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ABSTRACT Rapid development of single cell RNA sequencing (scRNA-seq) technology has accelerated the
exploration in biomedical researches. One of the focal interests in sScRNA-seq data analysis is to classify cells
into different types, which significantly assists in studying inter-cellular heterogeneity, such as cell types, cell
states, and cell lineages, at the resolution of single cells. Although a number of tailored approaches have been
developed for scRNA-seq data, their performance varies with different datasets and their clustering accuracy
need to be improved. In this paper, we propose a novel ensemble clustering framework for scRNA-seq data
called GRACE (GRAph-based Cluster Ensemble approach). First, we construct a highly reliable graph
network for single cells by combining the clustering outcomes from five leading scRNA-seq data clustering
methods. Then, we remeasure the relationships between cells by exploring the topology structure of network
using random walk distance. Finally, we build a hierarchical cell-tree and obtain the clustering labels by
cutting the tree structure into an appropriate number of sub-trees. Experimental results on twelve benchmark
datasets show that GRACE has the higher clustering accuracy and is more robust among a variety of datasets
than the state-of-the-art individual approaches. In addition, the graph structure of the network which is
built upon the ensemble clusters is more reliable than the networks which are constructed according to the
conventional similarity metrics.

INDEX TERMS Single cell RNA-seq data, ensemble cluster, random walk distance, graph theory, hierar-

chical clustering.

I. INTRODUCTION

As the basic structural and functional unit of organisms,
single cells store the important genetic information [1]. In the
process of cell proliferation and differentiation, a number of
factors, such as cell state [2], micro-environment of cells [3],
and the regulation of internal procedures of cells, lead to the
heterogeneity of cells [4]. Previously, the technology of large
population sequencing often analyzes tens of thousands cells
altogether, where the expression value of gene is the average
score of all the cells. It thus usually highlights the cell types
with large populations and belies the rare cell types such as
stem cells and cancer cells [5], [6]. Fortunately, the single
cell RNA sequencing (scRNA-seq) technology can overcome
this issue and promote the study of cellular heterogeneity [6],
[7]. Clustering analysis, which can group cells according
to gene expression patterns, is essential in order to mining
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the underlying information of scRNA-seq data. Related stud-
ies on clustering analysis have been applied to many focal
research interests, such as discovering cell types [8], [9],
reconstructing cell development tracks, fate decisions [10],
[11], and establishing spatial models of complex tissues [12].

Clustering analysis has always been a focal research
interest in data mining and machine learning [13]. Up to
now, the traditional classic clustering algorithms, such as
k-means [14], DBSCAN (Density-Based Spatial Clustering
of Application with Noise) [15], CLIQUE (Clustering In
QUEst) algorithm [16], spectral clustering [17] and hier-
archical clustering [18] are still wildly used. At the same
time, clustering algorithms are advancing to pursue higher
clustering accuracy and efficiency. Following the idea that
clusters are the high density regions in the feature space
separated by low density regions, a density-based method has
been proposed, which bases on fast searching and finding
density peaks [19]. To handle high-dimensional realistic data,
some advanced subspace clustering algorithms are proposed
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from novel perspectives, such as eliminating the effect of the
errors from the linear projection space [20], combing with
deep neural networks architectures [21], [22]. In addition,
many ensemble clustering approaches have been developed
to achieve better clustering results and greater robustness. For
example, Huang et al. have developed a serials of ensem-
ble clustering algorithms by factor graph [23], probability
trajectories [24], locally weighting base clusterings [25],
exploring cluster-wise similarities via random walks [26] and
integrating ultra-scalable spectral clustering [27]. In the area
of scRNA-seq clustering analysis, many tailored methods
have been developed to overcome the challenges posed by
the inherent nature of scRNA-seq data, such as zero infla-
tion (dropouts) [28], over-dispersion [29] and amplification
bias [30], and we will briefly review some of the major
approaches.

