

VOLUME 8, 2020 165267

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

traffic packets TCP, UDP, and ICMP flooding attacks. Again,
the generated dataset is limited to DDoS attacks only.

Hence, it is clear from the studies mentioned above that
there have not been real attempts to generate a comprehen-
sive dataset for the SDN environment. The current works
focus only on creating a dataset that can assist researchers
in deploying ML techniques to effectively analyze and detect
security problems in one element of the SDN network. One
of the significant shortcomings of these methods is that the
simulated data is limited to one or two activities (mostly for
DoS/DDoS attack) without considering various attack types
that can occur in SDN networks. In addition, their works
experienced several concerns, such as out of data, representa-
tion of modern attacks, data corruption, inconsistencies, and
traffic verity.

The main differences between the previous testbeds and
InSDN one are the attack variety and the realistic of traffic
traces. We used Kali Linux to perform various attack scenar-
ios and create different attack classes such as DoS, DDoS,
Web attacks, Password-Guessing, Botnet, Exploitation, and
Probe attacks. Furthermore, the normal traffic covers various
popular application services that were not represented in the
previous works except [33].

C. ATTACK VECTORS IN SDN ELEMENTS
The centralized design of SDN architecture introduces new
vulnerabilities that can make the SDN network vulnerable to
various types of security threats [36]. In fact, all SDN layers
are unavoidably susceptible to different types of attacks.
Some of these attacks are specific for the SDN i.e. as a
result of separating the data and control plane functionality.
These attacks can occur in the SDN controller or on the
communication channels between the control and data plane
devices. Beside, there are various attacks that are common
between SDN standard and the conventional networks i.e.
the attacks on the application layer or data plane elements.
While some attacks are frequent and have a mild or moderate
impact against the conventional networks, the impact of these
attacks is escalated in the SDN. For example, in the case
that the attacker successfully gets unauthorized access to a
vulnerable machine or application in a conventional network,
a single machine or a small portion of this network is affected
by this attack. The attacker needs to escalate his privilege
or uses the victim machine to start new attacks against dif-
ferent machines or the subnets [37]. Therefore, there is a
need for different mitigation techniques to deal with them.
Kreutz et al. (2013) defined various attack vectors that can
tamper the SDN architecture [38]. [39]–[44] consider the
security issues in OpenFlow. In this section, we outline the
comprehensive attack vectors that have a critical impact on
different elements of SDN. Figure 2 summarizes the attack
vectors inside the SDN network. We classify the main attacks
against the SDN network into four-vectors as following:

1) Attacks on the data plane. The network elements
itself can be a target of the intruder. The attacker
can gain unauthorized access to vulnerable hosts in

FIGURE 2. The attack vectors in different layers of SDN. We classify the
SDN threats into four attack vectors. The attack vectors number 1 and
4 are shared with the conventional network, while attack vectors number
2 and 3 are particular for SDN paradigm.

the SDN network to initiate different attacks. Besides,
the attacker can generate malicious traffic, using a host-
ing machine or connected switch to flood the network
components. The main goal of these attacks is to con-
sume the controller resources or flow table-space of any
OpenFlow switch. In addition, the attacker can cause
damages in the network resources by deploying a fake
switch in the SDN network in order to deviate the net-
work traffic or for stealing purposes. The intruder can
manipulate the flow entries rules of OpenFlow switch
to reroute the legitimate network traffic. Furthermore,
he can use the fraud switch to produce forget-requests
to overwhelm the controller or to slow down the net-
work traffic. Additionally, the virtualized view of the
SDN network encourages the enterprise administrators
to implement software switches such as OVS switch on
their network infrastructure. Although virtual switches
are software-based and run on the host servers, they can
also be a target for attackers. In contrast, it is signifi-
cantly difficult to physically compromise the hardware
switches in the conventional network and modify its
forwarding tables.

2) Attacks on Control plane Communication. In the
SDN network, the controller can handle the data plane
devices through communication channels. Logically,
each device has a separate channel with the controller,
but physically, all these channels share the same phys-
ical link. Running the flooding attack from spoofed
sources can cause congestion in the channel links. Con-
sequently, breaking down the communication between
the controller and data plane elements can isolate the

165268 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

SDN controller from the whole network elements. Fur-
thermore, the attacker can exploit the trust between the
OpenFlow switches and the controller to launch a man-
in-the-middle attack, sniff valuable information, or gain
full access to the controller plane [45].

3) Attacks on SDN Controller. The controller acts as the
brain of the SDN network. Gaining access or bringing
down the SDN controller can consequently disrupt the
whole system. In addition, the controller is vulnerable
to the same vulnerabilities as the operating system
installed on it. In some cases, the attacker can use
his own controller and forward the node traffics based
on his setup. Furthermore, the attacker can control
the whole network and create his own policy if he
successfully exploits the vulnerable Northbound API
(i.e., the API resides in between the controller and the
application layer).

4) Attacks on the application plane. The attacker can
run a malicious application to violate the security pol-
icy or to bypass firewall and IDS Apps.

It is noticed that the attacks numbers 2 and 3 are specific to
SDNs, resulting from decoupling the data and control plane,
while the attacks 1, and 4 are common in both SDN and
conventional network.

D. ATTACK PHASES
The main objective of attackers is to control the network
system by gaining unauthorized access to network resources.
He can steal vital information or disturb the network oper-
ation, causing damage in the entire system. There are five
attacking steps that can be performed by malicious intruders,
as follows:

1) Reconnaissance: The first step for the attacker before
initiating his attack. In this phase, the attacker can
gather some information about the target system, such
as IP addresses, operating system versions, running
applications, etc.

2) Scanning: The attacker uses the collected information
from the reconnaissance phase to discover the system
vulnerabilities. Consequently, he can perform different
attack scenarios against the target system.

3) Gaining Access: In this phase, the attacker can exploit
the existing vulnerabilities to gain system control.
There are several methods to access the target sys-
tem (eg., buffer overflow, password cracking, and ses-
sion hijacking). Once the attacker successfully obtains
access to the target system, he can raise his privilege to
gain full access to the victim machine.

4) Maintaining Access: The attacker keeps his system
access by installing remote shell connections using
Trojans, Backdoors, Rootkits, etc. He can employ the
compromised system for different purposes, such as
stealing vital information or starting a new attack
against different systems.

5) Clearing Tracks: After gaining access to the target
machine, the attacker can work to hide any malicious

activities in order to avoid the detection (eg., deleting
the system log).

In this research work, the aforementioned attacking steps
were carefully examined to generate a more realistic dataset
for IDS. In addition, we have also studied the previous work
in [17], [18], [46]–[48] to generate a comprehensive dataset
and to take into consideration the setting up of the new
environment and the different attackmethodologies inside the
SDN network.

III. PROPOSED SDN ARCHITECTURE
As mentioned in Section II, the attacker can exploit the
vulnerable elements of the SDN network and launch several
attacks such as scanning, spoofing, DoS, etc. To generate
a significant dataset, we need to deploy various applica-
tions services in the testbed environment. The produced
dataset should reflect the nowadays Internet attacks that
can be launched in the current SDN networks. Addition-
ally, the attack scenarios must cover the current attack
vectors in different SDN elements. Furthermore, several
attack scenarios are considered from different sources coming
from both outside and inside the SDN network. Besides,
the normal traffic in the generated data includes various
popular application services such as HTTPS, HTTP, DNS,
Email, FTP, SSH. We represent our topology by creating
four virtual machines (VMs) using VMware Workstation on
Windows 10. The first virtual machine is Kali Linux and
represents the attacker server. The secondary machine is
Ubuntu 16.4 and acts on theONOS (OpenNetworkOperating
System) controller. The third is an Ubuntu 16.4 machine to
serve a Mininet and OVS switch. The forth virtual machine
is a Linux based on Metasploitable 2 to provide vulnerable
services for demonstrating common vulnerabilities. Fig. 3
shows the testbed network architecture for the proposed
solution.

