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ABSTRACT Multispectral images are increasingly used for pedestrian detection. Preliminary fusion
strategies would fail to exploit informative features from cross-spectral images, or worse, may introduce
additional interference. In this paper, we propose an attention based multi-layer fusion network in the
triple-stream deep convolutional neural network architecture for multispectral pedestrian detection. The
effectiveness of multi-layer fusion is examined and verified in this work. Furthermore, a channel-wise
attention module (CAM) and a spatial-wise attention module (SAM) are developed and incorporated into
the network aiming at more subtle adjustment to weights of multispectral features along both the channel
and spatial dimensions respectively. Channel-wise attention is trained with self-supervision while spatial-
wise attention is trained with external supervision as we remodel its learning process as saliency detection.
Both attention-based weighting mechanisms are evaluated separately and then sequentially. Experimental
results on the KAIST dataset show that the proposed multi-layer cross-spectral fusion R-CNN (CS-RCNN),
with spatial-wise weighting applied alone, achieves state-of-the-art performance on all-day detection while

outperforming compared methods at nighttime.

INDEX TERMS Convolutional neural networks, pedestrian detection, image fusion, deep learning.

I. INTRODUCTION

Detecting pedestrians in real-time with high accuracy
is crucial to various cutting-edge applications including
autonomous driving [10], [46]. Motivated by the emergence
of deep learning over recent years, major advances have
been made in pedestrian detection with computer vision-
based techniques. Cross-spectral fusion of visible light and
infrared thermal images has become a research focus [15],
[21], [27], [40], [46] for all-day pedestrian detection since
multi-modal information is intuitively considered to be
complementary [14].

The main challenge of multispectral fusion is the design
of the fusion strategy whereby two modalities of images
could be effectively and dynamically fused to achieve accu-
rate and robust detection of pedestrians at all times. Most
proposals of fusion schemes act upon features instead of
raw inputs to merge more expressive information [15], [47].
However, feature fusion is often either implemented at a
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fixed (or sometimes arbitrary) layer of the network without
exploiting abundant features at other layers, or applied at
multiple layers but with preliminary weighting mechanisms,
which may introduce mutual interference rather than cross-
spectral complementation. Recent research efforts propose
more dynamic weighting mechanisms to fine-tune weights
of each spectrum adaptively according to ambient conditions,
such as illumination [17], [29].

Inspired by remarkable work done in attention mecha-
nisms [19], [50] in convolutional neural networks (CNNs),
we argue that the goal of fusing multispectral features is
similar to what attention is designed for: to preserve useful or
important features while suppressing interfering or undesired
features. Therefore, attention based weighting mechanisms,
which take into account far more complex and subtle factors
than single or some decoupled evident characteristics such
as illumination or temperature of the scene, would be more
effective in enhancing feature expressiveness.

For multispectral pedestrian detection, we propose a triple-
stream and multi-layer fusion network based on deep CNN in
this study (Fig. 1). Both thermal and visible streams share the
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FIGURE 1. Overview of our framework. The & denotes pixel-wise addition. SAM and CAM are used to compute spatial-wise and channel-wise weights
respectively. To reduce parameters, two feature extraction streams share the same parameters for CAMs and SAMs.

same backbone feature extraction network and each takes a
spectrum of images as inputs. A fusion stream is introduced to
fuse multiple layers of cross-spectral features. Furthermore,
a channel-wise attention module (CAM) and a spatial-wise
attention module (SAM), which generate attention values
as weights to be applied at the channel and the pixel level
respectively, are developed and incorporated into the detector.
We apply one SAM for each stream of feature extraction,
whose layers each are associated with a CAM. The CAM is
trained in a self-supervised manner while the SAM is trained
with external supervision, based on saliency detection.

We start the exploration of the optimal multi-layer fusion
structure with single-layer fusions, and examine the effec-
tiveness of multi-layer fusion by gradually increasing the
number of fused layers. On the basis of the multi-layer
fusion structure, we study the efficacy of two attention based
weighting mechanisms by applying them separately and then
sequentially.

All proposals are evaluated and validated on the KAIST
benchmark [21]. The results show that the multi-layer fused
network, when integrated with the SAM, is a state-of-the-
art detector on all-day pedestrian detection and surpasses
performance at nighttime.

Contributions of our work are as follows:

1. We have developed a novel multi-layer fusion net-
work for multispectral pedestrian detection and validated the
effectiveness of multi-layer fusion for learning cross-spectral
features.
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2. Both spatial and channel attention are innovatively intro-
duced as weighting mechanisms for multispectral fusion and
their significance in improving detection performance is vali-
dated. In addition, to obtain finer spatial attention, we model
the process of learning spatial attention as saliency detection
with external supervision.