Kiselev et al. proposed a consensus clustering method
named single-cell consensus clustering (SC3), which adopts
three measurements to calculate the similarity between cells
and two ways for feature reduction. By applying k-means
clustering algorithm on each branching data, they construct a
consistent matrix of cells and then use hierarchical clustering
to obtain the final clustering results [31]. Hierarchical clus-
tering is also applied by SINCERA [32], Clustering through
Imputation and Dimensionality Reduction (CIDR) [33], and
cellTree [34]. The main difference of these approach is the
method to measure the similarity between samples, where
SINCERA uses Pearson correlation coefficient, cellTree
employs Chi-Square distance, and CIDR applies the square
of the Euclidean distance. In addition, CIDR improves the
clustering efficiency by an implicit imputation approach to
alleviate the impact of dropouts in scRNA-seq data. Sun et al.
proposed a probability model based method DIMM-SC,
which assumes that the data is generated by k polynomial dis-
tribution whose parameters follow the Dirichlet prior distri-
bution, and solves the parameters with maximum likelihood
estimation [35]. Some researches apply bi-clustering methods
to scRNA-seq data. BackSPIN splits the similarity matrix of
samples and assigns genes to each sub-matrix iteratively in
order to cluster cells and genes simultaneously [36]. There
are some clustering algorithms specially developed to detect
rare cell types, such as giniClust and RacelD, which can
group the datasets with uneven population distributions [37],
[38]. Recently, some deep learning methods have been pro-
posed with the emergence of big data. Lopez et al. pro-
posed a method named scVI for processing scRNA-seq data
which applies the deep generation model like Variational
Auto-Encoder to implement the low-dimensional represen-
tation of data and then clusters low-dimensional data using
k-means [39].

In addition to the methods mentioned above, another
import type of clustering methods is graph theory-based
approaches. The purpose is to segment the graph network,
trying to make the edge weights (similarities) within the
sub-graphs as high as possible while the edge weights con-
necting different sub-graphs as low as possible. For example,
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clusters can be formed by splitting the smallest spanning tree
found on the network or using minimum-cut algorithm to
finding pre-defined sub-graphs [40], [41]. Chen et al. pro-
posed an approach called SNNCliq, which identifies clusters
by a quasi-clique-based clustering algorithm on a graph con-
structed based on shared nearest neighbor (SNN) [42]. Seurat
is a graph modularity optimization-based clustering method.
It constructs a graph network of cells with SNN similarity
and then optimizes the modularity function to determine clus-
ters [12]. Wang et al. proposed the Single-cell Interpretation
via Multi-kernel LeaRning (SIMLR), which constructs the
graph of cells based on the similarity learned from multiple
kernels and uses spectral clustering algorithm on the graph
for clustering [43].

Previous methods mostly use conventional similarity
metrics (such as Euclidean distance, Pearson correlation coef-
ficient) or the second order similarity (such as SNN that
considers 1-hop neighbors) to measure the similarity of single
cells. The graph division approaches which rely on these
similarities to find dense sub-graphs loss the graph topol-
ogy properties since they don’t consider the higher-order
neighboring information, such as k-hop (k > 2) neighbors.
Besides, the methods are often optimized for the specific
dataset. Therefore, the outputs of those methods are unstable
among different sScRNA-seq datasets and it is hard for users
to select an appropriate methods to apply. At the same time,
the clustering accuracy also needs to be improved.

To address above problems, we propose a novel cluster
ensemble approach called GRACE, which is a graph theory
based clustering method. First, we construct a graph network
using the predicting results of multiple basic clustering meth-
ods. Then, we build a tree of cells based on random walk
distance on graph which can be considered as a higher order
similarity that takes the high-order topological information
into consideration. Finally, we obtain the clusters by cutting
the tree structure according to the average distance of intra-
clusters. Experimental results on twelve benchmark datasets
show that GRACE outperforms the state-of-the-art methods.

The rest of this paper is organized as follows: Section II
and III introduce the twelve real scRNA-seq datasets and
the clustering performance metrics. Section IV presents our
method in detail. Section V talks about the experimental
results. Section VI concludes this paper.

Il. BENCHMARK DATASETS

Twelve scRNA-seq datasets are collected from publicly
available platforms, such as ArrayExpress [44], Gene
Expression Omnibus (GEO) [45], and Sequence Read
Archive [46]. The brief information about these data are listed
in Table 1, in which the header of “#Cells”, “#Genes’ and
“#Cluster” indicate the number of cells (instances), genes
(features), and clusters, respectively. Datasets are named
by the accession numbers provided in the original publica-
tions. In addition, these datasets are collected from some
representative sequencing platforms, including SMART-
seq2 [47], [48], sci-RNA-seq [49], 10X Genomics [50], and
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TABLE 1. Overview of twelve scRNA-seq datasets.

Dataset #Cells #Genes #Clusters Sequencing protocols
E-MTAB-2600 [52] 704 30768 3 SMART-seq2
GSE65525 [51] 2717 24175 4 inDrop

GSE108097 [48] 2746 20670 16 Microwell-seq
GSE98561 [49] 4186 13488 10 sci-RNA-seq
SRP073767 [8] 4271 16653 8 10X

GSE60361 [36] 3005 19972 9 Quantitative scRNA-seq
GSM2230757 [53] 1937 20125 14 inDrop
GSM2230758 [53] 1724 20125 14 inDrop
GSM2230759 [53] 3605 20125 14 inDrop
GSM2230760 [53] 1303 20125 14 inDrop
GSM2230761 [53] 822 14878 13 inDrop
GSM2230762 [53] 1064 14878 13 inDrop

Droplet-based protocols [28], [S1]. All of these data have
‘gold-standard’ (deemed as true) cluster labels assigned to
each single cell, and the different clusters indicate the diverse
cell groups.