The architecture of the proposed solution composes of a
single OVS switch, including three OVS bridges. One of the
OVS Bridges (br1) is connected to the attacker VM machine
(Kali Linux). The second OVS Bridge (br2) is connected
to the vulnerable Linux machine (Metasploitable2 Server).
The last bridge (S1) is attached to Mininet virtual hosts.
The open-source tool ONOS [49] is used to represent the
SDN controller. The ONOS software is installed in a separate
VM. The communication between all virtual hosts is done
by L3 switching connectivity. Additionally, four virtual hosts
are created using the Mininet network emulator [50], [51] to
generate legitimate and malicious network traffics. Mininet is
widely used by researchers to create a realistic virtual network
with virtual switches, hosts, and links on a single Linux
kernel virtually. Further, we used the Damn Vulnerable Web
Application (DVWA) software to represent a PHP/MySQL
webserver for a better description of different attacks inside
the SDN network. The DVWA is independently installed
from the operating system, using docker containers in the
same OVS host.

VOLUME 8, 2020 165269

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

FIGURE 3. Virtual SDN testbed network architecture. The Virtual topology was created using four separated VM machines. The OVS switch and SDM
controller were installed on two different machine, while the Kali Linux and Metasploitable 2 are representing the attacker machine and the vulnerable
Linux server respectively.

The OVS switch is configured to function as L3 switching
by combining the OVS software with Linux kernel routing.
In this case, all the virtual hosts can communicate with each
other using different subnets. Fig. 4 shows the logical topol-
ogy of the virtual testbed and its configuration in Fig. 5. The
following process indicates how to map from L2 switching to
L3 switching using the OVS switch.

• Install OVS switch and Mininet software on the same
VM.

• Create four adapters in the OVS-VM to represent four
different network subnets. In our setup, the created inter-
faces were named ens38, ens39, ens40, and ens41.

• Create two OVS bridges on the same OpenFlow switch
named br1 and br2.

• Assign each data plane interface to its proper bridge.
We assigned ens40 to br1 and ens38 to br2 bridge.
In addition, we assigned ens41 interface into S1 bridge,
which is created by default on OVS switch.

• Remove the IP address from each data plane interface
or assign it to zero. Later the removed IP address will be
assigned to the created bridges. For example, we remove
the configured IP address from ens40 interface and
assign it to its connected bridge (br1). The same con-
figuration is performed for br2 and S1 bridges.

• Connect the Kali Linux VM with the same adapter of
br1, and Metasploitable2 Server with the same adapter
of br2.

• Enable IP forwarding on the OVS Linux machine.

• Create a Mininet topology that contains four virtual
hosts (h1 to h4). The virtual hosts ofMininet are attached
to S1 Bridge. The configuration of S1 bridge is similar
to previous setups of br1 and br2. We add the IP address
of S1 bridge as a default gateway for each virtual host in
Mininet topology.

• Connect ONOS controller to all created bridges (br1,
br2, and S1)

• Now, we are able to ping between all hosts in different
subnets.

IV. METHODOLOGY FOR DATA GENERATION
A. DATASET ATTACK SCENARIOS
This section presents our approach to generate the SDN
network traffic data by using different attack scenarios.

The centralized view of the SDN network and separation
of the data plane from the control plane creates a new oppor-
tunity for the attacker to carry out various types of attacks
compared to the conventional network. The nature of these
attacks in SDN is different from those commonly affecting
the conventional network [52]. For example, the attacker can
generate new malicious traffic to attack the SDN controller
or even the communication links between the SDN controller
and OpenFlow switches. Furthermore, compromised users
can be employed to start a new attacks after the traffic flow is
established. Besides, the SDN applications can have different
vulnerabilities such as buffer overflow, command injection,
SQL injection, etc. These vulnerabilities can create attack

165270 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

FIGURE 4. Logical network topology. The independent OVS bridges are configured using L3 switching and connected to SDN controller.

FIGURE 5. The testbed network configuration. We created four adapters to represent four different network subnets. All hosts can communicate through
integrating OVS bridges with Linux kernel routing.

opportunities, and help the attacker to bypass the authen-
tication mechanism, gain access to the controller through
installing a malicious script. If the attacker successfully gains
access to the controller, he can start new attacks such as flow
rules manipulation, launching DoS attack, and eavesdropping
on the data/control traffic.

Table 4 represents the attack classes and the used tools in
this virtual environment, as well as the source attack machine
and the victim device IPs.

1) DoS attacks: Is one of the most common attacks inside
the SDN architecture. It does not only damage the
victim machine but can also overwhelm the SDN con-
troller resource in a short time. Besides, the SDN con-
troller is the brain of the SDN network, and in the case
of DoS attacks, the whole system becomes unavailable

for legitimate users. It turns the entire network into a
‘body with no brain’. DoS attack can flood the victim
machine with a huge amount of spoofed packets that
have no matched rules inside flow tables switches.
Thus, the OpenFlow switch will send these flows to the
SDN controller in the form of packet-In message
for further processing. When packet-In message
rates are increased up to a certain limit, SDN controller
resources can be overwhelmed by a large number of
unprocessed packets. There are two main types of DoS
attacks [53] as the following:

• Network DoS attacks: The main objective of
these attacks is to overwhelm the benign users by
flooding the network bandwidth or victimmachine
by a large amount of spoofed packets. The attacker

VOLUME 8, 2020 165271

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 4. Dataset attack classes generated in virtual environment.

often uses different protocols like UDP, TCP,
or ICMP. DoS attacks can also disturb the SDN
controller or its channels due to the significant
number of forwarded packets to the controller.

• Application DoS attacks: Despite the fact that
these attacks do not require high bandwidth, how-
ever, it can cause serious damage to the target
server and consume its resources in a short time.
It mainly targets the top application layer or ser-
vices such as HTTP. The application layer attack
is not easy to detect since the intruder is connected
to the victim server in an authorized manner.

The InSDN dataset includes several types of DoS
attacks that can be driven in different OSI model layers.
Kali Linux is used to carry out various DoS attacks
against a victim web server, which is represented by
h4 virtual host. Several DoS attacks such as TCP, UDP,
and HTTP flood attacks are executed by using Low
Orbit Ion Canon (LOIC) tool.
Further, we implemented different slow rate DoS appli-
cation attacks such as Slowloris, slow-rate HTTP
POST, slowhttptest, using HULK, and torshammer
tools. In addition, we handled the TCP and Slowloris
based DoS attacks using the Metasploit framework on
Kali Linux against Metasploitable 2 server.

2) DDoS attacks: InSDN dataset also includes several
DDoS attacks scenarios such as TCP-SYN Flood, UDP

Flood, and ICMP Flood attacks. The Hping3 tool,
which considered one of the most publicly tools is
used for DDoS attacks, where the attacker machines are
h1 and h2, and the victim machines are h4 web server
and Metasploitable 2 server.

3) Password-Guessing Attacks: It implies to obtain
access to the victim machine through breaking the
username and password credentials. Two different sce-
narios of Password-Guessing Attacks are considered in
the InSDN dataset. In the first scenario, the dictionary
attack is involved by creating a dictionary for all possi-
ble users and passwords and then try each of them. The
attacker machine is Kali Linux, and the victim server
is the DVWA web server. Burp suite and Hydra tools
are used to launch this attack to get the username and
password credentials. In the second scenario, we use
auxiliary scanner tool from the Metasploit frame-
work to discover the valid credentials on the Apache
Tomcat Web server, which runs on Metasploitable
2 server.