3. Spatial-wise weighting is proved to be more effective,
with which the multi-layer fused network is demonstrated
to be a top-performance end-to-end pedestrian detector as
compared to available competitors.

Il. RELATED WORK

The release of large-scale multispectral benchmark datasets
(e.g., KAIST [21], UTokyo [45], and CVC-14 [16]) and
pioneer proposals of CNN-based models have prompted the
research community to invest more into the field of mul-
tispectral pedestrian detection [8], [9], [24]. Faster R-CNN
[42], which introduced a region proposal network (RPN) that
shares full-image convolutional features with the detection
network to generate region proposals, has become the de
facto basis of most exsiting multispectral pedestrian detectors
[26], [29], [32], [42]. Liu et al. [32] introduced a model
based on Faster R-CNN [42] and compared four network
architectures that fuse visible light and infrared thermal fea-
tures from different stages. Li e al. [29] considered using a
gate function which is designed based on illumination con-
ditions to weight visible and infrared features before fusion.
Konig et al. [26] utilized boosted decision trees to reselect
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the region proposals which are generated by RPN networks.
Chen et al. [5] designed a multi-layer fused region proposal
network, in which a summation fusion method was applied
for integration of two convolutional layers. Guan et al. [17]
presented a novel illumination-aware weighting mechanism
which is incorporated into a two-stream deep convolutional
neural network to learn multispectral human-related features
under different illumination conditions. Park et al. [41] con-
sidered all detection probabilities from each modality in a
unified three-branch CNN framework and selectively used
them through a channel weighting fusion layer to maxi-
mize the detection performance. An accumulated probability
fusion layer was also introduced to combine probabilities
from different modalities at the proposal-level. Taking the
position shift problem of multispectral data into considera-
tion, Zhang et al. [54] proposed a region feature alignment
module to capture position shifts and a confidence-aware
fusion method to merge both modalities.

Although the fused network has yet to be explored for
multispectral pedestrian detection, they are extensively stud-
ied in other fundamental vision tasks, including semantic
segmentation [7], [37], action recognition [13], [23], [43], 3D
object classification/detection [18], [44] and so on. Simonyan
and Zisserman [43] proposed to recognize actions with a
dual-stream CNN to process optical flow and visible images
respectively. Karpathy et al. [23] explored a few methods to
fuse frames at different speeds for classifying videos. For
better semantic segmentation, Cheng et al. [7] designed a
gated fusion layer for weighted fusion based on the varying
contribution of color and depth information in detecting vari-
ous categories of objects in different scenes. Liu et al. [34]
proposed a gated multi-layer convolutional feature extrac-
tion method which could adaptively generate discriminative
features for candidate pedestrian regions. Additionally, many
researchers have also explored the use of multi-layer infor-
mation for better detection and segmentation. HyperNet [25]
and ParseNet [35] concatenate features from multiple layers
and then make the final predictions. FPN [31] explores the
top-down architecture to produce feature maps with high-
level semantics at all scales. DenseNet [20] connects features
at each layer to those at every other layer in a feed-forward
fashion, so that the output feature comprises information at
mutiple levels.

Attention is introduced over recent years to improve
CNNs’ performance. Spatial-wise attention, which investi-
gates the spatial correlations is applied in vision-based stud-
ies including digits recognition [22], object recognition [1],
image caption [51], object detection [2], and pose estima-
tion [39], etc. As for channel-wise attention, Hu er al. [19]
proposed the squeeze-and-excitation network to model the
interdependence between feature channels to generate chan-
nel attention, Zhang et al. [55] explored different types of
attention mechanisms at the channel level. Bello et al. [3]
proposed to augment convolutional operators with the self-
attention mechanism by concatenating convolutional feature
maps with a set of feature maps produced via self-attention.
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In other studies [48], [50], attention along both dimensions
are implemented at the same time, though with the spatial
attention trained with self-supervision. In this paper, we pro-
pose to learn channel-wise attention with self-supervision
and remodel the process of learning spatial-wise attention as
saliency detection with external supervision.

Ill. OUR APPROACH

A. OVERVIEW OF OUR FRAMEWORK

We propose a multi-layer fused triple-stream CNN for multi-
spectral pedestrian detection. Based upon Faster R-CNN that
so far performs the best in pedestrian detection, we create two
streams of feature extraction with ResNet50, one for each
spectrum of images, and build a weighted fusion stream to
fuse cross-spectral features at multiple layers.

