
Received August 2, 2020, accepted August 25, 2020, date of publication September 8, 2020, date of current version September 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022655

A Hybrid Estimation-of-Distribution Algorithm
for Scheduling Flexible Job Shop With Limited
Buffers Based on Petri Nets
ZHENXIN GAO , YANXIANG FENG , AND KEYI XING
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China

Corresponding authors: Yanxiang Feng (fengyxss@stu.xjtu.edu.cn) and Keyi Xing (kyxing@xjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573278 and in part by the National
Science Foundation for Post-Doctoral Scientists of China under Grant 2018M643660.

ABSTRACT This article focuses on the production scheduling problem in the flexible job shop (FJS)
environment with limited buffers. Limited manufacturing resources and buffers may lead to blockage and
deadlock phenomenon. In order to establish production scheduling with minimummakespan, the timed Petri
net (PN) model of a production process is established. Based on this PN model, a novel Hybrid Estimation-
of-Distribution Algorithm (HEDA) is proposed for solving the considered scheduling problem. A candidate
solution for the problem is coded as an individual that consists of a route sequence for processing jobs
and a permutation with repetition of jobs. A deadlock prevention policy is used to check the feasibility
of individuals, such that it can be decoded into a feasible sequence of transitions, i.e., a feasible schedule.
By using an effective voting procedure of elite individuals, two probabilitymodels inHEDA corresponding to
different subsections of individuals are constructed. Based on the probability models, offspring individuals
are then produced. As an improvement strategy, simulated-annealing-based local search is designed and
incorporated into HEDA to enhance the entire algorithm’s search ability. The proposed hybrid HEDA is
tested on FJS examples. The results show its feasibility and effectiveness.

INDEX TERMS Flexible job shop (FJS), limited buffers, scheduling, hybrid estimation-of-distribution
algorithm (HEDA), petri net (PN).

I. INTRODUCTION
In the classical scheduling problems, whether job-shop or
flow-shop scheduling problems (JSSP or FSSP), infinite sizes
of buffers for storing jobs are usually assumed [1], [2]. While,
in many real production systems, the buffer space for stor-
ing jobs is usually limited, such as in flow shop [3]–[8],
job-shop [1], [9]–[19], and automated manufacturing sys-
tems [20]. In these manufacturing systems, the total resources
(machines, transportation equipment, buffers, etc.) to hold the
jobs are limited, and hence in the process of system operation,
if the resources are not allocated properly, it often encounters
blocking and/or even deadlock [11]–[13], [16], [20]–[24],
[42]–[44]. Therefore, in order to run such manufacturing sys-
tems effectively, we need to consider two problems: liveness
control and optimal scheduling. The goal of control is to
ensure the normal operation of a system without deadlock,

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaoou Li .

so as to complete all production tasks, while scheduling is
to allocate resources to tasks reasonably, so as to optimize
the (some) performance of the system on the basis of live-
ness control. These problems create a relatively new and
more significant research direction, and have attracted many
researchers [11], [12], [20]–[25].

Papadimitriou and Kanellakis [6] studied the complexity
of FSSP with limited buffers and shown that even the sim-
plest two machine flow-shop problem with a limited buffer
between two machines is strongly NP-hard. Hence, to solve
scheduling problems of manufacturing system with limited
buffer capacities, especially, deadlock-prone manufacturing
system, in reasonable time, heuristics andmetaheuristics have
to be applied. So far, many approximate algorithms have
been developed in the literature for solving such complex
manufacturing system scheduling problems.

On FSSP with limited buffers, many studies have been
done and most works concern the problem with makespan
objective [4], [5], [7], [8], [26], [27]. Compared to the

165396

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 8, 2020

https://orcid.org/0000-0001-8838-1052
https://orcid.org/0000-0002-2268-2570
https://orcid.org/0000-0002-9843-7467
https://orcid.org/0000-0003-3087-7375