4) Web application attacks: Based on the Syman-
tec report in 2018 [54], one in ten analyzed URLs
ware vulnerable with malicious code, with a 56%
increase compared to 2017. In web application attacks,
we implemented the most frequent application attacks
such as Cross-site scripting (XSS) attack and SQL
injection.

165272 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

• XSS attack: The attacker can bypass the access
controls of the client machine by injecting mali-
cious code into the trusted website. Once the client
access the web application site, the malicious
script will be executed. As a result, the attacker
can obtain sensitive information from the client
machine, such as session tokens, cookies, and so
on. We tried to Gain Shell Access by preparing
our malicious PHP file and uploaded it to the
vulnerable web server. The skillful msfvenom
tool, which combines Msfpayload and Msfencode
tools into one single framework is used to create
the PHP codes. Once the client starts to access
the vulnerable web server, the uploaded PHP file
will be executed. As a consequence, the attacker
machine can access the infected client using a
reverse connection.

• SQL injection attack: The attacker can use mali-
cious quarries to manipulate the database behind
theweb application, allowing the attacker to get the
content of the entire SQL database. The attacker
can obtain unauthorized access to any web appli-
cation or sensitive data on the website. The SQL
attack in InSDN dataset is executed using an
automatic SQL injection (sqlmap) tool against the
DVWA web server. The Burp Suite tool is used to
capture the user cookies, which are needed during
the SQL injection attack.

5) Probe attacks: This is the most essential phase for
an attacker before starting his attack. The attacker
scans the target system to discover some information
that can assist him in exploiting the remote system
such as the operating system versions, open ports, etc.
We use open-source Nmap tools with different flags
to run the probing attack, using Kali Linux against all
virtual Mininet hosts (h1, h2, h3, and h4). Furthermore,
the Metasploit framework is employed to find the open
ports and the variabilities of web applications in the
Metsaploitable 2 server.

6) Botnet attack: Although many devices or things
access the Internet, the provided security does not
guarantee the optimum functioning to prevent infiltra-
tion attacks. The intruder can control several infected
devices, referred to botnet to run different malicious
activities such as stealing information, fraud attack,
launching DDoS against victim server, or web appli-
cations server. The Botnet attack is performed in the
InSDN dataset by using the Ares tool, where the
attacker is from the Kali Linux machine and the two
hosts (h1 and h2) represent the infected bots.

7) U2R (Exploitation) attack: The remote exploitation
and backdoor attacks are considered to represent the
U2R scenario in the InSDN dataset. These malicious
activities are more similar to normal traffic and can
cause a serious risk on the network system, so it is

essential to detect these attacks earlier as possible [55].
In the produced dataset, we consider four vulnerable
services that are running on Metsapoltable 2 server
i.e., Vsftpd, distcc, UnreaIRCD, and samba applica-
tions. These services are operating on corresponding
ports 21, 3632, 6667, and 445, respectively. TheMetas-
ploit framework from the Kali Linux machine is used
to get root access on the victim machine.

8) Normal traffic:We consider real Internet traffic using
different protocols such as HTTPS, HTTP, SSH, mail,
DNS, etc. To generate more intrinsic traffic, h3 host is
connected to the Internet and run different applications
like YouTube, Facebook, Email, Skype voice. Besides,
several services on Metsploitable2 server are accessed
to generate various samples for normal traffic such as
SSH, FTP, Telnet, etc.

B. SDN SPECIFIC ATTACKS
This section analyzes several examples of attacks that can be
launched in SDN elements and disrupt their normal services.
We also demonstrate how these attacks can impact the SDN
network severely and easily consume its resources. While
some of these attacks are common with conventional net-
works, other attacks are more specific to SDN.

Although the SDN can be afflicted with similar attacks
presented in the conventional network, the solutions that are
generally applied to the current environments are not applica-
ble for SDNs [56]. Decoupling the control plane from the data
plane can bring new security threats that have never appeared
in the conventional network i.e. all the unmatched packets
in OpenFlow switches are forwarded to the controller in the
form of Packet-In message. Thus, it is very easy for an
intruder or even the end-user to poison the network by gen-
erating forget messages, which are relayed to the controller.
If the SDN switch does not find any matching rule for the
received packets in its flow tables, the switch will extract the
packet header and encapsulates it using OpenFlow protocol
and sent to the controller in the format of Packet-In
message. Then, the controller encapsulates the processed
flow and returns it to the OpenFlow switch in the format of
Packet-Out message. The parameters in Packet-Out
message, as shown in Fig. 6 are used to install the flow
entry in the OpenFlow switch. The attacker can employ huge
amounts of malicious requests, which will exhaust the system
resources resulting in a degradation of controller performance
or increasing the communication overhead.

Although the Transport Layer Security (TLS) protocol has
been considered as optional to secure the communication
links between the SDN controller and switches, TLS cannot
protect the network from the spoofing packets.

This manuscript does not emphasize all attack types in the
SDN context; instead, some attacks, which are relevant to
the InSDN dataset are reported in the following paragraphs.
Rather, interested readers may refer to previous studies [52],
[57]–[60] for more detailed information.

VOLUME 8, 2020 165273

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

FIGURE 6. Wireshark: OpenFlow packet encapsulation.

• Data-to-control plane saturation attack [61], [62]:
Different from the conventional network, unmatched
packets in flow tables are forwarded to the control
plane for forwarding decisions. Since the SDN con-
troller implements the packet forwarding decisions,
the attacker can exploit this vulnerability by launching a
dedicated denial of service attacks to flood the network
resources. He can produce an extensive amount of table-
miss Packet-In messages to exhaust the controller’s
resources (eg., CPU, memory) in a short time. This can
cause a reduction or complete shutdown of the controller
service. As a result, the normal delivery of packets will
be interrupted.

• Link Flooding Attack (LFA) [63], [64]: The strategy
of LFA attack in the SDN context is different from those
commonly targeting conventional networks. The goal
of this attack is to disconnect the controller from the
data plane elements. A skilled adversary can take the
chance of continuous communication between the data
and the control plane to obstruct this communication.
For example, the attacker can generate normal packets
with low rate traffic by employing malicious bots to
congest the channel links by anomalous traffic, and
this can impede the legitimate traffic towards the target
network. However, the conventional techniques fail to

mitigate it due to the centralized strategy of the SDN
architecture in managing the network traffic. Besides,
LFA mimics the same normal behavior during its low
rate nature and can flood the whole network, without any
further detection [63].

• Flow-Rule Flooding Attack: The attacker can flood
the OpenFlow switch by creating a large amount of
unmatched flow, which triggers the switch to install
invalid flow rules in its entry tables. After a while,
the flow tables capacity becomes full, and the OpenFlow
switch is not able to install the new rules. This can
deplete the switch resources and cause exhaustion in
the data plane. Besides, normal users could not be able
to install their flow traffic, and legal traffic cannot be
forwarded.

• Password-Guessing Attacks [41]:An attacker residing
on a non-SDN element can use random or systematic
guessing of passwords to achieve unauthorized access
to SDN elements. For example, an intruder might be
successful in accessing a management console to launch
attacks on the network managed by the SDN controller
or in the controller itself.

• Remote application exploitation [52]:The attacker can
achieve unauthorized access to a victim system or an
SDN component by exploiting a software vulnerability

165274 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

in one of SDN components. For example, he can exploit
software vulnerabilities in the application server and
gain its access. If the attacker succeed to achieve unau-
thorized access to the application server, he can poison a
controller’s view of the network topology. Furthermore,
the attacker can carry out a variety of other attacks such
as destruction of information, compromise of integrity,
deviate network traffic, exploitation, and unauthorized
disclosure.