Similar to [31], we say that the layers producing feature
maps of the same size are at the same network stage. As is
shown in Fig. 1, channel-wise attention modules are imple-
mented at each stage to compute weights for each feature
channel at that stage, and spatial-wise attention modules are
implemented to generate a saliency map as spatial weights
shared by all stages of a feature extraction stream. To facilitate
implementation, we make all attention modules detachable so
that ablation studies could be carried out.

Lastly, the fusion stream fuses multispectral features and
feeds them into the RPN network to generate region propos-
als, and has the same subsequent steps as those in the original
Faster R-CNN.

Since all attention modules are integrated into the network
and are trained end-to-end, the loss function of the proposed
pedestrian detector is designed to include the loss of training
spatial attention, and is defined as below:

Lo =nx Lspatial + Lrpn_clx + Lrpn_ reg + Leis + Lreg (1

where: Lypqiqi is the cross-entropy loss for the computation
of spatial weights; n indicates whether spatial-wise weighting
is applied. n = 1 means true, n = 0 false; Lyp,_cis and L
denotes the cross-entropy loss for classification in the RPN
and the main classification network;; L,p;_ree and L. denotes
the L1 loss for bounding box regression.

B. MULTI-LAYER FUSION

The fact that multiple layers of features extracted with deep
CNNs embody richer semantics [30], [31] motivates us to
propose a multi-layer fusion structure with the aim to merge
cross-layer expressive features. Since both feature extraction
streams share the same backbone network, they can be ini-
tialized with the same parameters. Both addition and con-
catenation are widely used as the basic operations for fusion.
An in-depth analysis on these two operations can be found
in [6]. Here, for simplicity, we adopt the pixel-wise addition
instead of concatenation to fuse multi-modal features.

As authors pointed out in research [36], adjacent high-level
composition(AHLC) (Fig. 2 (b)) tends to enrich the extracted
features, while same layer composition(SLC) (Fig. 2 (a)),
is non-beneficial since all streams share the same source
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FIGURE 2. Illustrations of 4 variants of multi-layer fusion structures, with the one in (d) being our proposal. ‘CC’ (Composite Connection [36]) in
(b) represents preparatory operations before feature fusion; ‘Attention Modules' in (d) represents either SAMs or CAMs, of which more details are

presented in Section I11-C.

of inputs and the same network settings, and thus simi-
lar features are produced by each stream, of which little
improvement is obtainable via feature composition. However,
we argue that in the case of multispectral fusion, composing
features at the same layer is effective in enhancing feature
expressiveness since each modality of inputs represents an
entirely different set of physical information perceived.

Moreover, it’s important to notice that neither same layer
composition nor adjacent high-level composition should
occurr within any feature extraction backbone network when
designing the multi-layer fusion scheme. Removing the
aforementioned compositions prevents one stream from con-
tinuously inserting its extracted features into another stream,
thus intensifying the features at each level of fusion to a
point where they become dominant in the output of fused
features. Therefore, we build a standalone fusion stream by
modifying the backbone network used in feature extraction
so that features of each modality play their roles according to
weights assigned specifically to them (Fig. 2 (c)).

C. ATTENTION BASED WEIGHTING MECHANISMS
We incorporate two attention based weighting mechanisms
into the fusion process (Fig. 2 (d)) so that the network learns
to emphasize meaningful features while suppressing interfer-
ence at both the channel and the spatial level.

At the channel level, each feature channel is assigned an
overall weight. The channel-wise weighting mechanism is
described as in the following formula:

FC=2Sx TC 428 x VE 2)

where: F¢ denotes the fused feature from the corresponding
channel c in the feature map from each spectrum; A € (0, 1)
is the overall weight for all the pixels in a channel; T, V
represent the thermal and the visible light feature respectively.

The spatial-wise weighting mechanism that applies at the
pixel level is expressed mathematically with the following
formula:

Fw,h = va’h X Ty pn + Q:,,h X Vin 3)
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where: F denotes the fused feature; (w, &) denotes the pixel
position in the feature map; 6§ € (0, 1) is the weight of the
pixels at the same pixel position in all channels.

1) CHANNEL-WISE ATTENTION BASED WEIGHTING

As stated in previous studies, each feature channel could be
considered as a feature detector [52], and the focus of channel
attention is ‘what’ is necessary to learn in the input image.
Therefore, we use the channel attention map as the channel-
wise weights for feature fusion, and assign attention values
as weights to feature map channels. As a result, useful or
meaningful channels are preserved while interfering channels
are suppressed before fusion.

