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ABSTRACT The development of high-frequency, wide-bandwidth, high-power extended interaction oscil-
lators (EIOs) has always been the focus of researchers working on millimeter-wave and terahertz electronic
devices. However, these design objectives are affected by many structural and operating parameters, and
traditional manual optimization and local optimization are no longer suitable for solving these problems.
In this paper, based on a one-dimensional, nonlinear, self-consistent program of EIOs, a multiobjective
optimization method that employs the nondominated sorting genetic algorithm II (NSGA-II) is proposed
to simultaneously optimize device output power, bandwidth, and structure length. By using this approach,
the optimization process of a 95-GHz EIO is presented, and the corresponding Pareto solutions are obtained
after 500 generations with a population size of 50. The results show that the beam-wave interaction and the
coupling mechanism lead to synchronization of the structural parameters and the electrical parameters with
each other, and the coexistence of multiple objectives guides the zonal distribution of the optimal solutions.
That is, the oscillators with fewer gaps have shorter structure length and higher power, whereas those with
more gaps are prone to start oscillation and have wider bandwidth. Several sets of optimization results
obtained using the proposed method agree well with the results obtained in the CST-PIC solver, which proves
that the proposed algorithm is effective for optimizing EIOs because it considers multiple design goals and
can serve as a theoretical basis for engineering development.

INDEX TERMS Extended interaction oscillators, nonlinear self-consistent theory, nondominated sorting
genetic algorithm II, multiobjective optimization.

I. INTRODUCTION
An extended interaction oscillator (EIO) is a kind of vacuum
electronic device that combines the advantages of klystron
and traveling wave tube to offer high power, high efficiency,
and wide bandwidth [1], [2]. It has emerged as an important
high-power source device for use in the millimeter-wave to
terahertz band [3], [4] and has been widely used in satellite
communication, climate observation, deep space topology
imaging, and other radar systems [5]–[8].

As shown in Fig. 1 [6], the interaction structure of an
EIO is usually composed of a slow-wave structure that is
short-circuited at both ends. The beam-wave interaction may
occur in multiple gaps, which can increase the interaction
length and increase the effectiveness of the energy exchange
between electron beams and electromagnetic waves [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Hisao Ishibuchi .

FIGURE 1. Block diagram of EIO.

As the number of gaps increases, the enlarged internal sur-
face area can disperse the energy of the resonant cavity,
improve heat dissipation in the tube, reduce the possibility
of breakdown, and effectively enhance the power capacity
of the device in the millimeter/terahertz wavelength band.
However, there remain many limitations in this direction.
Theoretically, more gaps can lead to higher output power and
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conversion efficiency, but they may also cause electron over-
clustering, thus reducing output efficiency. By contrast, fewer
gaps may cause problems such as reduction in the quality
factor, lack of self-oscillation inside the resonator, and narrow
output bandwidth. Therefore, in the case of EIO devices,
a large number of structural and working parameters need to
be deigned and optimized.

Recently, many studies on the optimization of EIOs have
been conducted. Zhiwei Chang et al. introduced an extended
interaction klystron with a working voltage of 5 kV based
on the traditional power bandwidth factor M2(R/Q) [10].
Hooman Bahman Soltani et al. optimized a 12-gap EIO
from the viewpoint of output power and electronic tuning
bandwidth based on the ‘‘electron beam line’’ of beam–wave
interaction and the ‘‘load line’’ of coupling output power [11].
Shuyuan Chen et al. analyzed the influence of the cou-
pling loss and external quality factor on the output power of
extended interaction klystrons and designed a five-gap out-
put structure for extended interaction klystrons [12]. These
examples of traditional design and optimization can clearly
describe the influence of each parameter on output power
or starting state and can improve device performance to a
certain extent. However, the one-dimensional (1D) parameter
scanning method can only be used for local optimization, and
it is difficult to achieve global optimization of many structural
and working parameters.

Xuxun Ren et al. optimized the length and gap width
of the last three cycles of an oscillator by using a genetic
algorithm and realized a significant increase in the device
output power [13]. Based on deterministic samplingmethods,
Hien Tran et al. selected the position and frequency of the
cavity, which greatly influence the output characteristics,
as the input parameters, realized automatic design optimiza-
tion of klystrons, and significantly improved the optimization
efficiency [14]. From the many parameters of klystrons, they
selected a few key parameters to realize multi-dimensional
optimization of local parameters, so the initial values of
these parameters were crucial. Zaigao Chen et al. performed
high-power global optimization of a backward wave tube
Bragg reflector by adjusting its geometric structure parame-
ters and working parameters by using a parallel genetic algo-
rithm [15]. However, this optimization was limited to only
objective of output power or efficiency, without consideration
of the co-transition of multiple objectives.