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

FSSP with limited buffer constraints in the literature, JSSP
with limited buffer has received much less attention [9],
[11]–[14], [19], and in these existing studies, it is focused on
the special cases, where all buffers have capacity 0, called
the blocking job-shop problem [28]–[31]. In the literature,
one of the main reasons for neglecting the impact of finite
buffers is that compared with flexible job shop (FJS) schedul-
ing problem, FJS scheduling problem with finite buffer,
although both are NP-hard, is more complex and contains
more constraints; while the other and most important reason
is that the limited capacity buffer constraints in the job-shop
environment leads to so-called deadlocks, and the detection
and resolution of such deadlocks is also NP-hard. Mascis
and Pacciarelli [30] studied JSSP with blocking and no-wait
constraints, and established the complexity results of the
problem. Brucker et al. [9] and Heitmann [14] investigated
several types of JSSPs with limited buffer constraints by
classifying buffers into three classes: (i) machine-dependent
output buffers, (ii) machine-dependent input buffers, and
(iii) job-dependent buffers. Based on the alternative and dis-
junctive graph models, representations of feasible solutions
for job shop with limited buffers are investigated in [9] and a
constructive heuristic to find feasible solutions is presented.
Fahmy et al. [11], [12] presented an insertion heuristic based
on matrices and Latin rectangles. This heuristic is capable to
take into account limited buffer capacities and to avoid dead-
locks, and hence, can obtain a feasible schedule. However,
the computation time is longer, especially when applying the
procedure within metaheuristics. Pranzo and Pacciarelli [16]
proposed an iterative greedy algorithm to solve two types
of blocking job shop scheduling problems, one with swap
allowed and the other with no swap allowed. The need to
swap jobs between machines (and buffers) arises whenever
there is a circular set of blocking or deadlock jobs in which
each job is waiting for a machine (or a buffer space) occupied
by other jobs in the same set, that is, this set of jobs are in
deadlock state. By swapping jobs, deadlock is resolved. But
this swapping actually requires additional equipment to com-
plete. For JSSP with buffer constraints and jobs consuming
variable buffer space, Witt and Voβ [19] presented a heuristic
to find feasible solutions. Gomes et al. [13] investigated the
scheduling problem of flexible job shop (FJS) with groups
of parallel homogeneous machines and limited intermediate
buffers, discrete parts manufacturing industries that operate
on a make-to-order basis. Under the assumption that after
the job is processed on the machine, there must be buffer
space to store it, the integer linear programming model of the
scheduling problem is developed, and by solving this integer
linear programming, an optimal schedule is obtained.

Automated manufacturing systems, especially flexible
manufacturing systems (FMS) can be considered as a gen-
eralization of the FJSs with limited capacity buffers. Both of
them are faced with deadlock and have the same deadlock
characteristics. The deadlock problem of FMSs has been
widely studied, and many deadlock control policies are pre-
sented [20]–[24]. Deadlocks in FJSs with limited capacity

buffers can be handled according to deadlock control methods
in FMSs. These methods provide a necessary and feasible
control basis for solving the scheduling problem of FJSs with
limited buffers.

This article focuses on the production scheduling problem
of flexible job shop manufacturing environment with limited
capacity buffers, where buffers are machine-dependent, that
is, a machine and its buffer form a manufacturing cell or
workstation, and the buffer is used to store the jobs that
need to be processed or have been finished on the machine.
This kind of buffers is widely used in automatic production
line [9], [12], [14], [18], [28], railway network [10], [29],
aircraft traffic control [17], and so on. The shop manufactures
medium-volume discrete jobs (or, parts, products) of differ-
ent types in a make-to-order basis as in Gomes et al. [13].
An order or a type of jobs, consists of a number of jobs to
be produced and their processing routes. The re-circulation
of jobs in the considered flexible job shops is permitted,
that is, jobs can visit some machines more than once, as in
FMSs. Furthermore, as in the classical job-shop problem,
we assume that all jobs are available at the beginning time,
and each job leaves the system directly after the finishing of
its last operation, i.e. that sufficient buffer space is available
to store all completed jobs. For such a manufacturing shop,
the scheduling problem with the completion time as the opti-
mization goal is investigated in this study. From the above
literature review, the scheduling problem of such FJS with
limited capacity buffers is rarely studied. In fact, to our best
knowledge, no work has provided a systematic study and a
feasible solution to this scheduling problem.