We revise the SE [19] module to produce channel attention
maps. To compute channel attention more efficiently, global
average pooling (GAP) and global max pooling (GMP) are
often adopted to squeeze the spatial dimension of the fea-
ture maps [19], [50], [56]. However, we argue that nei-
ther GAP nor GMP are ideal in our case where multiple
small-scale targets are presented in background information-
dominant scenes. By comparison, the feature descriptor will
be overwhelmed by background features and become less
informative if GAP is applied while a lack of an overall
representation of all significant objects would be inevitable
if GMP is applied. Additional considerations for the favoring
of the most significant target in a scene and the possibility for
generating defective maximum values with GMP have been
considered.

Instead, we introduce a novel approach of global pool-
ing, called global attention average pooling, to attend to all
the significant regions that reflect the characteristics of all
targets of interest. With a threshold of significancy deter-
mined, we define the boundaries between significant and non-
significant regions based on the value of each pixel. The
feature descriptor D in a particular channel ¢ can be computed
with global attention average pooling using the following
formula:

DF = 3 (s % P) @
w,h
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where: (w, h) denotes the pixel position in the feature map; p
is the pixel value; u € {0, 1} is the significant label of a pixel,
which equals to 1 if its p value is greater than the threshold,
0 otherwise; m is the number of all the significant pixels in a
channel.

It should be noted that global attention average pooling
encompasses both GAP and GMP. When all pixel values are
greater than the threshold, they will be included to compute
the global descriptor. When all pixel values are below the
threshold, only the pixel with the maximum value will be
retained in the channel. See Appendix A-A for more details
about global attention average pooling.

The process of implementing the channel-wise weighted
fusion is presented in Fig. 3. After the spatial context
descriptor is generated with global average attention pooling,
a shared multi-layer perceptron with a hidden layer where the
activation size is set to RE/"*1*1 is used to generate channel
attention. A reduction at the ratio r is adopted to reduce
the computational cost. Once completed, we normalize the
channel attention using a sigmoid function, and re-weight the
original features before fusion.

2) SPATIAL-WISE ATTENTION BASED WEIGHTING

We implement the learning process of spatial-wise attention
based on a salient object detection (SOD) network that gen-
erates saliency maps, which then serve as spatial attention
maps in our work. Unlike channel-wise attention, the focus
of spatial attention is ‘where’ in the input could provide more
informative features, and hence deserves more attention.

SOD, which is in an effort to highlight the conspicuous
objects in an image, has developed rapidly in recent years
[49]. PiCANet [33] is a pixel-level contextual attention net-
work that can selectively attend to local or global contexts
and produce informative contextual features for each pixel.
We incorporate PiICANets into CNNs hierarchically for joint
training to accomplish saliency detection.

To generate spatial-wise weights for re-weighting features
at different stages, we incorporate the PiCANets into the
ResNet50 backbone network. For all the feature activation
outputs of each stage’s last residual block, a 1*1 convolu-
tional layer is attached to perform a dimension reduction
at the ratio of 1/4 to lower the computational complexity.
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We have also tried other reduction ratios (i.e. none or 1/2)
and observed little improvement in detection performance
with higher computation overhead. Besides, since PICANet
requires fixed-size inputs, we utilize a bilinear interpolation
to scale the spatial resolution to meet the size requirements.
Due to space constraints, we do not show operations men-
tioned above in Fig. 4.

After these preparatory steps, a global PICANet is used
to merge the features originally from the last two stages in
the backbone, as shown in Fig. 4. Then another two local
PiCANets are used hierarchically to fuse the features at the
current stage and those from the previous stages. After that,
a 1*1 Conv layer with sigmoid activation is implemented for
generating the saliency map. Once again, a bilinear interpola-
tion followed by a 1*1 Conv and a Batch Normalization layer
is used to restore the saliency map to match the depth and
the size of the feature maps at different stages. The resized
and expanded attention maps are employed as spatial-wise
weights for different stages.

For more accurate saliency predictions, we adopt box-
level saliency annotations, as generated in [4], as external
supervision and compute the cross-entropy loss which will
be added to the total loss of the detector. It should be pointed
out that although PiCANets are adopted in our work, other
SOD networks are also worth trying. See Appendix A-B for
more implementation details.

IV. EXPERIMENTS

A. SETUPS

1) DATASET AND METRICS

We evaluate all the proposed works on the KAIST multispec-
tral pedestrian benchmark that contains a total of 50,172 well-
aligned visible-infrared image pairs captured in all-day traffic
scenes with 13,853 annotations of pedestrians. As suggested
in [29], we remove all instances labelled as ‘person?’ or ‘peo-
ple’, indicating that the class or the number of the instance is
ambiguous even to human annotators. There are 2,252 image
pairs in the testing dataset of KAIST, among which 797 pairs
were captured during nighttime. The improved annotations
provided in [32] is adopted for more accurate evaluations
since there are some problematic annotations in the original
testing dataset. As adopted in [12], we calculated the log miss
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rate averaged over the false positives per image (FPPI) range
of [1072, 10°] (MR) to measure the detection performance
under reasonable configuration.