Christopher James Lingwood et al. used a multiobjective
genetic algorithm to globally optimize a klystron, with a focus
on efficiency and tube length. The effectiveness of the algo-
rithm was verified by comparing the optimized parameters
with those of the B-factor klystron developed by Stanford
Linear Accelerator Center [16]. However, only two objec-
tives were optimized, whereas oscillators may have multiple
design objectives that constrain each other. This problem of
coexisting objectives has always been the focus of researchers
working on EIOs.

In this paper, a 1D simulation program that can be used
to calculate the output characteristics of EIOs is proposed.

Then, by using the proposed simulation program, an auto-
matic optimization routine is developed by using the non-
dominated sorting genetic algorithm II (NSGA-II) [17],
which has been proved to be an effective multiobjective
search technique in various applications [18]–[21]. This
method helps to enhance the performance of EIOs by con-
sidering multiple design objectives simultaneously. Finally,
the proposed technique is applied to a W-band EIO, and
the structural dimensions of the device and its operating
conditions are considered free parameters. The optimiza-
tion results and the corresponding parameters are evalu-
ated and compared with those obtained using the CST-PIC
solver [22].

II. METHODOLOGY
Genetic algorithms, which are global optimization algo-
rithms, adopt the random search method. In contrast to tra-
ditional algorithms, genetic algorithms do not depend on
gradient information. When the gradient method is applied to
a large-scale problem, the problem complexity in space and
time increases continuously. Genetic algorithms are widely
used for high-dimensional large-scale optimization and to
solve complex, multiobjective problems. The general steps
of a genetic algorithm are as follows [23]–[25].

1. Define the search space. Genetic algorithms use the
concept of ‘‘individual’’ to express the search space, which
means that the search space can be expressed as given
in (1) (2) [17]:

{x, z, f , γ } ∈ X (1)

{X(1),X(2),X(3), . . . ,X(P)} ∈ P (2)

where x represents the decision vector, z the solution vector,
f the fitness of x, γ the ranking score, and P the population
quantity; X is called an individual.

2. Select the individual. This step focuses more on the
search space with higher average fitness to improve the aver-
age quality of the population [26].

3. Cross andmutate between selected individuals. This step
involves generating new individuals and enhancing the search
ability of the algorithm.

In NSGA-II, Pareto sets are used to obtain the optimal
solution for more than one objective. Thus, EIO design can
be described as a multiobjective global optimization prob-
lem, and when compared with NSGA-II, the decision vec-
tor x is an EIO structure with multiple parameters x =
[x1, x2, . . . , xn], and the solution vector z is the design
objective z = [z1, z2, . . . , zn]. Moreover, fitness f and
ranking score γ can be obtained using the proposed 1D
EIO simulation program. However, NSGA-II cannot identify
EIO structures that have no physical meaning, and if there
are many bad solutions, the effectiveness and convergence
of the algorithm may deteriorate considerably. Therefore,
the choices of the decision vector, solution vector, and param-
eter ranges for each dimension of the decision vector are
important.
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A. 1D EIO MODEL
In the EIO high-frequency interaction structure, an electron
beam excites electromagnetic waves during the movement,
and the electromagnetic waves react to the electron beam.
Thus, these two processes affect each other and generate
energy exchange [27]. Based on 1D electronic disk model
and the power balance theory, the optimization process can
be described as follows:

1) HIGH-FREQUENCY FIELD
Considering that the beam–wave interaction mainly occurs at
the gap center in the cavity, the high-frequency electric field
along the z- axis direction can be expressed equivalently by
the following functional equation:

EZ = f (t)f (z) sin(ωt + φ0) (3)

f (z) =
N∑
n=1

Vn
k
√
π
e−k

2(z−z0)2 (4)

where f (t) is the voltage across gaps in the resonator, f (z)
the electronic field type of Gaussian distribution [28], k =

1/
√
r2a − r

2
b + δd

2, z0 the center position of each gap, ra the
drift tube radius, rb the electron beam radius, and d the gap
width; δ reflects the influence of the drift head shape on the
field type, and it is generally taken as 1/6–1/2. N denotes
the number of gaps, and Vn is the normalized relative ampli-
tude of each gap voltage without considering the influence
of the output waveguide on the electric field distribution,
V1 = V2 = . . . = Vn.