To investigate the influence of culture condition in cellular
self-renewal and pluripotency state, researchers sequence
mouse Embryonic stem cells (mESCs) accross three dif-
ferent conditions: serum, 2i, and the alternative ground
state a2i. E-MTAB-2600 is a dataset of mESCs, in which
the three clusters corresponds to the three different condi-
tions and there are 704 cells in total and 30768 genes are
sequenced in each cell. This data is available in ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-2600/).

GSE65525 is also a single cell data of mESCs which
contains 2717 cells. GSE65525 reveals the population struc-
ture and the heterogeneous onset of cell differentiation after
Leukemia Inhibitory Factor (LIF) withdrawal in mESCs.
We downloaded the read count matrices of mESCs sam-
ple 1, mouse ES cells LIF - 2 days, mouse ES cells
LIF - 4 days and mouse ES cells LIF - 7 days, and put all cells
together. Distinct clusters are sets of cells with different days
after LIF withdrawal. This data is downloaded from GEO
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE65525).

The SRP073767 dataset is provided by the 10X scRNA-seq
platform, which profiles the transcriptome of the periph-
eral blood mononuclear cells (PBMCs) from a healthy
donor. The total number of cells is 4217 classified
in 8 types. This data is downloaded from the website
of 10X genomics (https://support.10xgenomics.com/single-
cell-gene-expression/datasets/2.1.0/pbmc4k).

Since the brain function is relies on a diverse set of differ-
entiated cell types, including neurons, glia, and vasculature.
The authors of the GSE60361 data used large-scale scRNA-
seq to classify cells from mouse somatosensory cortex and
hippocampal CA1 region. The 9 clusters indicates distinct
cell types in mouse cortex. There are 3005 single cells in total
and 19972 genes are sequenced. This data can be downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi? acc=GSE60361).

The mouse bladder cells data is in the Mouse Cell
Atlas project GSE108097, which obtains sequenced data
by applying Microwell-seq, a high-throughput and low-cost
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scRNA-seq platform. The authors identify 16 cell types
in mouse bladder tissue, which are considered to be dif-
ferent clusters in our experiment. In this data, there are
4186 instances and 13488 features. This data is provided by
the authors (https://figshare.com/s/865¢694ad06d5857db4b).

GSE98561 is a dataset of the worm neuron cells dataset
which is profiled by sci-RNA-seq. The authors profiled
about 4000 neural cells from the nematode Caenorhab-
ditis elegans at the L2 larval stage and identified the
cell types. After removing the cells with the *“Unclas-
sified” labels, we thus obtained 10 cell types (that is,
the 10 clusters). This data is available in GEO database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) with the
accession number GSE98561.

The last six data sets in Table 1 are from a super-dataset
GSEB4133, in which four of them (i.e. GSM2230757,
GSM2230758, GSM2230759, GSM2230760) are single cell
data of human pancreatic islets and two (i.e. GSM2230761,
GSM?2230762) are mouse pancreatic islets. Clusters in these
datasets indicates different endocrine cell types, including
rare ghrelin-expressing epsilon-cells, exocrine cell types,
vascular cells, Schwann cells, quiescent and activated pan-
creatic stellate cells, and four types of immune cells.
These datasets could be downloaded from GEO datab-
base (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE84133).

IIl. PERFORMANCE EVALUATION METRICS

In our experimental results, Adjusted Rand Index (ARI) is
used to evaluate the clustering performance, which is widely
used when the sample labels of ground truth are given [54].
ARI calculates the agreement between the ground truth and
the predict clustering labels and the calculation can be defined
as

z@—k@z@}@

ij i J

ARl = ey

1 i bj i bj

zmeze]-[zoze)o
i J i J

where n;; is the value at the i”-row and the j”-column in

the contingency table, a; is the sum of the i-th row of the

contingency table, b; is the sum of the j-th column of the

contingency table, and (;) denotes a binomial coefficient.
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FIGURE 1. Overview of GRACE. The first step is grouping the scRNA-seq data using CIDR, SC3, t-SNE+k-means, Seurat,
and SIMLR. From the five clustering outcomes, we compute a consensus matrix representing the cell-to-cell relationships.
Then a graph is constructed where nodes represents the single cells and weights of edges indicating each pair cells’
similarity. Based on the random walk distance, we create a hierarchical tree of single cells. Finally, we implement

clustering by cutting the tree-structure into sub-trees.