2) IMPLEMENTATION DETAILS

The pretrained ResNet50 on ImageNet [11] is used to ini-
tialize the backbones. The Kaiming initialization is applied
to some model parameters that are not initialized with the
pretrained model. The first two convolutional layers of the
ResNet50 network are fixed and the rest are finetuned using
Stochastic Gradient Descent (SGD) with momentum of 0.9,
batch size of 3, learning rate of 0.075 which decreases at a
rate of 0.1 at every 6000 iterations. The training process is
terminated after 8000 iterations and early stopping is adopted.
We implement our code based on the implementation of the
maskrcenn-benchmark [38]. Other implementation details are
as those in the original work of Faster R-CNN [42].

B. RESULTS

1) MULTI-LAYER FUSION

We examine the effectiveness of multi-layer fusion by
increasing the number of fusion layers gradually. A series of
experiments are carried out, including the single-layer fusion
group labeled as: 1-fusion, 2-fusion, 3-fusion, the double-
layer fusion group labeled as: 1-fusion, 1-fusion*, 2-3-fusion,
2-3-fusion*, and the triple-layer fusion group labeled as:
1-2-3-fusion, 1-2-3-fusion*. A few examples of the network
structures designed for the experiment are illustrated in Fig. 5.
Here, experiments are labeled in such a way that the num-
ber indicates the index of the fusion stage, while multiple
numbers indicate that there are multiple layers of fusion, and
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the asterisk means that the proposed channel-wise weighting
mechanism is applied.

We also validate the assumption that having a stan-
dalone fusion branch is of great importance by com-
paring the SLC and AHLC structures, as illustrated in
Fig. 2 (a) and Fig. 2 (b) respectively, with our proposed
multi-layer fusion structure, as illustrated in Fig. 2 (c). Here,
both SLC and AHLC are implemented at all 3 layers.

Observations from the results given in Table 1 are
five-fold: First, it’s proved that the structure presented in
Fig. 2 (a) and Fig. 2 (b) are unsuitable for multi-layer fusion.
A standalone fusion branch is essential to prevent features
from either stream from becoming dominant as the depth
of fusion increases. Second, when single-layer fusion is
applied, 2-fusion achieves the lowest MR since the inter-
mediate features contain semantics while preserving fine
visual details. Third, as long as the fusion starts at the
same layer, a deeper fusion scheme seems to always con-
tribute to improving detection performance. For example,
1-2-fusion and 1-2-3-fusion outperform 1-fusion, and 2-3-
fusion outperforms 2-fusion. Fourth, the layer at which the
multi-layer fusion starts matters. It’s not surprising to see
that the triple-layer scheme: 1-2-3-fusion results in a higher
MR as compared to a double-layer design: 2-3-fusion, since
features extracted at the first layer, which contains a lot of
task irrelevant low-level features, would weigh in the fused
features. Fifth, consistent improvements in detection perfor-
mance are seen when the channel-wise weighting mechanism
is applied. It’s proved that attention along the channel dimen-
sion contributes to suppressing interfering features from both
spectrums.
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TABLE 1. Comparison of different fusion structures. Visible or thermal
means only visible or thermal images are used as inputs. SLC and AHLC
stands for ‘same layer composition’ and ‘adjacent high-layer composition”
respectively, (Visible base) means the composition occurs in the visible
stream, while (Thermal base) means it occurs in the thermal stream. The
numbers represent the layers of fusion, multiple numbers means
multi-layer fusion, and * indicates that channel-wise weighting is applied.

Fusion Type All-day Day Night
Visible 31.42 2349  48.68
Thermal 25.95 3290 10.65
SLC (Visible base) 18.25 20.65 13.26
SLC (Thermal base) 19.95 19.56  20.79

AHLC (Visible base) 19.03 2228 13.12
AHLC (Thermal base) 19.82 19.03  22.01

1-Fusion 22.30 20.77  24.93
2-Fusion 17.25 18.89  13.74
3-Fusion 18.01 19.23  15.22
1-2-Fusion 17.46 17.59  16.67
1-2-Fusion* 16.31 17.88 13.65
2-3-Fusion 15.20 16.47 12.66
2-3-Fusion* 14.66 16.50  11.57
1-2-3-Fusion 16.30 16.85 15.74
1-2-3-Fusion* 14.45 15.78 11.57

2) ATTENTION BASED WEIGHTING MECHANISMS
Table 2 shows our experimental results as well as the infer-
ence speed of multi-layer fusion with the same network
structure but incorporated with different weighting mecha-
nisms. For channel-wise weighted fusion, we implement the
CAM based on the original SE [19] module and replace
GAP with global attention average pooling with an empirical
significancy threshold of 0.1. At the same time, the reduction
ratio is fixed to 16.