2) KINEMATIC EQUATION OF ELECTRON BEAM
Because the velocity of electrons is considerably lower than
the velocity of light, the relativistic effect is neglected, and
considering the interaction of space charge forces among
electrons, the equation of motion in the high-frequency inter-
action structure can be written as follows:

dv
/
dt = −η(Ez + Es) (5)

where η is the charge-to-mass ratio, and Es is the space
charge force among electrons. For a cylindrical electron
beam, the approximate expression of the space charge electric
field Es can be obtained as follows [28]:

Es (z) =
∫

τ (z′)
2πε0b2

e−
2|z′−z|

b sign
(
z′ − z

)
dz′ (6)

where τ denotes the linear charge density of the electron beam
at z, ε0 represents the vacuum dielectric constant, and sign(x)
is a symbolic function.

3) SELF-CONSISTENT EQUATION
The power balance between the output energy coupled out
through the waveguide and the energy released by the elec-
tron beam (regardless of cavity loss) can be described as
follows [29]–[31]:

dW (t) = −Poutdt + Pbdt (7)

whereW (t) is the stored energy, Pout the output power of the
EIO, Pb the exchanged energy, and their respective expres-
sions are as follows:

Pout =
1
2
·
f (t)2

Qe
· (R

/
Q) (8)

Pb =
∫
L

τ · Ezdl (9)

where (R/Q) represents the impedance of the cavities [2], and
it be expressed as

(R
/
Q) = (

∫
L
|EZ |dl) 2

/
2ωW (t). (10)

By substituting (7), (8), and (9) into (6), the voltage varia-
tion equation of the microwave field in the resonator can be
obtained as

df (t)
dt
=−

ωf (t)
2Qe
+ω·

(
R
/
Q
) ∫

τvf (z) sin (ωt+ϕ0)dz. (11)

4) 1D SIMULATION PROGRAM
Based on the 1D electron disk beam–wave interaction calcu-
lation model, the continuous electron beam is replaced with
a finite electron disk, and (5) and (11) can be rewritten as
follows:

dvi
dt
= −η (Ez (z, i)+ Es (z, i)) (12)

df (t)
dt
= −

ωf (t)
2Qe

+ ω(R
/
Q)
∑

i=M
i=1 qivi · f (z, i) sin(ωt+φ0)

(13)

where qi is the amount of electricity carried by the i-th disk.
These differential equations can be solved by means of

programing using the fourth-order Runge–Kutta method.
A flowchart of the program is shown in Fig. 2.

1. Initialize various EIO parameters, including operat-
ing parameters, structural parameters, cold measure-
ment parameters, such as beam voltage V0, current I0,
gap width d, period length l, characteristic impedance
(R/Q), and quality factor Qe.

2. Place electronic disks equidistantly with respect to the
resonator entrance and inject them with a certain ini-
tial velocity. By using the fourth-order Runge–Kutta
method, the position and velocity of the electronic disks
are solved after a time step under the current electric
field.

3. According to the position and speed of each disk,
the energy exchange between the disk and the elec-
tric field is calculated to obtain a new electric field
amplitude, and this value is compared with the previous
electric field amplitude to check for convergence.

4. If the result does not fulfill the convergence condition,
add new disks at the initial position and repeat 2; else,
calculate the output power, bandwidth, and structure
length.
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FIGURE 2. The flow chart of the EIO 1D program.

B. OPTIMIZATION ALGORITHM
In EIO design, the key is obtaining a high-frequency inter-
action structure with high power capacity, wide bandwidth,
and stable single-mode operation. Due to the limited num-
ber of gaps in EIOs, the corresponding synchronous voltage
changes greatly compared with that of the ideal periodic
structure. Moreover, the resonator has a high gap voltage
in the gap, which induces a significant change in the elec-
tron velocity. Consequently, some electrons may exhibit the
transcendence phenomenon, which is essentially a nonlin-
ear physical phenomenon. In the process of motion, elec-
trons are affected by the high-frequency field and the space
charge field, and the electron density and electron velocity
become multivalued functions. Therefore, analysis of the
influences of electron velocity, distance between gaps (period
length), number of gaps, space charge force, drift tube dis-
tance between resonators, and magnetic field strength on
the beam–wave synchronization and coupling mechanism
involves many complex calculations. Moreover, it is a tedious
and time-consuming task to manually optimize the structure
parameters and operating parameters to find a feasible con-
figuration.