We also evaluate the clustering performance according
to other intuitive metrics, Homogeneity score, Completeness
score and V-measure, that apply the conditional entropy anal-
ysis [55]. Given the ground truth class labels, Homogeneity
score calculates the levels of whether each predicted cluster
contains unique members of a single class of cells. The
Completeness score indicates whether all the members of a
given cell group are assigned to the same predicted cluster.
V-measure is a balance metric of the Homogeneity and Com-
pleteness scores with computing the harmonic mean of them.
Formally, the scores are defined as

H(CIK)

H(C)

H(K|C)

H(K)

-c
h+c
where C and KX is the set of ground-truth and the predicted cell
labels, respectively. H(C|K) indicates the conditional entropy
of the classes given the cluster assignments and H(C) means
the entropy of the classes. Specifically,

h=

(@)

v=2

IC] IK|
Ne k e k
H(CIK) ==Y == . log— 3)
e=1k=1 " "k
IC] n n
H(C) ==} — log— )
c=1

where 7 is the total number of cells. 7, and ny are the number
of cells which belong to the class ¢ and the cluster k. n. i is
the number of cells from class c assigned to cluster k.
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IV. METHODS

In this section, we show the whole picture of GRACE.
First, we give a general description of GRACE and the five
scRNA-seq clustering methods. Next, we describe the main
steps in cluster ensemble process in detail, including the com-
putation of the consensus matrix and random walk distance,
the construction of the graph network and the hierarchical
tree structure, and the estimation of the number of clusters.
Finally, we summarize GRACE to the pseudo-code for a
formal description.

A. OVERVIEW OF GRACE

Figure 1 shows the overview of our GRACE method.
Generally, GRACE is composed by five parts. First, we take a
scRNA-seq data gene expression matrix as input and use five
clustering methods, which are CIDR [32], SC3 [31], t-SNE+
k-means [37], Seurat [56], and SIMLR [43], to obtain five sets
of clustering solutions. Second, the five individual solutions
are combined into a n X n consensus matrix that represent-
ing the relationship between cells, where n represents the
number of single cells. Third, basing on consensus matrix,
a graph network is created where the nodes represent the
cells and the weights of edges are set as the similarity value
between pair of cells. Fourth, we measure the relationships
between cells based on the random walk on the graph. Each
node is assumed to be a cluster and the nodes are gradually
grouped into a hierarchical tree under a specific merging
criteria. Finally, we cut the hierarchical tree into the appropri-
ate number of sub-trees and calculate the optimal clustering
outcomes.
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B. FIVE STATE-OF-THE-ART scRNA-SEQ DATA CLUSTERING
METHODS

1) CIDR

The dropout event in scRNA-seq data is a big problem in
the computational analysis. Lin ef al. developed a clustering
algorithm called CIDR which can be regarded as a fast prin-
cipal coordinate analysis (PCoA)-like algorithm considering
dropout events [32]. Since previous researches [30], [57]
have shown that the possibility of a gene expression value
being loss is inversely correlated with the true expression
levels, CIDR reduces the dropout-induced zero inflation by
imputing the zero values of dropout candidate genes which
are collected from the zero peaks in the distribution of the
log-transformed expression profile. Then, CIDR performs the
dimension reduction approach, PCoA, on the imputed dissim-
ilarity matrix of cells. Finally, CIDR applies the hierarchical
clustering on the first few principal coordinates.

Besides, CIDR estimates the number of clusters £ based
on the Calinski-Harabasz index (CHI), also known as the
variance ratio criterion [58]. By calculating the ratio of the
sum of between-clusters dispersion and inter-cluster disper-
sion under different k, CIDR selects the most optimal k with
the highest CHI score which indicates that the clusters are
dense and well separated.

2) SC3

To achieve high accuracy and robust clustering solutions
for scRNA-seq data, Kiselev et al. proposed a consensus
clustering approach SC3 by combining multiple cluster-
ing results [31]. In the pre-processing step, SC3 filters out
less-informative genes in sScRNA-seq data expression profile.
SC3 adopts three metrics, the Euclidean distance, the Pear-
son correlation coefficient, and the Spearman correlation
coefficient, to calculate the similarity between each pair of
cells. After that, SC3 applies two dimensionality reduction
approaches, PCA and the Laplacian transform, on the three
similarity matrix with two methods. Then, SC3 uses k-means
on the data matrices to get different clustering results. Finally,
SC3 constructs a consensus matrix of cells which combines
the clustering outcomes and applies the hierarchical cluster-
ing on it for the final clustering labels. A hybrid SC3 approach
is designed for the large datasets which groups 30% of cells
using SC3, trains the support vector machine (SVM) with
the clustering labels, and finally assigns the labels to the
remaining cells.

To estimate the number of clusters, SC3 implements
a random matrix theory (RMT) based approach, where
the number of clusters is determined by the number of
eigenvalues that are significantly different from the
Tracy—Widom distribution [59], [60].