The results prove that the proposed global attention
average pooling contributes to extracting more accurate
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TABLE 2. Effect of integrating different attention modules. ‘STD’ means
standard multi-layer fusion network. ‘SE' means channel-wise weighted
fusion, and the subscript denotes the type of global pooling method
applied, it's our proposed global attention average pooling if not
specified. ‘PiCA’ means spatial-wise weighted fusion, and the subscript
denotes the type of annotations, and it’s box-level if not specified.

Structure All-day Day  Night Speed(s)
STD 16.34 16.76  15.74 0.11
STD+SEavg 15.99 1578 16.88 0.11
STD+SEmax 15.88 16.96  12.61 0.11
STD+SEavg4-maz 14.66 16.50  11.57 0.12
STD+SE 14.45 1578 11.57 0.11
STD+PiCA el 11.22 11.60  8.95 0.22
STD+PiCA 11.43 11.86  8.82 0.22
STD+PiCA+SE 14.62 15.63 1249 0.24
STD+CBAM [50] 18.75 21.24  14.07 0.15
STD+AA [3] 15.20 1647  12.66 0.26

spatial information characteristics than the GAP or GMP.
We observe that the difference in detection performance when
using GAP or GMP alone is trivial. When GAP and GMP are
applied in parallel, the improvement in precision is insignif-
icant, while the computational complexity is doubled. With
the global attention average pooling applied alone, the best
performance is obtained at no extra computational cost.

The best detection performance is achieved with the
spatial-wise weighting mechanism applied alone. A decline
instead of an increase in performance is seen when channel-
wise attention modules are applied after spatial-wise attention
modules. The underlying causes are discussed later in the next
chapter. It’s worth mentioning that although incorporating
SAMs into the multi-layer fusion network leads to a reduction
by half'in detection speed, the performance gain is significant.
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FIGURE 6. Process of the spatial-wise weighted fusion. (a) presents the original input images (left) and the detection results (right), and
(b) presents the process of fusion at the initial stage in the left column, and that at the fourth stage in the right column. We only visualize

the first 64 channels of the feature maps due to space constraints.

We also evaluated our proposals against two widely
acknowledged attention mechanisms CBAM [50] and
AACONV [3]. The results show that: First, our pro-
posed channel-wise attention surpasses the performance
of both CBAM and AAConv when global attention aver-
age pooling is adopted. Second, the proposed spatial-wise
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attention outperforms CBAM and AAConv by a large
margin. It’s also worth noticing that as compared to
the standard network with no attention mechanism
applied, the one with CBAM shows some strength
in the nighttime, but performs much worse in the
daytime.
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TABLE 3. Comparisons with other multispectral detectors on the KAIST
dataset.

Methods All-day Day Night Speed(s)
ACF+T+THOG [21] 4724 4244 56.17 -
Halfway Fusion [32] 2575 24.88 26775 043
Fusion RPN [26] 20.67 19.55 22.12 -
Fusion RPN+BF [26] 1591 1649 1515 0.80
IAF-RCNN [29] 1573 1455 1826  0.21
IATDNN+IAMSS [17]| 14.95 14.67 15.72 0.25
CIAN [53] 1412 1477 11.13  0.07
MSDS-RCNN [28] 11.63 10.06 13.73  0.23
CS-RCNN(ours) 1143 11.86 8.82 0.22

In Fig. 6, we visualize the first and last stage of the spatial-
wise weighted fusion process to intuitively demonstrate the
effectiveness of the spatial-wise weighting mechanism.

Fig. 6 (a) presents the original input images (left side)
and the detection results (right side), Fig. 6 (b) presents
the process of fusion at the first stage (left side) and the
fourth stage (right side). In Fig. 6 (b), we have selected
the first 64 channels of each feature map, due to length
limitations. As shown in row (1) in Fig. 6 (b), the visible
light attention map only highlights 1 region that a pedestrian
presents, while the thermal attention map highlights 2 regions
with the right one being undetectable via the visible light
spectrum. It’s also clearly shown that the fused feature map at
row (4) highlights both the left and right pedestrian regions,
with non-salient regions suppressed.