Numerous parameters have different effects on the out-
put characteristics of EIOs. Moreover, because the design
optimization of EIOs is a high-dimensional problem in both
the decision space and the solution space, NSGA-II may be

suitable for solving the high-dimensional optimization prob-
lem in conjunction with the proposed 1D simulation program.
Based on previous EIO design experience, the decision vector
and solution vector are defined in TABLE 1.

TABLE 1. Decision vector and solution vector.

FIGURE 3. Schematic diagram of EIO (e.g., N = 2): (a) cross section and
(b) longitudinal section.

For the decision vector, as shown in Fig. 3, d is the width
of the cavity gap; l the EIO structure period; Qe the external
quality factor; rb the radius of the beam in the drift tube; V0
and I0 the beam voltage and current, respectively; and N the
cavity number.

For the solution vector, the output power Pout is selected
as objective 1, which can be calculated using the 1D pro-
gram (14). The bandwidth B is selected as objective 2 and
defined as (15). The length of the interaction structure Ltot is
selected as objective 3 and described as (16).

Pout = 1D(d, l,Qe, rb,V0, I0,N ) (14)

B = f0
/
Qe (15)

Ltot = N · l (16)

For EIOs, it is expected that higher output power and wider
bandwidth can be obtained in shorter beam-wave interaction
structures. However, in this process, the electron reversal
phenomenon, which causes a sharp decrease in output power,
must be avoided. Finally, the multiobjective optimization
model of EIOs can be expressed as (17):

max : F1 = Pout(d, l,Qe, rb,V0, I0,N )

max : F2 = B(f ,Qe)

min : F3 = Ltot(l,N )

s.t. min(v) > 0 (17)

A flowchart of the optimization algorithm is shown
in Fig. 4.
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FIGURE 4. Flowchart of optimization algorithm.

1. Set the initial range of each parameter to determine the
scope of the search space.

2. Calculate the EIO output characteristics (output power,
structure length, and instantaneous bandwidth) by using
the proposed 1D simulation program.

3. Sort the population based on nondomination, and assign
crowding distance.

4. Select individuals with high scores to update the deci-
sion vector until the termination condition is reached.

5. Obtain a nondominant set containing individuals that
fulfill the design specifications better.

III. RESULT AND ANALYSIS
In this section, a 95-GHz EIO is considered as a test prob-
lem for achieving higher output power, wider bandwidth,
and shorter length. The scope of the search space plays a
very important role in the EIO design process. For example,
the beam voltage V0 and current I0 are directly related to
the output power of the entire oscillator. The current I0 may
affect the oscillator startup time and the electron conversion
efficiency. The beam voltage V0 and the period length l are
the basic synchronization conditions for the beam-wave of
electrons and electromagnetic waves. In addition, the gap

width d governs the interaction between the electrons and the
electromagnetic waves in each cavity, which not only affects
the beam–wave coupling coefficient but is also related to the
characteristic impedance of the cavity. The external quality
factor Qe reflects the coupling output energy of the waveg-
uide. The electron beam radius reflects the cross-sectional
area when electrons interact with the electric field, and it
generally does not exceed 80% of the drift tube radius. Con-
sidering of these factors, we set the range of decision vector
as given in TABLE 2.

TABLE 2. Optimization scop of search space.

Experiments were carried out with a population of 50 indi-
viduals, and the genetic algorithmswere run for 500 iterations
with a mutation probability of 1/7 and a crossover probability
of 1. Fig. 5 shows that as the number of iterations increase, the
output power and bandwidth are significantly concentrated
in the upper right corner of the figure, which indicates that
the optimization is moving toward higher power and wider
bandwidth. After 300 iterations, the output power converges
to 1400—2400 W, bandwidth converges to 74—475 MHz,
and it is simple with zonal distribution.

FIGURE 5. Evolution of the output power and bandwidth in the
optimization process; the color map represents the number of iterations.

The instantaneous bandwidth was negatively correlated to
the output power, indicating that the output power of the EIO
was not the highest at the widest bandwidth. Notably, after a
certain degree of bandwidth optimization, it was difficult to
increase the bandwidth, and any further attempts may have
led to a significant drop in the output power and conversion
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efficiency or even failure of the EIO to start up. This can
possibly be ascribed to fact that the lower external quality
factor caused a greater amount of energy to be coupled
out of the resonator through the waveguide, which was not
conducive for establishing a sufficiently large electric field,
thereby reducing the strength of the beam–wave interaction.