V. USAGE AND AVAILABILITY
A. DATASET DESCRIPTION
We divided the dataset into three groups based on the traf-
fic types and the target machines. The first group includes
normal traffic only. The second group contains the attack
traffics that target Mealsplotable-2 server. In the last group,
attacks on the OVS machine are considered. The Tcpdump
tool is used to capture the traffic traces for each category at
the target machine and the SDN controller interface. In addi-
tion, the CICFlowMeter tool [65] is used to extract the flow
features for the InSDN dataset. The reason we decided to
use the CICFlowMeter in our work despite many available
tools in literature such as Argus 1 and Bro-IDS 2 is the fact
that none of these tools exclusively consider the time-based
features [66]. However, different applications have different
time constraints. As a result, it is more important to calculate
the statistical time-related features for the flow traffics.

The CICFlowMeter was generated by the Canadian Insti-
tute of Cybersecurity team and has beenwritten in Java to cre-
ate network flow traffics from the PCAP file. The generated
flows are calculated in Bidirectional, where the first packet in
the flow determines the flow direction (forward or backward).
The output of the CICFlowMeter is more than 80 statistical
features in CSV file format such as Protocol, Duration, Num-
ber of bytes, Number of packets, etc. The list of extracted
features and details are available in the appendix (Table 13).
We collected more than 80 features with 56 categories from
our experiments. For simplicity, we divided the entire features
into eight groups as the following:

• Network identifiers attributes: these features contain
the common information that used to define the source
and destination flow. For example, IP address, Port num-
ber, protocol type.

• Packet-based attributes: these features hold the infor-
mation related to the packets such as the total number of
packets in a forward and backward direction.

• Bytes-based attributes: these features hold the infor-
mation related to the bytes i.e. total number bytes in the
forward and backward direction.

• Interarrival time attributes: these features show the
information related to the interarrival time in both for-
ward and backward directions.

1http://qosient.com/argus/index.shtml.
2https://www.bro.org/index.html.

• Flow timers attributes: these features hold the infor-
mation related to the time of each flow i.e. active and
inactive.

• Flag attributes: these features hold the information
related to the flags like SYN Flag, RST Flag, Push flag,
etc.

• Flow descriptors attributes: these features contain the
traffic flow information (eg., the number of packets and
bytes in both forward and backward direction).

• Subflow descriptors attributes: these features show
the information related to subflows, such as the number
of packet and bytes in forwarding and backward direc-
tions.

For labeling processing, we use some features information
such as Source IP and Destination IP. The total number of
dataset instances are 343,939 for normal and attack traffic.
Where the normal data brings a total of 68424, and attack
traffic contains 275,515 instances. Table 5 represents the
attack classes for each group with its total size. Furthermore,
the name of PCAP files under each attack group is chosen
based on the target protocol layer or the tools that are used to
create each file.

B. USAGE NOTES
1) The InSDN dataset includes different attacks that can

strike the data, control, and application layers.
The source of attacks in the dataset is classified into
two categories.

a) Internal: These attacks come from internal users,
who have full access to the SDN network.
Although internal attacks are rare in the produc-
tion systems, these attacks become more severe
and can cause malicious actions for network ele-
ments. In many cases, the attacker is not able to
target network servers directly since these servers
might have a high level of security protection.
In this case, the attacker tries to exploit weak-
nesses on the individual users inside the network
system, and then start new attacks on different
target servers. In the InSDN dataset, the compro-
mised hosts (i.e. h1 and h2) are used to launch
various attacks from internal SDN network.

b) External: These attacks commonly are launched
from the outside network. The attacker is mainly
altering the SDN network using different mali-
cious activities such as code exploits, DoS, mal-
ware, etc. We assume the majority of attacks in
the dataset are created from an outside network to
mimic the real attack scenarios.

2) We predict the effect of dataset attacks on various
SDN elements. Thus, it can help to provide a better
countermeasure approach. Table 6, shows the impact
of attacks in the dataset on different SDN layers. It
can be seen that the majority of the attacks in the
dataset might cause damage to the SDN controller.

VOLUME 8, 2020 165275

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 5. Total number of data instances and its size.

TABLE 6. Impact of attacks in dataset on the different elements of SDN.

The centralized control element displays the main
differences between the SDN and the conventional
networks. In the conventional network, any attack
can affect only one portion of the network, probably
related to one vendor without interrupting the whole
network services. However, any damage to the SDN
controller can cause a severe impact on the entire sys-
tem. Another concern, hardening the control messages
in the southbound or northbound interface can threaten
thewhole network system. Therefore, the organizations
should tackle the security issue in the early stages
before implementing their SDN project. Any delay or
wait to secure the network can cause service-affecting
problems.

C. DATASET AVAILABILITY
The InSDN dataset is publicly available on http://
iotseclab.ucd.ie/datasets/SDN/ (or http://
aseados.ucd.ie/datasets/SDN/) [67] with the
publishing of this paper.

VI. LIMITATIONS
1) Although SDN is applied in different network envi-

ronments, the technology is still under development.
Unfortunately, the previous history of SDN attacks
is unknown. Therefore, in this work we act like the

attacker and anticipate the weaknesses that he might be
likely to strike.

2) The InSDN testbed was implemented using only
ONOS SDN controller. The different types of function-
alities in terms of security analysis for other controllers
are ignored. However, authors in [68], [69] claim that
the different controllers can have different security
modeling, and therefore, different countermeasures.

3) SDN can be deployed in different network scales. It will
be expected for SDN to support more devices and
users more significant than the conventional network.
Therefore, only one controller is not enough to cover all
network nodes and users. For enterprise networks, there
are probably several controllers connecting together
through API interfaces such as eastbound and north-
bound interfaces. Unfortunately, due to the hardware
constraints, the low scale topology with only one SDN
controller was considered and implemented. However,
using a single controller can perform well and achieve
the purpose of optimal flow management [70]. In addi-
tion, obtaining the dataset using a single controller
or multi controllers will not cause a big difference in
methodology [35].

4) To generate more intrinsic data for SDN networks,
the network topology should be created using physi-
cal devices. We tested various attacks and studied its
impact on SDN layers by simulating the SDN network

165276 VOLUME 8, 2020

http://iotseclab.ucd.ie/datasets/SDN/
http://iotseclab.ucd.ie/datasets/SDN/
http://aseados.ucd.ie/datasets/SDN/)
http://aseados.ucd.ie/datasets/SDN/)

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

using virtual machines instead of real elements. We are
planning to generate a more intrinsic dataset using
physical topology with many connected devices.

5) The InSDN dataset assumes that all attacks are gen-
erated by high-level skill attackers. The threats, which
come from misconfiguration or conflicting flow-tables
in the switches are ignored.

6) One of the main limitations of the proposed dataset
is a high-class imbalance. This problem can cause
biasing of the IDS towards the majority class, causing
high false alarm and low evaluation accuracy. However,
there are many different techniques to solve the prob-
lem of imbalanced samples [71]–[74]. One of these
techniques is applying a relabeling solution.Where two
different methods can be used: (a) The high classes can
be splatted to formmore classes; (b)Merge two ormore
minority classes that share the same characteristics to
create a new one class. As a result, the imbalance
issue can be reduced, and prevalence ratio is effectively
improved.

VII. EXPERIMENTAL EVALUATION
This section analyzes eight supervised learning techniques to
evaluate the usability and quality of InSDN dataset. The main
objective is to demonstrate the quality of this dataset when it
is used in the binary classification i.e. normal versus attack
classes. Various performance indicators are used to evaluate
the efficiency of employed supervised learning techniques,
such as precision, recall, precision, F-score, and training time.