3) PERFORMANCE COMPARISON AGAINST THE
STATE-OF-THE-ART DETECTORS

Our proposed spatial-wise weighted fusion method is com-
pared with other available competitors, as illustrated in
Table 3. For the sake of fairness, studies using pruned and
unpublished dataset are not included. With a MR of 11.43
for pedestrian detection at all-day, our proposal outperforms
most methods and is evenly matched with MSDS-RCNN
[28], by showing significant strength in the nighttime.

Here, CIAN [53] runs much faster as compared to all other
detectors including ours because the input size it adopts is
much smaller. It’s worth mentioning that the way that MSDS-
RCNN uses box-level segmentation as supervision during
the training phase is quite different from our method since
we remodel the process as saliency detection and use the
predicted saliency map as the spatial weights.

Additionally, we plot the MR against FPPI (using log-log
plots) of our work and selected competitors with varying
thresholds of detection confidence, as shown in Fig. 7.

V. DISCUSSION
In this section, we share more findings that are supportive to
our work.

A. ARE HIGH-QUALITY SALIENCY ANNOTATIONS
NECESSARY?

High-quality pixel-level annotations for SOD networks are
quite labor intensive and sometimes even impossible, espe-
cially for multispectral datasets. As discovered in our study,
high-quality pixel-level annotations aren’t necessary because
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FIGURE 7. Comparison of detection performances reported on the
improved KAIST multispectral pedestrian test dataset, in all-day (top),
daytime (middle), and nighttime scenes (bottom).

it’s the regional characteristics of pedestrians we wish to
preserve. Box-level annotations suffice.

As a comparison, we conducted experiments with pixel-
level saliency annotations as the supervision, which were
generated using deep SOD networks, in our case the R"3Net.
We used pixel-level annotations, provided by [14] for partial
KAIST training data, to train R"3Net independently, and then
used the trained R"3Net to predict saliency maps for the rest
of the training data to produce supervision for the PiCANets
embedded in our model.

As suggested by the results in Table 2, there is little
improvement in performance with pixel-level annotations at
a much higher cost of data preparation.
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(a)

(b)

R

(c)

FIGURE 8. lllustrations of box-level annotations and pixel-level annotations. (a) is the input image,
(b) shows box-level annotations. (c) shows pixel-level annotations.

TABLE 4. Experimental results from decreasing number of Rols.

Number of Rols | All-day Day Night
1000 1143 11.86 8.82
500 1143 11.86 8.82
300 11.55 12.03 9.01
200 11.76  12.14 9.06
100 12.61 14.03 10.01
50 12.83 1438 9.90
20 13.82 1539 9.90
10 16.34  18.23 11.80
5 20.95 2321 15.33

B. CAN WEIGHTING MECHANISM BASED ON
SPATIAL-WISE ATTENTION REALLY HELP TO SUPPRESS
INTERFERING FEATURES?

To verify the effectiveness of spatial-wise weighting mech-
anism in suppressing interfering features, we carried out a
set of experiments with pertinence and the results are pre-
sented in Table 4. With the number of Rols input to the
subsequent main classification network drops dramatically
from 1000 to 50, the performance of detection stays almost
unaffected, proving that the proposed spatial-wise weighting
mechanism effectively eliminates interfering features.

C. WHY IS SPATIAL-WISE WEIGHTING SUPERIOR TO
CHANNEL-WISE WEIGHTING, AND ALSO THE
COMBINATION OF BOTH?
As stated earlier in this paper, each feature channel could be
considered as a feature detector. In the case of classification,
where targets are conspicuous, assigning a single attention
value to an entire channel is effective since the channel is
dominated with either useful or meaningless features.
However, in the case of pedestrian detection, where mul-
tiple instances of targets presented in a background infor-
mation dominant scene, it becomes a tricky task to decide
whether to emphasize or suppress a channel since it could
contain both useful and interfering features. We argue that the
inter-channel relationship would become so complicated that
a self-supervised attention generation module would easily
fail to learn fine attention values for each channel. To address
this issue to some extent, the global attention average pool-
ing method is proposed, so that more accurate channel-
wise attention is obtainable through attending to all salient
regions.
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As for spatial-wise attention, it doesn’t suffer from the
same problem since attention values are generated at the pixel
level. Moreover, we introduced external supervision to refine
the learning scheme in our work. Also, spatial-wise attention
is learned on the basis of merging semantics from all layers,
while channel-wise attention is learned by exploiting features
at each single layer.

As aresult, the improvement made by channel-wise atten-
tion is shadowed by gains achieved through spatial-wise
attention, and a set back in performance would be resulted
in when applying spatial-wise and channel-wise weighting
mechanisms sequentially.