3) SIMLR

In scRNA-seq data clustering analysis, a key issue is selecting
the appropriate similarity metrics for the cell-to-cell rela-
tionships. Wang et al. proposed a framework called SIMLR
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which learns a distance metric by combining multiple kernels
to fit the structure of a specific sScRNA-seq data [43]. SIMLR
uses the Gaussian kernels with various hyper-parameters for
the kernel construction. Assuming that the learned similarity
matrix should have an approximate block-diagonal structure,
where the cells have larger similarities to other cells within
the same blocks, SIMLR applies an alternating convex opti-
mization method to solve the objective optimization function
which enforces the low rank constraint on the similarity
matrix. Other computational analysis tasks such as visualiza-
tion, dimension reduction, gene prioritization and clustering
are all conducted on the learned similarity matrix. In the clus-
tering task, SIMLR adopts the spectral clustering algorithm
on the similarity matrix [17].

The number of clusters in SIMLR is determined by a
heuristic approach based on the gap statistic [61].

4) SEURAT

Seurat is developed to identify and interpret the heterogeneity
of single cells and integrate the diverse types of single-cell
data [56], [62]. The approach identifies sub-populations of
cells through unsupervised graph-based clustering. It calcu-
lates the k-nearest neighbors for each cell and then construct
a shared nearest neighbor (SNN) graph in which the nodes
represent the cells and the weights of the edges are the
similarities between the cells. After that, it applies the smart
local moving (SLM) algorithm to detect community on the
SNN graph [63]. The SLM algorithm starts with a network in
which each node is assigned to its own singleton community.
It improves community structure by community merging and
individual node movements to construct the final solution.

5) T-SNE+k-MEANS

It has been shown that dimension reduction before clustering
is helpful for the improvement of scRNA-seq data clustering
accuracy [31], [32], [57]. The method of *“t-SNE+k-means”
has successfully been applied in the rare cell types identifi-
cation [37]. It reduces the high dimensional scRNA-seq data
into a lower dimensional subspace by t-SNE algorithm and
clusters the lower-dimensional data with k-means. In addi-
tion, the number of clusters are estimated by ADPclust which
calculates the local density of samples and search for the
cluster centers from estimated density peaks [64].

C. GRAPH-BASED CLUSTER ENSEMBLE METHOD

1) CONSENSUS MATRIX COMPUTATION

The consensus matrix is computed with the inferred cell
labels from the five individual scRNA-seq clustering methods
assuming that the more approaches divided two cells into the
same cluster, the more similar the two cells are. Formally,
we define the consensus matrix C as a n X n matrix, where
n indicates the number of cells and the element ¢;; in C is
equal to the number of the scRNA-seq method that classifies
cell i and j into the same cluster. In this case, the value of the
elements in the consensus matrix ranges from O to 5.
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2) GRAPH NETWORK CONSTRUCTION

Building a reasonable network for the single cells is a fun-
damental task since there is no actual network among them.
The connectivity between two nodes usually depends whether
the nodes are similar enough. Consequently, we construct
the network of the single cells according to the consensus
matrix C where the value reflects a high-level integrated
similarity between the cells since it is derived from multi-
ple high-performing clustering outcomes. The graph can be
defined as G = {V, E}, where V and E is the set of nodes
and edges, respectively. Here, G is an undirected weighted
graph and w;; is the weight of edge between sample i and j.
To build a highly reliable network, we impose a constraint
that w;; = ¢;j only if ¢;; >= 3, otherwise w;; = 0.

3) RANDOM WALK DISTANCE ON GRAPH

In general, if two nodes are directly connected or have many
common neighbors, the probability that they belong to the
same cluster is high [42], [56]. While from the perspective
of the random walk on graph, two nodes are more similar if
they have similar walking paths on the network. Therefore,
we measure the relationships between cells based on their
walking paths using random walk algorithm [65].

A typical random walk model on a regular graph is that,
at each step, the walker at current location jumps to another
site according to some probability distribution. In a simple
random walk approach, the walker can only jump to adjacent
positions of the graph to form a walking path [66]. From
the graph constructed above, we compute a transition matrix
M, in which the element m;; = %, Deg(i) = Zjn’zl wij
and n; is the number of neighborhoods connecting with
node i.

If a walker goes from the i cell in scRNA-seq data graph,
the initial probability P? will be an n x 1 vector where only
the i value is 1 and the others are 0. For each step of the
walker walking on the graph, the probability vector is updated
following P'*! = MTP', where P}; is the probability of
which the walker goes from cell i to cell j in ¢ steps. Previous
studies have shown that if the length of steps ¢ tends towards
infinity in the random walk process, the probability of being
on a vertex j only depends on the degree of vertex j and is
irrelevant to the starting vertex i. Therefore, it is important
to choose an appropriate length of steps. If ¢ is too small,
the data is insufficient to depict the topology of graph. On the
other hand, if ¢ is too large, the system will result in a
stationary distribution. In our experiments, we set t = 4 that
is empirically advised in the previous study [65].