FIGURE 6. Evolution of the bandwidth and structure length in the
optimization process; the color map represents the number of iterations.

Fig. 6 shows that the length of the interaction structure
exhibits a clear differentiation trend during the optimization
process, and it is distributed in a band shape around 3.7 mm,
4.5 mm, 5.3 mm, 6.2 mm, and 7.1 mm, and the corresponding
gap number N is 5–9 in sequence. This means that to obtain
a wider bandwidth, a longer interaction length is required.
Moreover, it may be possible that the greater the number
of gaps, the higher is the characteristic impedance of the
resonant cavity, and it is prone to establish a stronger electric
field, which can appropriately reduce the external quality
factor and yield a wide bandwidth.

FIGURE 7. Evolution of the structure length and output power in the
optimization process; the color map represents the number of iterations.

Fig. 7 shows that the length of the interaction structure in
the initial stage is mainly concentrated around 6.2 mm and

7.1mm, i.e., 8-gap and 9-gap EIO.As the number of iterations
increases, the optimization begins to gradually expand toward
high-power and short structures. Possibly, self-oscillations in
the long structure are prone to build up during the initial
optimization processes.

FIGURE 8. Evolution of the bandwidth, output power, and structure
length in the optimization process; the color map represents the number
of iterations.

Fig. 8 shows the optimization process involving the band-
width, output power, and length of the interaction structure.
As the number of iterations increases, these individuals are
optimized toward wider bandwidth, higher power, and shorter
length, and after 300 iterations, the individuals gradually tend
exhibit a regular zonal distribution.

Based on the optimization solution vector, the final results
were divided into five groups. As summarized in TABLE 3,
the output power range of the 5-gap EIO is 2174—2401 W,
and the shortest length of the interaction structure is 3.70 mm,
whereas the corresponding bandwidth is generally narrow
in 74—114 MHz region. As the number of gaps increases,
the output power of the solutions in each group decreases,
whereas the length and bandwidth increase significantly. The
bandwidth of the 9-gap EIO is generally wide, ranging from
349 MHz to 475 MHz, whereas the length reaches 7.11 mm.

Based on the optimization decision vector, the gap width d
is mainly concentrated in the 0.28–0.30 mm range. A shorter
gap width is favorable for increasing the efficiency of beam–
wave interaction, whereas a lower electric field strength and,
correspondingly, characteristic impedance, reduce the total
energy exchange. In this case, the electric field strength and
the field pattern distribution are more conducive to electron
bunching and energy exchange.

The period length l gradually increases with the number
of gaps. This is because in the slow-wave interaction struc-
ture, only when the phase velocity of the electromagnetic
field is slightly lower than the electron velocity, a significant
beam–wave interaction occurs; subsequently, the electron
beam releases energy into the electromagnetic field, and the
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TABLE 3. The optimal solutions for the EIO.

oscillator is prone to oscillate. The period length is related
to the phase velocity of electromagnetic field, and the beam
voltage is related to the electron velocity. According to the
beam–wave synchronous coupling principle, each voltage has
its corresponding period length [32], and as the number of
gaps increase, the length of the corresponding synchroniza-
tion period gradually increases.

The number of gaps N and the external quality factor Qe
show a negative correlation, probably because of low char-
acteristic impedance with fewer gaps; the short beam-wave
interaction length makes it difficult for the oscillator to start
up; and increasing external quality factor can cause the res-
onator to build up a strong enough electric field at the start of
the oscillation, improve the beam-wave interaction and cause

the electron beam to release more energy. On the other hand,
the electron beam may form an excessive cluster with more
gaps, which would weaken the bunching effect and reduce
the output power. However, due to the high characteristic
impedance, the oscillations can build up at a low external
quality factor, which would help obtain a wide instantaneous
bandwidth. Therefore, the optimization results of the exter-
nal quality factor and number of gaps not only reflect the
high-power requirements of the oscillator but also consider
the broadband target and the structure length.