Note that FJS scheduling problem (with infinite buffers)
and FJS scheduling problem with limited buffers have essen-
tial differences. To solve flow shop and flexible job shop
scheduling problems, many algorithms have been proposed,
such as particle swarm optimization [4], discrete differential
evolution algorithm [5], artificial bee colony algorithm [27],
estimation of distribution algorithm [33], and genetic algo-
rithm [35]. In these algorithms, the individual’s feasibility
is determined by the individual’s encoding, that is to say,
each candidate individual can be decoded into a feasible
schedule. For FJSs with limited buffers, the feasibility of
an individual cannot be guaranteed by encoding, that is to
say, a candidate individual may not be able to decode into
a feasible schedule. Therefore, it is necessary to detect the
feasibility of individuals and correct the infeasible individuals
into the feasible individuals. From this point, we can know
that the FJS scheduling problemwith infinite buffers is totally
different from that with limited buffers, and the evolutionary
algorithms for the former has no deadlock avoidance mecha-
nism, and hence, cannot be directly used for the latter.

This article uses place-timed Petri nets (PNs) to model
FJSs with limited buffers. Petri net is an effective tool for
modeling discrete event systems [37]–[41]. In view of the
complexity of the considered scheduling problem, the esti-
mation of distribution algorithm (EDA) is used to solve it.
EDA is an evolutionary algorithm that has received much

VOLUME 8, 2020 165397

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

attentions of many researchers [32]. It uses neither crossover
nor mutation operator, but reproduces offsprings based on a
probabilisticmodel learned from a population of parents. This
model-based approach to optimization allows EDA to suc-
cessively solve many complex and large problems [32], [33].
In this article, a candidate solution for the scheduling problem
is denoted as an individual. Because of route flexibility, a fea-
sible solution not only specifies a processing route for each
job, but also determines a processing sequence of operations
of all jobs. Hence, an individual designed in this article
consists of two parts. The first part is a sequence of routes
for jobs and the second one is a permutation with repetition of
jobs. By letting the i-th occurrence of a job in the permutation
of an individual correspond to the i-th operation of the job
and using route information in the first part, the individual
can be decoded as a candidate solution. Note that such a
candidate solution may be not feasible, and can cause dead-
lock. In this article, by embedding a deadlock detection and
avoidance policy into a decoding process, the feasibility of a
candidate solution obtained by decoding an individual can be
guaranteed.

Corresponding to the structure of individuals, two proba-
bilistic models, route and operation probabilistic models, are
generated by a simple vote of elite individuals and taking into
account their weights. Based on these probabilistic models,
offspring individuals are then produced.Moreover, to balance
the global and local searches and to further improve the
performance of EDA, the simulated annealing based local
search is designed and incorporated into EDA. The proposed
hybrid EDA is tested on a set of FJS examples, showing its
feasibility and effectiveness.

The rest of this article is organized as follows. Section II
introduces the considered FJSs with limited buffers and
batch production, and develops their PN models. A novel
hybrid estimation of distribution algorithm for the consid-
ered FJS is described in Section III. An example is given to
show the effectiveness of the proposed scheduling method in
Section IV. Section V concludes this article.

II. PRELIMINARY
In this section, we first introduce the considered FJSs and then
establish their Petri net models. For concepts and notations of
Petri nets, a reader is referred to [34].

A. BASIC DEFINITIONS AND NOTATIONS OF PNS
A PN is a three-tuple N = (P,T ,F), where P and T are are
finite sets of places and transitions, respectively., respectively,
F ⊆ (P × T) ∪ (T × P) is the set of directed arcs. Given a
node x ∈ P ∪ T , the preset and post-set of x are defined as
•x = {y ∈ P ∪ T |(y, x) ∈ F} and x• = {y ∈ P ∪ T |(x, y) ∈
F}, respectively. These notations can be extended to a set, for
example, let S ⊆ P ∪ T , then •S = ∪•x∈Sx and S

•
= ∪x∈Sx•.

A marking of N is a mapping M : P → Z where Z ≡
{0, 1, 2, . . .}. Given a place p ∈ P and a marking M , M (p)
denotes the number of tokens in p at M . Let S ⊆ P be a set
of places; the total number of tokens in all places of S atM is

denoted byM (S), i.e.,M (S) =
∑

p∈S M (p). A PN N with an
initial markingM0 is called amarked PN, denoted as (N ,M0).