The random walk distance between cell i and cell j can be
calculated as

&)

where 7 is the number of cells and Pi, is the probability of a
walker going from cell i to cell k in ¢ steps.
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4) HIERARCHICAL TREE-STRUCTURE OF SINGLE CELLS
Next, we construct a tree-structure of cells. As shown in equa-
tion (6), the distance between a single cell k and a cluster C is
defined as the average random walk distance from each node
of C to node k, and |C| is the number of nodes in cluster C.
Equation (7) calculates the distance between clusters C; and
C;, which means the difference of the random walk distance
about nodes in these two clusters.

1
de = — Y Py (6)
|(j|ieC

2": (dre; — dicy)?

Deg(k) @

dC,‘Cj =
k=1
Initially, we divide the cells into separate groups where
each group only has one cell and each cell is put in one group.
To form the tree-structure, the criteria is needed for selecting
two groups to be combined each time. Here, we adopt the
strategies from Ward’s method [67]. We define the growth of
the average intra-cluster distance before and after the union of
each two adjacency cluster C; and C; as equation (8), where
Cy = C;UC; and there is at least one edge between these two
groups.

1
Ao (Ci, C)) = . Z dl?Cu - Z dlgc,- - Z d;fc, ®)
keCy, keG; keG;

Then two clusters with the smallest value of Ao is selected
to be merged.

5) ESTIMATION THE NUMBER OF CLUSTERS

After the tree is constructed, we need to determine the number
of divisions, a.k.a., the number of clusters [15]. Here we
define the average intra-cluster distance of K groups as

K
ox = dk. ©)

k=1ieCy

where Cy is the k”* cluster. Then the growth rate nx can be
calculated as
K = K+ 7 9K (10)
OK — OK—1
and the optimal number of clusters K is that satisfies the
maximum value of ng.

D. PSEUDO-CODE OF GRACE

The pseudo-code of GRACE is shown in Algorithm (1).
Line 1-3 is the process to construct a weighted graph of single
cells. Line 4-11 is the process to build the tree-structure of
clusters. Line 12-14 finish the structure of cutting and return
the cluster labels.

V. RESULTS

A. DIFFERENCES AMONG THE CLUSTERING METHODS
Generally, clustering methods exhibit very different per-
formance across different datasets. The reason lays in the
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FIGURE 2. Peer-to-peer comparison on the similarity among the five scRNA-seq data clustering approaches on twelve scRNA-seq datasets.

The similarity is derived from ARI of the predicting results.

Algorithm 1 Framework of GRACE
Input: The expression profile of scRNA-seq data, D; The
number of samples(cells), N;
Output: The clustering labels of samples, L;
1: Cluster the scRNA-seq data D using the five clustering
methods;
2: Calculate the consensus matrix from the clustering out-
comes;
3: Construct the graph G of cells based on the consensus
matrix;
4: Calculate the random walk distance of cells with equa-
tion (5);
5: Initialize the partition PO = {vi,va, ...
6: while k < N do
: Calculate dC,-C,-,V Ci,C; € P* with equation (6)
and (7);
8: Select the two closest clusters to merge C3 = C{UC3
according to equation (8);
9: Update partition P*t! = {{PK\ {C], C2}} U C3};
10: k:=k+1;
11: end while
12: Evaluate the optimal number of clusters K with equa-
tion (9) and (10);
13: Get the cluster label, setting L to PN K
14: return L.

SN

fact that the method is usually optimized for some specific
datasets [68]. To demonstrate this, We compare the similar-
ity between the five state-of-the-art scRNA-seq data clus-
tering approaches by computing the ARI of their predicting
clustering results on twelve scRNA-seq datasets. As shown
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in Figure 2, the color from white to red indicates the ARI
values ranges from O to 1. One can observe that the predicting
outcomes of the five approaches are inconsistent (i.e. a lower
ARI) on most datasets. The reason is that different methods
capture different aspects of information from the complex and
high-dimensional scRNA-Seq data.

B. IMPROVING CLUSTERING ACCURACY FROM
INDIVIDUAL METHODS

In this section, we compare the ARI between GRACE and
the five individual methods on twelve published datasets.
The datasets are collected from different tissues by different
sequencing technologies where the numbers of cells and
numbers of cell types are totally different.