VI. CONCLUSION

For multispectral pedestrian detection, we propose a triple-
stream multi-layer weighted fusion network by first exploring
the optimal structure of layers to fuse for preserving cross-
layer informative features. Experimental results suggest that
a deeper fusion structure is beneficial for improving the
detection performance as long as the layer to start is cho-
sen carefully. Channel attention and spatial attention based
weighting mechanisms are developed and incorporated into
the fused network for re-weighting multispectral features at
the channel and the pixel level before fusion. Both weighting
mechanisms contribute significantly to enhancing detection
performance, while the spatial-wise weighting proves to be
the most effective when applied alone. Experimental results
on KAIST show that our multi-layer fusion network incorpo-
rated with the spatial-wise weighting mechanism achieves the
state-of-the-art performance on all-day pedestrian detection
and outperforms at nighttime.

In future work, we will improve the method of global atten-
tion average pooling so that a dynamic significancy threshold
is learned and set for each layer. Also, more work will be done
to optimize the spatial-wise attention module to reduce the
computational overhead.

APPENDIX A

ADDITIONAL IMPLEMENTATION DETAILS

A. BACKPROPAGATION FOR GLOBAL ATTENTION
AVERAGE POOLING

Here, we show some more details of backpropagation for
the proposed global attention average pooling. Based on the
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FIGURE 9. Examples of the learned attention maps of the spatial-wise weighting mechanism. The 1 to 3 and 4 to 7 rows show daytime and
nighttime scenes respectively. The first and the third column show the visible and thermal input respectively, the second and the fourth
column show their saliency predictions respectively generated by the PiCANets embedded in the backbones. Note that the red and the
green bounding boxes (BBs) represent the BB prediction and BB ground truth, and the dark green boxes with thinner line represent the
ignored BB ground truth.
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gradient D®*1*1 input to global attention average pooling,
we use the following formula to compute the gradients in a
channel (labelled as c) of the previous layer:
C

o = gy X % ®)
where: (w, h) is the pixel position; u € {0, 1} is the significant
label of a pixel, 1 means above the significancy threshold,
0 otherwise; m is the number of significant pixels in a
channel.

As mentioned in the submitted manuscript, when the value
of all pixels is lower than the significancy threshold, we retain
the pixel with the maximum value in that channel. In this case,
m=1.

B. DETAILS IN LEARNING SPATIAL-WISE ATTENTION

In the training phase, we use the box-level annotations gen-
erated based on the ground truth bounding boxes (manu-
ally annotated) as the supervision of PiCANets, as shown
in the Fig. 8. According to [33], we set the weights of the
losses of all 4 stages in a feature extraction stream to 0.5,
0.5, 0.8, and 1, respectively. We then use the sum of the
weighted loss of each stage as the saliency loss of the very
stream.

We use box-level annotations to supervise the visible and
the thermal stream for saliency predictions. The tolerance on
the loss of saliency detection in each stream is different since
one spectrum of inputs is superior to another depending on
varying ambient conditions. With that taken into account, for
re-weighting the saliency losses which will be added to the
total loss, we introduce another two hyperparameters ¢, 8 and
empirically set (o, 8) to (1,0.5) in the daytime and (0.8, 1) in
the nighttime to obtain optimal performance.

Lypatial = o X Lgpatial_v + B x Lspatial_T (6)

where: Lgpasiai_v and Lgpasia_7 are the cross-entropy loss
computed in the visible and thermal streams respectively.

APPENDIX B

OTHER EXPERIMENTAL RESULTS

A. MORE EXAMPLES OF THE LEARNED ATTENTION MAPS
We present more examples of learned attention maps in Fig. 9
used for spatial-wise weighting. As shown in the figure, the
visible stream is trained to produce accurate saliency maps in
the daytime, while the thermal stream also performs fairly
well. However, at nighttime, the thermal stream generates
much more accurate saliency maps than the visible stream
does.

B. EXPERIMENTAL RESULTS WITH THE SANITIZED
ANNOTATIONS

We note that MSDS-RCNN [28] created a sanitized version of
KAIST training annotations and improved the detection per-
formance significantly. For a fair comparison, we use the san-
itized annotations provided by them to conduct experiments
with our spatial-wise weighted fusion detector. The detection

165082

performance of ours improves from 11.43% MR to 7.38%
MR (all-day: 7.38% MR, daytime: 8.22% MR, nighttime:
5.34% MR), which is comparable to that of MSDS-RCNN
(all-day: 7.49% MR, daytime: 8.09% MR, nighttime: 5.92%
MR).
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