A transition t ∈ T is enabled at marking M , denoted by
M [t >, if ∀p ∈ •t , M (p) ≥ 1. An enabled transition t at
M can be fired, resulting in a new marking M1, denoted by
M [t > M1, whereM1(p) = M (p)− 1, ∀p ∈ •t \ t•,M1(p) =
M (p)+ 1, ∀p ∈ t• \• t , and, otherwise, M1(p) = M (p).
A sequence of transitions α = t1t2 . . . tk is feasible from

marking M if there exists Mi[ti > Mi+1, ∀i ∈ Zk ≡
{1, 2, . . . , k}, whereM1 = M . We state thatMi is a reachable
marking fromM . Let R(N ,M0) denote the set of all reachable
markings of N from M0.
A path is a string τ = x1x2 . . . xk , where xi ∈ P ∪ T and

(xi, xi+1) ∈ F , ∀i ∈ Zk−1. A path τ = x1x2 . . . xk is a circuit
if x1 = xk .

B. FJS WITH LIMITED BUFFERS
The FJS considered in this article consists of u workstations,
w1−wu, and can process v types of jobs, q1−qv. A worksta-
tion is a machine with a finite buffer. The machine is used to
process jobs, while the buffer is for staging and storing jobs.

Let W = {wi, i ∈ Zu} and Q = {qi, i ∈ Zv}. Suppose
that workstation wi has machine mi and its buffer capacity
is C(wi), i.e., it can simultaneously hold at most C(wi) jobs.
Each job only occupies a unit buffer space at any time and the
machine is not idle as long as there are unprocessed jobs in
its buffer.

The considered FJS supports batch processing and route
flexibility. That is, there are multiple jobs of the same type
to be processed, and a job may have multiple processing
routes. A processing route of a job is an ordered sequence
of operations to be processed on machines with specified
processing time. The same type of jobs has the same set of
processing routes. Let ϕ(q) be the number of type-q jobs to
be processed, and n =

∑
q∈Q ϕ(q), the total number of jobs.

Suppose that type-q jobs have µ(q) processing routes
π1 − πµ(q). Route πi can be expressed as πi = oi1oi2 . . . oili,
where oij is the j-th operation in πi and li ≡ λ(πi) is
the length of route πi. In this article, suppose that each
operation requires only one predetermined machine for pro-
cessing, and the processing time of operation oij is d(oij).
Therefore, a processing route corresponds to a sequence of
machine or workstations. Let w(oij) denote the workstation
with the machine required for processing operation oij. Then,
πi is determined by the sequence of workstations w(πi) =
w(oi1)w(oi2) . . .w(oili). Let χ (q)=max{λ(πi)|πi is a process-
ing route for type-q jobs}. Since the same type of jobs has the
same set of processing routes, we also use χ (J) to denote the
maximum length of processing routes for job J , that is, if J
is a type-q job, then χ (J) = χ (q).
For convenience’s sake, to type-q jobs, two fictitious oper-

ations, oqs and oqe, are added, while w(oqs) ≡ bqs and
w(oqe) ≡ bqe are two fictional infinite buffers used to store
raw and processed type-q jobs, respectively. Then, route πi is
extended and still denoted asπi, i.e.,πi = oqsoi1oi2 . . . oilioqe,
or w(πi) = w(oqs)w(oi1)w(oi2) . . .w(oili)w(oqe).

165398 VOLUME 8, 2020

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

To perform its operation oij, a type-q job Ji first enters the
buffer of workstation w(oij), and then, when the machine in
w(oij) is available, it is processed for d(oij) time units without
preemption. During the time in workstations, no matter what
state a job is in (waiting to be processed, being processed, or
has been processed), it always occupies a unit buffer space.

The scheduling objective is to minimize the completion
time of the last job to leave the system or makespan.

C. PN MODEL OF FJS WITH LIMITED BUFFERS
In this article, Petri nets are used to model the considered
FJSs. To establish the PN model of such an FJS with limited
buffers, we first model processing routes of jobs, and then
the request, utilization, and release of resources (machine and
buffers) by jobs in workstations.

For a type-q job J , one of its routes, πi = oqsoi1oi2 . . . oil
oqe, is modeled by a path of transitions and operation places,
denoted as O(πi) = pqsti1pi11ti11pi12ti12pi13ti2pi21ti21pi22
ti22pi23ti3 . . . tilpil1til1pil2til2pil3ti(l+1)pqe, and called as an
operation path (O-path), where operation places pqs and pqe
represent fictitious operations oqs and oqe, respectively. Oper-
ation oij of job J is processed in workstation w(oij). Its activ-
ities in w(oij) are simulated by path tijpij1tij1pij2tij2pij3ti(j+1).
The firing of transition tij implies that job J leaves the current
workstation w(oi(j−1)) or bqs and enters the buffer of the next
workstation w(oij) or bqe if oi(j−1) is the last operation of the
job. To make it clear that the relationship between transition
tkl and operation oij, the notation tij[oij] will be used, and tkl is
called the preparatory transition of operation oij. The firings
of transitions tij1 and tij2 represent the processing beginning
and end of operation oij, respectively. Places pij1 and pij3 are
used to store the jobs whose operation oij has not started and
has completed, respectively, so they are non-timed, that is,
the sojourn time of tokens in them is 0 and can leave at any
time. Place pij2 represents that operation oij is being processed
by machine, and hence it is timed, and the sojourn time of the
token in place pij2 is the processing time of operation oij, that
is, the sojourn time is d(oij).
Hence, the PN model of routes for type-q jobs can be