The electron beam radius quickly converged to 0.2 mm,
which means that the electron beam radius was posi-
tively related to the design objective. This is due to the
weak equivalent space charge force with the large electron
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FIGURE 9. The Output power and spectrum of RF signal. (a) N = 5 (b) N = 6 (c) N = 7 (d) N = 8 (e) N = 9.

beam radius, which is conducive to electron bunching,
thus leading to improved beam–wave interaction efficiency.
The final voltage and current were both at the upper

limits set in the program during the optimization process,
indicating that the EIO did not reach saturation in this
range.
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TABLE 4. Comparison of the optimal solutions and PIC models.

The above results show that the automatic EIO optimiza-
tion process yields a set of Pareto optimal solutions that
can effectively solve the problem of multiobjective coexis-
tence and express the constraint relationship among different
parameters and objectives. Therefore, decision-makers can
have more alternative at their disposal choices to fulfill vari-
ous engineering requirements.

IV. COMPARISON WITH CST-PIC SIMULATION
The proposed optimization procedure is based on the 1D
EIO simulation model. However, we need to invert the corre-
sponding 3D model to validate the results. Five typical solu-
tion sets (shadowed in TABLE 3) were selected fromN= 5 to
N= 9, and the corresponding 3D electromagnetic simulation
models were established using CST software. Fig. 9 shows
the simulation results of these five PIC models. As shown
in Fig. 9(a), the 5-gap EIO has a maximum output power
of 2106 W and the longest start-up time of more than 60
ns. Moreover, it has a narrow bandwidth and a high quality
factor of 1036. Since its characteristic impedance is only
189 �, if the quality factor is further reduced, the oscillator
will not start up. Figs. 9(b)–(e) show that as the gap number
increases, the output power continues to decrease, whereas
the start-up time is significantly shortened. The 9-gap EIO
benefits from the larger characteristic impedance, which can
stabilize the output power at 1461 W in less than 20 ns, and
it has a smaller external quality factor of 233 and a wider
bandwidth.

A comparison of the specific data obtained using the two
methods is given in TABLE 4. The difference in output power
can largely be ascribed to the fact that the proposed algorithm
is optimized based on a 1D simulation program by ignoring
the radial movement of electrons, and the physical model is
processed mathematically.

Secondly, the mesh density in the PIC solver and the error
in the quality factor evaluated using the time domain solver
also affect the output characteristics. However, the results
and trends of the PIC simulation are basically consistent with
the optimal solutions, and the relative difference is generally

within 10%, which is acceptable for the design optimization
of high-power devices.

In addition, the automatic design method can significantly
increase the EIO optimization efficiency. The simulation of
the 3D PICmodel required about 10 hours at a time on a com-
puter with an i7-7700 CPU and 16 GB of DDR4 RAM. Thus,
with 10 values for each parameter, it will take 108 h with
7 input variables to complete all model calculations, and with
more input parameters and values, the computation time will
increase geometrically. However, when using NSGA-II and
the EIO 1D program, the presented optimization algorithm
with a population of 50 individuals was run for 500 iterations,
and it took less than 100 h to obtain a set of Pareto solutions
for multiobjective design. Note that the routing algorithm is
the effective solution for processing the relationship among
the gap number (length), output power, and bandwidth, which
is critical for the optimal design of EIOs.

V. CONCLUSION
This paper describes an automatic optimization solution to
optimize multiple objectives of EIOs, such as output power,
bandwidth, and structure length. The routing method equates
EIO design to a multiobjective optimization problem, com-
pletes construction of the decision vector and solution vector,
and combines the 1D physical model with the NSGA-II
algorithm to obtain a global optimization algorithm.With this
approach, a 95-GHz EIO was optimized, and a Pareto set
with three optimal objective points was obtained. The distri-
bution characteristics of the structural and electrical param-
eters in the process of co-transition of multiple goals were
described. The final results agreed well with those simulated
using the CST-PIC solver, which confirmed that the algorithm
was effective for solving the constraints among the multiple
design objectives. In addition, instead of the previous single
optimal solution, the proposed algorithm yields a set of Pareto
solutions, which provides designers with more alternatives.

The optimization procedure presented in this paper has
a periodic structure with the equal-amplitude 2 π mode.
The equal-amplitude hypothesis is based on the fact that it
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cannot only reduce the possibility of breakdown due to high
voltage across a certain gap, but also facilitate uniform heat
conduction in the slow wave structure. If the phenomena of
breakdown, heat dissipation, and miscellaneous mode sup-
pression are effectively solved, this routing algorithm can be
applied to more complex real situations, such as the design of
aperiodic structures or other operating modes.
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