Table 2 shows the ARI of our method comparing
with the five individual clustering methods on the twelve
datasets. Among the twelve scRNA-seq datasets, GRACE
produces the best results in ten datasets (GSM2230757,
GSM2230758, GSM2230759, GSM2230760, GSM2230761,
SRP073767, GSE60361, GSE98561, GSE108097 and
E-MTAB-2600), and the second best in the other two datasets
(GSM2230762 and GSE65525). We also calculate the aver-
age ARI of each method on all the datasets, which are listed
in the last line of the table. The results show that GRACE
outperforms all other methods.

Furthermore, we make a statistical rank of these methods
across twelve datasets according to ARI. A higher ARI value
corresponds a larger rank, and a larger rank represents a
better clustering performance. As shown in Figure 3, our
approach GRACE achieves the highest rank and performs
significantly better than other five individual methods. One
can observe that the individual clustering methods have an
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TABLE 2. Similarity between predicted outcomes and gold-standard cluster labels is measured through ARI.

Dataset CIDR SC3 Seurat SIMLR t-SNE+k-means | GRACE
E-MTAB-2600 0.41 0.44 0.40 0.52 0.44 0.53
GSE65525 0.63 0.48 0.50 0.64 0.86 0.84
GSE108097 0.22 0.57 0.57 0.49 0.37 0.57
GSE98561 0.09 0.16 0.40 0.18 0.43 0.48
SRP073767 0.07 0.48 0.54 0.65 0.57 0.76
GSE60361 0.49 0.32 0.43 0.51 0.82 0.86
GSM2230757 0.08 0.34 0.49 0.57 0.52 0.60
GSM2230758 0.03 0.39 0.58 0.83 0.64 0.86
GSM2230759 0.78 0.34 0.57 0.86 0.83 0.97
GSM2230760 0.56 0.32 0.62 0.89 0.74 0.93
GSM2230761 0.03 0.42 0.66 0.45 0.59 0.75
GSM2230762 0.23 0.26 0.54 0.43 0.37 0.50
Average ARI 0.3 0.38 0.52 0.59 0.60 0.72
61 — g
° . o °
B9 GRACE
o 4 o o EI Seurat
c Eel t-SNE+k-means
4 . 1 F SIMLR
F SC3
24 l . CIDR
GRACE Seurat  t-SNE+k-means  SIMLR SC3 CIDR

FIGURE 3. Performance rank of GRACE and the five individual clustering methods. Methods are ranked according to
ARI on the twelve datasets. A higher rank indicates a better performance (6 is the best and 1 is the worst). The

horizontal line inside each box represents the median.

unstable performance on different datasets, while our method
is highly robust.

We also adopt other three metrics in clustering perfor-
mance comparison. Figure 4 shows the Completeness scores,
Homogeneity scores and V-measure of different approaches
on twelve scRNA-seq datasets. Overall, GRACE performs
the best in the Completeness score and V-measure. For
the Homogeneity score, although SC3 is generally better
than GRACE, the performance of SC3 is less stable. Com-
pared with “t-SNE-+k-means”, other three methods (Seurat,
SIMLR, and SC3) tend to obtain higher Homogeneity scores
but lower Completeness scores. Among these methods, CIDR
performs the worst for all the three metrics and is unstable
dealing with different datasets.

In conclusion, individual clustering approaches exhibit the
unstable performance in different datasets. GRACE improves
the clustering accuracy and is more robust.

C. ADVANTAGES OF HIGH QUALITY GRAPH NETWORK

The reason why the ensemble cluster algorithm GRACE
can improve the clustering accuracy is closely related to the
way of the network construction. In order to verify that the
network constructed by GRACE has higher reliability and
is more conducive to cluster structure mining, we compared
GRACE with other five conventional network construction
approaches using similarly metrics. To be equitable, we only

VOLUME 8, 2020

replace the network construction methods while keep other
steps to cluster the scRNA-seq data in GRACE.

Here we list the five conventional methods to built network
in our experiment.

1) Euclidean Distance (ED);

2) Manhattan Distance (MD);

3) Pearson Correlation Coefficient (PCC);

4) Spearman Correlation Coefficient (SCC);

5) Shared Nearest neighbors (SNN).

ED and MD are common distance metrics where a smaller
distance between two cells indicates a greater similarity
between them. The corresponding similarity can be set as
1—normalizeddistance, where the normalized distance nor-
malizes ED and MD into [0,1]. Literally, PCC and SCC
demonstrate the similarity between cells. PCC is defined as
the co-variance of two samples divided by the standard devia-
tion of the two. The formula for calculating the SCC is similar
to the calculation of the PCC, but the rank is substituted for
the respective values.