denoted as

(Nq,Mq0) = (POq ∪ {pqs, pqe},Tq,Fq,Mq0)

where POq is the set of operation places, pij1, pij2, pij3,
corresponding to various states of jobs in the workstations.
Tq and Fq are the sets of all transitions and arcs in all O-paths
for type-q jobs. Mq0 is the initial marking, Mq0(pqs) = ϕ(q)
and Mq0(p) = 0, ∀p ∈ POq ∪ {pqe}.

In Nq, ∀t ∈ Tq, |•t| = |t•| = 1, that is, Nq is a state
machine, and consists of all O-paths from pqs to pqe. Such a
path corresponds to a processing route of type-q jobs. A place
p ∈ Pq is called a split place if |p•| > 1. From a split place,
jobs can choose their future processing routes.

In order to model the request and release of resources
(buffers or machines) in Petri net, assign two places corre-
sponding to workstation wk and its machine mk respectively,
denoted also by wk and mk for simplicity.

A token in wk represents an available unit buffer space.
The initial marking of wk is C(wk). Let PW = {w1, . . . ,wu},
the set of all workstation places. Similarly, let PM =

{m1, . . . ,mu} the set of all machine places.
A token in mk indicates that machine mk is idle and avail-

able. Since we assume that buffers are machine-dependent in
this article, there is only one machine per workstation. That
is, the initial marking of place mk is 1.

Now consider the request and release of resources. Let
O(πi) = pqsti1pi11ti11pi12ti12pi13ti2pi21ti21pi22ti22pi23ti3 . . .
tilpil1til1pil2til2pil3ti(l+1)pqe be an O-path of type-q jobs. If the
operation corresponding to pij2 is processed by machine mk
in workstation wk , then add arcs (wk , tij) and (ti(j+1),wk),
representing the job entering and leaving wk respectively.
At the same time, arcs (mk , tij1) and (tij2,mk) are added to
simulate the start and end of the operation processing on mk
respectively.

Let FW denote the set of all arcs related with workstation
and machine places. Then, the activities of all jobs among
workstations can be modeled by the following Petri net,
called as PN for scheduling (PNS).

(N ,M0) = (PO ∪ PS ∪ PE ∪ PW ∪ PM ,T ,F,M0)

where PO = ∪q∈QPOq,PS = {pqs|q ∈ Q}, PE = {pqe|q
∈ Q}, T = ∪q∈QTq, F = FQ ∪ FW , and FQ = ∪q∈QFq. The
initial marking M0 is defined as M0(pqs) = ϕ(q), ∀pqs ∈ PS ,
M0(p) = 0, ∀p ∈ PO ∪ PE , and M0(w) = C(w), ∀w ∈ PW .
Let us use the following example to illustrate the modeling

method.
Example 1: Consider an FJS with five workstations

w1 − w5. The buffer capacities of workstations are 1, 1, 1,
2, and 2, respectively, i.e., C(w1) = C(w2) = C(w3) = 1
and C(w4) = C(w5) = 2. The system can process two
job types, types-A and B, with 3 and 2 jobs to be pro-
cessed, respectively, i.e., ϕ(A) = 3 and ϕ(B) = 2. Type-
A jobs can be processed through w1w2w3 or w1w4w5w3,
while type-B jobs through w3w5w1. Then the PN model
of jobs through workstations is shown in Figure 1, where
three processing routes π1, π2, and π3 are modeled by
O−paths O(π1) = pAst11p111t111p112t112p113t12p121t121p122
t122p123t13p131t131p132t132p133t14pAe, O(π2) = pAst11p111
t111 p112t112 p113t22p221t221p222 t222p223t23p231t231p232t232
p233t24p131t131p132t132p133t14pAe, and O(π3) = pBs
t31p311t311p312 t312p313t32p321t321p322t322p323t33p331t331p332
t332p333t34pBe, respectively.
When all the jobs have been processed, the system reaches

the final state where no job is in the system and all resources
are available or idle, or (N ,M0) reaches the final markingMf ,
where Mf (p) = 0, ∀p ∈ PO ∪ PS ; Mf (p) = M0(p), ∀p ∈
PW ∪ PM ; Mf (pqe) = M0(pqs), ∀pqe ∈ PE .