A. DATASET PRE-PROCESSING STEPS
The first phase before training the IDS models is to pre-
process the dataset to make it more suitable for the training
phase and avoid the overfitting problem. Few steps are taken
for pre-processing the entering flows, as follows:

• The InSDN dataset contains the socket information such
as Source IP, Destination IP, flow ID, etc. All socket
features are removed to avoid the overfitting problem,
where these features can be changed from network to
network. The final dataset includes 77 various features,
besides the traffic category.

• The features have different ranges, so they need to be
standardized to restrict the scale of the values between
0 and 1.

• One-hot encoding scheme is used to convert the labeled
string to numerical values. In this model, only binary
classification is considered to classify the input data into
malicious and normal group. Therefore, the normal and
malicious strings are encoded into binary values of 0
and 1, respectively.

B. SDN SPECIFIC FEATURES
This section focuses on selecting the necessary features that
can be directly obtained from the SDN network.

In SDN, only statistical features can be extracted from the
SDN controller through OpenFlow calls to the SDN switches,
(eg., flow duration, number of packets, number of bytes).
In this manuscript, the same framework method of [75] is
used to obtain the SDN specific features. These features
can be directly extracted from the SDN controller through
API queries or by the manual computation based on flow
statistics information. Table 7 represents the corresponding
mapping between derived features from the SDN environ-
ment to the InSDN dataset features. In addition, Table 8
shows extra features that can be calculated from the man-
ual competition. The new features include the maximum,
minimum, mean, and standard deviation of these values as
well as the direction-specific features. These features are
essential to define some particular attacks like botnet [75].
We selected a subset of 48 features from our dataset. While
the previous method [75] used a subset of 50 features to
train their learning model. However, they used the source
IP, destination IP in their computation. These two attributes
are excluded from the feature selection strategy, where IP
addresses can be changed from network to network. Besides,
the same IP address can be assigned to the attacker machine
as well as the normal user. Thus, IP address is not able to
distinguish between normal and attack traffic. Table 9 repre-
sents the total selected features for the SDN context from the
proposed data.

C. MACHINE LEARNING ANALYSIS TECHNIQUES
This work uses eight common supervised learning algorithms
to evaluate the quality of the InSDN dataset. Specifically,
we employed three tree-based algorithms: a single Decision
Tree (DT) [76], Random Forest (RF) [77], and Adaptive
Boosting (AdaBoost) [78] learner. Besides, the k-nearest
Neighbor classifier (Knn) [79], Naive Bayes (NB) [80], and
two Support Vector Machines (SVM) [81] based method:
linear kernel (lin-SVM) and a radial basis function kernel
(rbf-SVM). In addition to the previous classifiers, a multi-
layer perceptron model (MLP) is chosen in order to further
evaluate the InSDN dataset. The hyper-parameters setting of
MLP is described in the Table 10, while the default parame-
ters are used in all the implemented algorithms. All learning
classifiers are trained using the cross-validation technique
with K = 5, where the training and test data are splitted
into 80% to 20%. In our experiments, there is no significant
difference in terms of the accuracy between K = 5 and
K = 10. In addition, using the larger K is subject to
the computationally expensive and time consuming pro-
cess, especially in large datasets. All the experiments were
implemented in Python programming language using vari-
ous libraries such as Keras, Scikit-Learn, and Tensorflow.
Furthermore, all the experiments were performed using
a workstation machine that has the following properties:
Intel(R) UHD Graphics 620, I7-8650U CPU @ 1.90GHz
(8 cores), 2.1GHz, Windows 10 pro 64-bit with 16 GB of
RAM.

VOLUME 8, 2020 165277

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 7. The extracted traffic features from SDN controller.

TABLE 8. The extra traffic features.

TABLE 9. The subset features for SDN environment.

D. CLASSIFICATION METRICS
Using the complete accuracy does not yield precise compar-
isons [82], so we use the most important performance indica-
tors to evaluate our proposed model, such as precision, recall,

TABLE 10. The hyper-parameters used in multi-layer perceptron
approach.

precision and F-score. These metrics are commonly used in
intrusion detection systems and are defined as follows:

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F-score =
2× Precision× Recall
Precision+ Recall

(3)

where True Positive (TP) and True Negative (TN) represent
the values that are correctly predicted. In contrast, False
Positives (FP) and False Negatives (FN) indicate missclassi-
fied events. Furthermore, we considered the training time to
describe how long the classifier algorithm takes for training
the whole data.

E. RESULTS AND DISCUSSION
This section discusses in detail the performance evaluation of
the InSDN dataset.

1) FULLY-FEATURED VERSION OF THE DATASET
Table 11 shows the performance of different classifiers using
a fully-featured version of our dataset. It is clear that the
overall score metrics are very high for DoS/DDoS and probe
classes for all learner classifiers, while the U2R gives the poor
performance metrics. This is because both DoS and Probe
categories are commonly more different from normal traffic
patterns [83]. In contrast, the U2R attack class has a high
similarity to the normal connections. In addition, the size of
U2R flow records is small compared to the normal flow in the

165278 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 11. Metrics performance for the fully-featured version of the dataset.

TABLE 12. Metrics performance for the SDN specific-featured version of the dataset.

same set. Furthermore, the overall performance of Adaboost
and MLP is significantly high for all attack classes, but the
training time is relatively long.

Recall and F1-Score on the botnet, web attack, and U2R
classes are poor for both linear and RBF based SVM. Besides,
the recall and F1-score metrics for rbf-SVM algorithm are

VOLUME 8, 2020 165279

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

TABLE 13. The list of entire features in the InSDN dataset.

165280 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

low on the password brute-forcing attack type. Furthermore,
the performance and training time of KNN, DT, and RF clas-
sifiers are reasonable for all attack classes. These algorithms
succeeded in recognizing most of the attacks, but they have
low scores in the U2R attack. In contrast, the NB classifier
consumes less time in the learning and prediction stage com-
pared to other classification algorithms, but its performance
is significantly low for three attacks type, including Brute-
Forcing, web attack and U2R classes. However, NB improved
the results on botnet attack type compared to other algo-
rithms. Another interesting finding is that the good results
on the merged dataset might obfuscate poor performance on
the less prevalent attack classes, as the majority of samples
are for DoS/DDoS and probe attacks. Further, the training
time is proportional to the data records, i.e. the training
time is increased during the increase in the size of records.
We can notice that the rbf-SVM had the most considerable
training time for DoS/DDoS and probe, followed byMLP and
Adaboost classifiers.

2) SDN SPECIFIC VERSION OF THE DATASET
Table 12 shows the performance of various models using
SDN specific-featured version of the dataset. We can see
that the Adaboost retains high-performance scores and sta-
bility for all attack classes, followed by DT and RF classi-
fiers. However, the obtained scores on the U2R attack types
are relativity small for DT and RF classifiers. In addition,
Recall and F1-Score for KNN algorithm are relativity low
for KNN on web attack and U2R attacks. We can find
that the NB consistently had good scores on all metrics for
DDoS and port attack classes, while its performance highly
declined on botnet, web attack, and U2R classes. Further-
more, we noted a substantial declined in the performance
of SVM on the botnet, password brute-forcing, web attack,
and U2R attack classes. Where, the linear and RBF based
SVM fail to identify any flow records for the botnet, web,
and U2R attacks. While its recall and F1-Score metrics are
very poor on password brute-forcing attack class. Although
the stability of SVM (linear and RBF kernel) performance
on DoS, DDoS, and probe attacks, its training time is effec-
tively high, compared to the fully-version features of dataset.
Furthermore, the recall score is decreased for MLP algo-
rithm on password brute-forcing, botnet, and web attack
types, while recall and F1-score are almost closed to zero
for U2R class.