Different from above four primary similarity indexes, SNN
is called the ‘“‘second-order similarity””, which measures the
similarity of the samples according to the number neighbors.
Previous study show that SNN is more stable and robust
for high-dimensional sparse data than the traditional distance
metrics which generally results in a small value between
samples [69]. In our experiments, we use the SNN similarity
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FIGURE 4. The Completeness score, Homogeneity score and V-measure of different approaches on twelve scRNA-seq datasets.

mentioned in [42] and corresponding similarity between cell
i and j is defined as equation (11),

S g min (Ranki(SN) + Rankj(SN))’ an
2
where k is the number of nearest neighbors of node, SN is the
intersection of the k-nearest neighbors (kNN) of sample i and
sample j, Rank;(SNN) is the rank of each node of SN in kNN
for sample i, and min() is a function computing the minimum
value of a vector. For example, there are 3 neighbors are
shared by sample i and j, and the rank of them in ANN is
(1,2,4) and (1,3,4) respectively. Then wg.NN gets its max value
k—1 because the top ranking of SN is 1 for both sample i and j.
Figure 5 shows the clustering performance of graph-based
methods with different network construction methods. One
can observe that GRACE, which uses ensemble cluster results
in building network, reaches the highest clustering accuracy
on 10 scRNA-seq datasets. It performs much better than all
the other methods on GSE60361, GSE98561, and GSE65525.
For instance, our GRACE algorithm has a clustering accuracy
of 0.86 on the data set GSE60361, while the highest ARI of
several other methods is 0.35. Similarly, ARI of the GRACE
algorithm reaches 0.84 on the dataset GSE65525, while ARI
in several other methods range from 0.18 to 0.50. On aver-
age, GRACE obtains the highest ARI (0.72), followed by
PCC(0.50) and ED (0.13) performs the worst.
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In conclusion, the ensemble clustering based graph con-
struction method is confirmed to have high quality outputs
and provide more reliable graph information for us to detect
communities.

D. RUNNING TIME OF GRACE

In this section, we test the the efficiency of GRACE. Since
GRACE is an ensemble algorithm, its running time is always
greater than that of each single algorithm it integrates. How-
ever, the overhead of GRACE is small. We list the run-
ning time of the five single clustering algorithms and the
integration step in GRACE (overhead). To be fair, we use
spaltter [70] to generate five simulated single cell datasets,
where the number of features of each simulated data is
set as 5000, while the sample size increased from 1000 to
5000 across the step size 1000. In simulating data, the param-
eters used by spaltter are estimated from one real dataset
GSE60361.

The experiments are conducted on a desktop computer with
3.2GHz Intel Core i7 CPU, 16 GB 2400MHz DDR4 RAM,
and Windows 10 operating system. Table 3 presents the
time consumption of GRACE’s ensemble step and other
five individual methods. With the increase of sample size,
the time consumption of SIMLR increases rapidly, followed
by SC3, while the other 3 methods present shorter running
time. Comparing to the clustering run-time, the overhead of
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FIGURE 5. Performance comparison of GRACE with five network construction methods on twelve datasets.
TABLE 3. Time consumption (/seconds) of different methods with sample size increasing from 1000 to 5000.
#Cells CIDR SC3 Seurat SIMLR t-SNE+k-means | GRACE overhead
1000 4.17 65.89 6.02 46.7 16.69 0.83
2000 19.26 372.39 9.71 178.53 71.42 3.03
3000 59.61 346.87 14.95 494.4 156.21 7.69
4000 139.42 730.47 21.52 1191.58 291.81 32.6
5000 274.65 1294.04 34.42 2382.1 461.85 65.79

GRACE is small and acceptable. Even for the largest data
with 5000 samples, the overhead is around 5%.

VI. CONCLUSION AND DISCUSSION

In the past decades, there has been increasing interests in
scRNA-seq data analysis, where the growing clustering meth-
ods have helped to solve many research problems. However,
experimental results show that the existing methods are not
robust across multiple datasets and even perform poorly on
some complex datasets [68]. Since the scRNA-seq data from
different platforms or laboratories are always unlabeled and
have limited additional information, it’s difficult to determine
which clustering approach is more appropriate. To address
this problem, we propose a novel clustering framework
GRACE, a graph-based cluster ensemble approach. By inte-
grating the outcomes of five high-performing clustering
methods for network construction, GRACE is able to build
a more reliable graph network than using other conventional
similarity metrics. What’s more, the comparative analysis
on twelve datasets shows that GRACE is highly robust and
exhibits a competitive performance.

In our future work, we would like to apply GRACE to some
specific disease related studies, such as disease-related cell
types and biological pathway identification. Besides, we will
also apply the graph constructed in GRACE to scRNA-seq
data visualization. Moreover, the idea of ensemble clustering

VOLUME 8, 2020

is not limited to clustering scRNA-seq data and may be useful
to a wide range of clustering applications.
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