3) STATE OF THE ART RESULT COMPARISON
In this experiment, InSDN dataset is compared with four
publicly available datasets (i.e, KDD’99, NSL-KDD, Kyoto
and CICIDS 2017) by using sixmachine learning approaches,
namely KNN, NB, Adaboost, DT, RF and rbf-SVM.
As shown in Figure 7, it is clearly noticed that AB and
RF classifiers performed well compared to other algorithms.
In addition, DT, AB, and RF classifier performance remain
the same over various datasets. However, KNN, NB, and

FIGURE 7. Performance of classification algorithms in term of global
detection rate. We estimate our dataset accuracy compared with other
publicly available datasets based on the proposed work in [84].

SVM-rbf performance fluctuate across various datasets. This
implies the power of DT, AB, and RF to detect the new
attacks.

VIII. CONCLUSION
This paper investigated the challenging problem related to the
dataset availability in the SDN environment. We proposed a
new SDN dataset: InSDN, to solve some of the inherent prob-
lems in legacy datasets. We considered different attack sce-
narios that represent the real-world scenarios, and discussed
the impact of the generated attacks on the different SDN
elements. We can observe that the SDN can also be afflicted
with the popular network attacks. However, the SDN network
is more sensitive to malicious traffic than the conventional
environments. In the conventional network, any attacks can
only affect the portion of the network almost for the same
vendor without bringing down the entire network. However,
in the SDN environment, the compromised switches or end-
users can flood the SDN controller, causing damage for the
whole network.

In the near future, we will extend this work and create a
more intrinsic dataset generated from large-scale networks.
Moreover, we will consider new attack categories for the best
representative of existing real-world networks.

APPENDIX
DATA COLLECTION FEATURES
See Table 13.

REFERENCES
[1] H. Z. Jahromi and D. T. Delaney, ‘‘An application awareness framework

based on SDN and machine learning: Defining the roadmap and chal-
lenges,’’ inProc. 10th Int. Conf. Commun. Softw. Netw. (ICCSN), Jul. 2018,
pp. 411–416.

[2] Statista.com. Software-Defined Networking (SDN) Market Size World-
wide From 2013 to 2021. Accessed: Feb. 3, 2020. [Online]. Available:
https://www.statista.com/statistics/468636/global-sdn-market-size

[3] A. Prakash and R. Priyadarshini, ‘‘An intelligent software defined network
controller for preventing distributed denial of service attack,’’ in Proc.
2nd Int. Conf. Inventive Commun. Comput. Technol. (ICICCT), Apr. 2018,
pp. 585–589.

[4] D. Li, C. Yu, Q. Zhou, and J. Yu, ‘‘Using SVM to detect DDoS attack
in SDN network,’’ IOP Conf. Ser. Mater. Sci. Eng., vol. 466, Dec. 2018,
Art. no. 012003.

VOLUME 8, 2020 165281

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

[5] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, ‘‘A DDoS attack detection
method based on SVM in software defined network,’’ Secur. Commun.
Netw., vol. 2018, pp. 1–8, 2018.

[6] M.Myint Oo, S. Kamolphiwong, T. Kamolphiwong, and S. Vasupongayya,
‘‘Advanced support vector machine-(ASVM-) based detection for dis-
tributed denial of service (DDoS) attack on software defined net-
working (SDN),’’ J. Comput. Netw. Commun., vol. 2019, Mar. 2019,
Art. no. 8012568.

[7] T. Hurley, J. E. Perdomo, and A. Perez-Pons, ‘‘HMM-based intrusion
detection system for software defined networking,’’ in Proc. 15th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2016, pp. 617–621.

[8] A. Santos Da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-
Filho, ‘‘ATLANTIC: A framework for anomaly traffic detection, classifi-
cation, and mitigation in SDN,’’ in Proc. IEEE/IFIP Netw. Oper. Manage.
Symp. (NOMS), Apr. 2016, pp. 27–35.

[9] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole, ‘‘Benchmark-
ing datasets for anomaly-based network intrusion detection: KDD CUP
99 alternatives,’’ in Proc. IEEE 3rd Int. Conf. Comput., Commun. Secur.
(ICCCS), Oct. 2018, pp. 1–8.

[10] L. Bontemps, V. Cao, J. McDermott, and N.-A. Le-Khac, ‘‘Collective
anomaly detection based on long short-term memory recurrent neural
networks,’’ inFuture Data and Security Engineering FDSE (Lecture Notes
in Computer Science), vol. 10018, T. Dang, R. Wagner, J. Küng, N. Thoai,
M. Takizawa, and E. Neuhold, Eds. Cham, Switzerland: Springer, 2016.

[11] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Jul. 2009, pp. 1–6.

[12] J. McHugh, ‘‘Testing intrusion detection systems: A critique of the 1998
and 1999 Darpa intrusion detection system evaluations as performed
by Lincoln laboratory,’’ ACM Trans. Inf. Syst. Secur., vol. 3, no. 4,
pp. 262–294, 2000.

[13] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
‘‘Deep learning approach for network intrusion detection in software
defined networking,’’ in Proc. Int. Conf. Wireless Netw. Mobile Commun.
(WINCOM), Oct. 2016, pp. 258–263.

[14] T. A. Tang, L. Mhamdi, D. McLernon, and M. Zaidi, ‘‘Deep recurrent
neural network for intrusion detection in sdn-based networks,’’ in Proc. 4th
IEEE Conf. Netw. Softwarization Workshops (NetSoft), 2018, pp. 202–206.

[15] J. Song, H. Takakura, and Y. Okabe. (2006). Description of Kyoto
University Benchmark Data. Accessed: Mar. 15, 2016. [Online]. Avail-
able: http://www.takakura.com/Kyoto_data/BenchmarkData-Description-
v5.pdf

[16] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie, ‘‘Generating realistic
intrusion detection system dataset based on fuzzy qualitative modeling,’’
J. Netw. Comput. Appl., vol. 87, pp. 185–192, Jun. 2017.

[17] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion
detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012.

[18] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. ICISSP, 2018, pp. 108–116.

[19] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, ‘‘Towards the
development of realistic botnet dataset in the Internet of Things for network
forensic analytics: Bot-IoT dataset,’’FutureGener. Comput. Syst., vol. 100,
pp. 779–796, Nov. 2019.

[20] R. Panigrahi and S. Borah, ‘‘A detailed analysis of CICIDS2017 dataset
for designing intrusion detection systems,’’ Int. J. Eng. Technol., vol. 7,
no. 3.24, pp. 479–482, 2018.

[21] Canadian Institute of Cybersecurity. (2018). CSE-CIC-IDS2018.
Accessed: Feb. 10, 2020. [Online]. Available: https://www.unb.ca/
cic/datasets/ids2018.html

[22] J. Wang and I. C. Paschalidis, ‘‘Botnet detection based on anomaly and
community detection,’’ IEEE Trans. Control Netw. Syst., vol. 4, no. 2,
pp. 392–404, Jun. 2017.

[23] C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang, ‘‘An enhancing framework
for Botnet detection using generative adversarial networks,’’ in Proc. Int.
Conf. Artif. Intell. Big Data (ICAIBD), May 2018, pp. 228–234.

[24] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, ‘‘Toward
developing a systematic approach to generate benchmarkAndroidmalware
datasets and classification,’’ in Proc. Int. Carnahan Conf. Secur. Technol.
(ICCST), Oct. 2018, pp. 1–7.

[25] S. García, M. Grill, J. Stiborek, and A. Zunino, ‘‘An empirical compari-
son of botnet detection methods,’’ Comput. Secur., vol. 45, pp. 100–123,
Sep. 2014.

[26] M. Ring, D. Landes, and A. Hotho, ‘‘Detection of slow port scans
in flow-based network traffic,’’ PLoS ONE, vol. 13, no. 9, Sep. 2018,
Art. no. e0204507.

[27] M.Ring, S.Wunderlich, D. Scheuring, D. Landes, andA.Hotho, ‘‘A survey
of network-based intrusion detection data sets,’’ Comput. Secur., vol. 86,
pp. 147–167, Sep. 2019.

[28] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson,
and X. Bellekens, ‘‘A taxonomy of network threats and the effect of
current datasets on intrusion detection systems,’’ 2018, arXiv:1806.03517.
[Online]. Available: http://arxiv.org/abs/1806.03517

[29] M. Conti, A. Gangwal, and M. S. Gaur, ‘‘A comprehensive and effective
mechanism for DDoS detection in SDN,’’ in Proc. IEEE 13th Int. Conf.
Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2017, pp. 1–8.

[30] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno, ‘‘Machine
learning algorithms to detect DDoS attacks in SDN,’’ Concurrency Com-
put. Pract. Exper., vol. 32, no. 16, p. e5402, Aug. 2020.

[31] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, ‘‘A survey on
large-scale software defined networking (SDN) testbeds: Approaches and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 891–917,
2nd Quart., 2017.

[32] R. Braga, E. Mota, and A. Passito, ‘‘Lightweight DDoS flooding attack
detection using NOX/OpenFlow,’’ in Proc. IEEE Local Comput. Netw.
Conf., Oct. 2010, pp. 408–415.

[33] P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, and H. S. Mamede,
‘‘Machine learning in software defined networks: Data collection and traf-
fic classification,’’ in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP),
Nov. 2016, pp. 1–5.

[34] G. A. Ajaeiya, N. Adalian, I. H. Elhajj, A. Kayssi, and A. Chehab, ‘‘Flow-
based intrusion detection system for SDN,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jul. 2017, pp. 787–793.

[35] H. Polat, O. Polat, and A. Cetin, ‘‘Detecting DDoS attacks in software-
defined networks through feature selection methods and machine learning
models,’’ Sustainability, vol. 12, no. 3, p. 1035, Feb. 2020.

[36] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, ‘‘Software-
defined networking (SDN): A survey,’’ Secur. Commun. Netw., vol. 9,
no. 18, pp. 5803–5833, Dec. 2016.

[37] A. Dawoud, S. Shahristani, and C. Raun, ‘‘Software-defined network
security: Breaks and obstacles,’’ in Networks of the Future: Architectures,
Technologies, and Implementations. Boca Raton, FL, USA: CRC Press,
2017, pp. 89–100.

[38] D. Kreutz, F. M. Ramos, and P. Verissimo, ‘‘Towards secure and depend-
able software-defined networks,’’ in Proc. 2nd ACM SIGCOMMWorkshop
Hot Topics Softw. Defined Netw., 2013, pp. 55–60.

[39] H. Cheng, J. Liu, J. Mao, M. Wang, J. Chen, and J. Bian, ‘‘A compatible
openflow platform for enabling security enhancement in SDN,’’ Secur.
Commun. Netw., vol. 2018, Nov. 2018, Art. no. 8392080.

[40] J. Benabbou, K. Elbaamrani, and N. Idboufker, ‘‘Security in OpenFlow-
based SDN, opportunities and challenges,’’ Photonic Netw. Commun.,
vol. 37, no. 1, pp. 1–23, Feb. 2019.

[41] V.Moorthy, R. Venkataraman, and T. R. Rao, ‘‘Security and privacy attacks
during data communication in software defined mobile clouds,’’ Comput.
Commun., vol. 153, pp. 515–526, Mar. 2020.

[42] S. Lee, J. Kim, S. Woo, C. Yoon, S. Scott-Hayward, V. Yegneswaran,
P. Porras, and S. Shin, ‘‘A comprehensive security assessment frame-
work for software-defined networks,’’ Comput. Secur., vol. 91, Apr. 2020,
Art. no. 101720.

[43] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, ‘‘Security in SDN:
A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 159, Jun. 2020,
Art. no. 102595.

[44] M. P. Singh and A. Bhandari, ‘‘New-flow based DDoS attacks in SDN:
Taxonomy, rationales, and research challenges,’’ Comput. Commun.,
vol. 154, pp. 509–527, Mar. 2020.

[45] M. Liyanage, A. Braeken, A. D. Jurcut, M. Ylianttila, and A. Gurtov,
‘‘Secure communication channel architecture for software defined mobile
networks,’’ Comput. Netw., vol. 114, pp. 32–50, Feb. 2017.

[46] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, ‘‘Developing
realistic distributed denial of service (DDoS) attack dataset and taxon-
omy,’’ in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST), Oct. 2019,
pp. 1–8.

[47] E. Vasilomanolakis, C. G. Cordero, N. Milanov, and M. Mühlhäuser,
‘‘Towards the creation of synthetic, yet realistic, intrusion detection
datasets,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS),
Apr. 2016, pp. 1209–1214.

165282 VOLUME 8, 2020

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

[48] G. Creech and J. Hu, ‘‘Generation of a new IDS test dataset: Time to
retire the KDD collection,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2013, pp. 4487–4492.

[49] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, W. Snow, and G. Parulkar, ‘‘ONOS: Towards an open,
distributed SDN os,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined
Netw., 2014, pp. 1–6.

[50] B. Lantz, B. Heller, and N. McKeown, ‘‘A network in a laptop: Rapid
prototyping for software-defined networks,’’ in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw., 2010, pp. 1–6.

[51] Mininet—An Instant Virtual Network on Your Laptop (or Other PC).
Accessed: Jan. 24, 2020. [Online]. Available: http://mininet.org/

[52] K. K. Karmakar, V. Varadharajan, and U. Tupakula, ‘‘Mitigating attacks
in software defined networks,’’ Cluster Comput., vol. 22, no. 4,
pp. 1143–1157, Dec. 2019.

[53] S. T. Zargar, J. Joshi, and D. Tipper, ‘‘A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,’’ IEEE Com-
mun. Surveys Tuts., vol. 15, no. 4, pp. 2046–2069, 4th Quart., 2013.

[54] Symantec. (2018). Internet Security Threat Report. [Online]. Available:
https://symantec-enterprise-blogs.security.com/

[55] N. Sharma and S. Mukherjee, ‘‘A novel multi-classifier layered approach
to improve minority attack detection in IDS,’’ Procedia Technol., vol. 6,
pp. 913–921, Jan. 2012.

[56] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, ‘‘Sphinx: Detecting
security attacks in software-defined networks,’’ in Proc. NDSS, vol. 15,
2015, pp. 8–11.

[57] S. Hong, L. Xu, H. Wang, and G. Gu, ‘‘Poisoning network visibility in
software-defined networks: New attacks and countermeasures,’’ in Proc.
NDSS, vol. 15, 2015, pp. 8–11.

[58] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, ‘‘Flow wars: Systemizing the attack surface and defenses
in software-defined networks,’’ IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514–3530, Dec. 2017.

[59] M. Brooks and B. Yang, ‘‘Aman-in-the-middle attack against opendaylight
SDN controller,’’ in Proc. 4th Annu. ACM Conf. Res. Inf. Technol., 2015,
pp. 45–49.

[60] Y. Tseng, F. Naït-Abdesselam, and A. Khokhar, ‘‘A comprehensive
3-dimensional security analysis of a controller in software-defined net-
working,’’ Secur. Privacy, vol. 1, no. 2, p. e21, Mar. 2018.

[61] Z. Li, W. Xing, S. Khamaiseh, and D. Xu, ‘‘Detecting saturation attacks
based on self-similarity of OpenFlow traffic,’’ IEEE Trans. Netw. Service
Manage., vol. 17, no. 1, pp. 607–621, Mar. 2020.

[62] F. Khellah, ‘‘Control plane packet-in arrival rate analysis for denial-of-
service saturation attacks detection and mitigation in software-defined
networks,’’ Arabian J. for Sci. Eng., vol. 44, no. 11, pp. 9349–9362,
Nov. 2019.

[63] R. U. Rasool, U. Ashraf, K. Ahmed, H. Wang, W. Rafique, and
Z. Anwar, ‘‘Cyberpulse: A machine learning based link flooding attack
mitigation system for software defined networks,’’ IEEE Access, vol. 7,
pp. 34885–34899, 2019.

[64] X. Ma, J. Li, Y. Tang, B. An, and X. Guan, ‘‘Protecting Internet infrastruc-
ture against link flooding attacks: A techno-economic perspective,’’ Inf.
Sci., vol. 479, pp. 486–502, Apr. 2019.

[65] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
‘‘Characterization of encrypted and VPN traffic using time-related,’’ in
Proc. 2nd Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), 2016, pp. 407–414.

[66] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
‘‘Characterization of tor traffic using time based features,’’ in Proc.
ICISSP, 2017, pp. 253–262.

[67] (Aug. 2020). INSDN Dataset. [Online]. Available: http://iotseclab.ucd.
ie/datasets/SDN/ and http://aseados.ucd.ie/datasets/SDN/

[68] R. Khondoker, A. Zaalouk, R.Marx, andK. Bayarou, ‘‘Feature-based com-
parison and selection of software defined networking (SDN) controllers,’’
in Proc. World Congr. Comput. Appl. Inf. Syst. (WCCAIS), Jan. 2014,
pp. 1–7.

[69] K. Phemius, M. Bouet, and J. Leguay, ‘‘DISCO: Distributed multi-domain
SDN controllers,’’ in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS),
May 2014, pp. 1–4.

[70] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, ‘‘Toward adaptive
and scalable openflow-sdn flow control: A survey,’’ IEEE Access, vol. 7,
pp. 107346–107379, 2019.

[71] C. Mera and J. W. Branch, ‘‘A survey on class imbalance learning on
automatic visual inspection,’’ IEEE Latin Amer. Trans., vol. 12, no. 4,
pp. 657–667, Jul. 2014.

[72] S. Wang and X. Yao, ‘‘Multiclass imbalance problems: Analysis and
potential solutions,’’ IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42,
no. 4, pp. 1119–1130, Aug. 2012.

[73] R. Longadge and S. Dongre, ‘‘Class imbalance problem in data
mining review,’’ 2013, arXiv:1305.1707. [Online]. Available:
http://arxiv.org/abs/1305.1707

[74] S. M. Abd Elrahman and A. Abraham, ‘‘A review of class imbalance
problem,’’ J. Netw. Innov. Comput., vol. 1, no. 2013, pp. 332–340, 2013.

[75] P. Krishnan, S. Duttagupta, and K. Achuthan, ‘‘VARMAN: Multi-plane
security framework for software defined networks,’’ Comput. Commun.,
vol. 148, pp. 215–239, Dec. 2019.

[76] N. Frosst and G. Hinton, ‘‘Distilling a neural network into a
soft decision tree,’’ 2017, arXiv:1711.09784. [Online]. Available:
http://arxiv.org/abs/1711.09784

[77] M. Belgiu and L. Drăguţ, ‘‘Random forest in remote sensing: A review of
applications and future directions,’’ ISPRS J. Photogramm. Remote Sens.,
vol. 114, pp. 24–31, Apr. 2016.

[78] A. J.Wyner, M. Olson, J. Bleich, and D.Mease, ‘‘Explaining the success of
adaboost and random forests as interpolating classifiers,’’ J. Mach. Learn.
Res., vol. 18, no. 1, pp. 1558–1590, 2017.

[79] S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, ‘‘Efficient kNN classifi-
cation with different numbers of nearest neighbors,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 5, pp. 1774–1785, May 2018.

[80] S.-C. Chu, T.-K. Dao, J.-S. Pan, and T.-T. Nguyen, ‘‘Identifying correctness
data scheme for aggregating data in cluster heads of wireless sensor net-
work based on naive bayes classification,’’ EURASIP J. Wireless Commun.
Netw., vol. 2020, no. 1, pp. 1–15, Dec. 2020.

[81] S. M. H. Bamakan, H. Wang, T. Yingjie, and Y. Shi, ‘‘An effective
intrusion detection framework based on MCLP/SVM optimized by time-
varying chaos particle swarm optimization,’’ Neurocomputing, vol. 199,
pp. 90–102, Jul. 2016.

[82] G. Karatas, O. Demir, and O. K. Sahingoz, ‘‘Increasing the performance
of machine learning-based idss on an imbalanced and up-to-date dataset,’’
IEEE Access, vol. 8, pp. 32150–32162, 2020.

[83] X. Z. Gao, S. J. Ovaska, X.Wang, andM.-Y. Chow, ‘‘Multi-level optimiza-
tion of negative selection algorithm detectors with application in motor
fault detection,’’ Intell. Autom. Soft Comput., vol. 16, no. 3, pp. 353–375,
Jan. 2010.

[84] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat,
and S. Venkatraman, ‘‘Deep learning approach for intelligent intrusion
detection system,’’ IEEE Access, vol. 7, pp. 41525–41550, 2019.

MAHMOUD SAID ELSAYED received the B.E.
degree in electronics and communication engi-
neering from Zagazig University, Egypt, in 2007,
and the M.E. degree in information security from
Nile University, Egypt, in 2018. He is currently
pursuing the Ph.D. degree with the School of Com-
puter Science, University College Dublin (UCD),
Dublin, Ireland. He has worked for several years
in the industry through Huawei and IBM Com-
pany in area of computer network and security.

His research interests include computer networks, network security, deep
learning, and cloud computing.

VOLUME 8, 2020 165283

M. Said Elsayed et al.: InSDN: A Novel SDN Intrusion Dataset

NHIEN-AN LE-KHAC (Member, IEEE) received
the Ph.D. degree in computer science from
the Institut National Polytechnique de Grenoble
(INPG), France, in 2006. He was a Research
Fellow with Citibank, Ireland (Citi). He is cur-
rently a Lecturer with the School of Computer
Science (CS), University College Dublin (UCD),
Ireland. He is also the Programme Director of the
UCDM.Sc. Programme in forensic computing and
cybercrime investigation and an International Pro-

gramme for the law enforcement officers specialising in cybercrime investi-
gations. To date, more than 1000 students from 60 countries in five continents
have graduated from this FCCI Programme. He is also the Co-Founder of the
UCD-GNECB Postgraduate Certificate in fraud and e-crime investigation.
Since 2013, he has collaborated on many research projects as a principal/co-
PI/funded investigator. He has published more than 150 scientific papers in
peer-reviewed journal and conferences in related research fields. His research
interests include cybersecurity and digital forensics, machine learning for
security, fraud and criminal detection, cloud security and privacy, and high-
performance computing. He is an active chair as well as a Reviewer for many
key conferences and journals in related disciplines.

ANCA D. JURCUT received the Bachelor ofMath-
ematics and Computer Science degree from the
West University of Timisoara, Romania, in 2007,
and the Ph.D. degree from the University of Limer-
ick, Ireland, in 2013. From 2008 to 2013, she was a
Research Assistant with the Data Communication
Security Laboratory, University of Limerick. From
2013 to 2015, she was working as a Postdoctoral
Researcher with the Department of Electronic and
Computer Engineering, University of Limerick.

She was a Software Engineer with IBM, Ireland. Since 2015, she has been an
Assistant Professor with the School of Computer Science, University College
Dublin (UCD), Ireland. She is currently an Assistant Professor with the
School of Computer Science, UCD. Her research interests include network
and data security, security for the Internet of Things (IoT), security protocols,
formal verification techniques, and applications of blockchain technologies
in cybersecurity.

165284 VOLUME 8, 2020