Let α be a sequence of transitions of (N ,M0). If α can lead
(N ,M0) fromM0 toMf , i.e.,M0[α > Mf , it is called to be fea-
sible. Under the assumption that all transitions on α are fired
as early as possible, α is a (feasible) schedule of the system,
and in this case, the firing time of the last transition in α is the
makespan of schedule α. The scheduling problem considered

VOLUME 8, 2020 165399

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

FIGURE 1. The PNS model of an FJS.

in this article is to find one with minimum makespan among
all feasible sequences.

III. PROPOSED ALGORITHM
Papadimitriou and Kanellakis have proved in [6] that the
two machines FSSP with limited buffers, as a particular case
of our problem, is strongly NP-hard. So when the problem
size increases, it becomes impractical to obtain the optimum
solution of the considered scheduling problem within a rea-
sonable time. Thus intelligent optimization methods [35] are
widely used. In this article, we introduce a new HEDA to
solve our scheduling problem. The proposed HEDA is the
combination of basic EDA, local search, and DAPs. Its main
components are as follows.
• Representation and amending of individuals;
• Fitness function;
• Initialization;
• Probabilistic model and generating new individuals;
• Local search.
In the rest part of the paper, we use J = (J1, J2, . . . , Jn)

to denote a permutation with a given order of all jobs, and
suppose that there are a total ofK job processing routes. Then
π = (π1, π2, . . . , πK) is used to denote a route permutation
with a fixed order. For example, in Example 1, there are five
jobs to be processed through three routes π1−π3, three type-
A jobs, denoted as J1 − J3, and two type-B jobs, J4 and J5.

Then J = (J1, J2, J3, J4, J5) and π = (π1, π2, π3) are given
job and route permutations, respectively.

A. REPRESENTATION AND AMENDING OF INDIVIDUALS
1) INDIVIDUAL REPRESENTATION
In our HEDA, a permutation with repetition of jobs is used
to represent operation information of jobs and as a part of
individual coding. On the other hand, a jobmay have different
processing routes, and hence, the route information of jobs is
also included in individual coding. Because the route of a job
is unique within a workstation, in order to simplify the indi-
vidual coding, the coding used in this article is only limited
to the operation level or the corresponding workstation level,
and the activities of jobs in workstations will be arranged
according to the principle of first arrival and first processing.
That is, an individual I contains two parts: operation part So
and route part Sr , i.e., I = (So; Sr), where each type-q job
appears χ (q) times in So, and Sr = (σ1, σ2, . . . , σn) is an
n-dimension vector and σk is a processing route of job Jk
specified by I . Note that elements of Sr and J form one-to-one
correspondence relation.

For a given individual I = (So; Sr), let the i-th appearance
of type-q job Jk in So represent the i-th operation of Jk in
route πk , omitting redundant Jk if the length of πk is less than
χ (q), i.e., λ(πk) < χ(q). In such a way, So is translated into a
sequence of operations, denoted as 1(So). Then, according
to the given route for each job in Sr , and matching each
operation with its preparatory transition in (N ,M0),1(So) or
I is interpreted as a sequence of transitions in Petri net model,
denoted as α′(I). Thus, any individual can be decoded into a
sequence of transitions in (N ,M0).

For a given individual I = (So; Sr), although 1(So) con-
tains all operations of jobs to be processed, α′(I) is not a com-
plete sequence of firing transitions from M0 to Mf . In α′(I),
there is a lack of transitions that represent the activities of jobs
in workstations, as well as the last transition of the processing
route to each job.

Note that the activity sequence or route of jobs in each
workstation is uniquely determined, taking the form of
tijpij1tij1pij2tij2pij3, and as long as a job enters a workstation,
its corresponding operation can always be completed, that
is, jobs in pij1 and pij2 always reach pij3 as time goes on.
This kind of token transfer only takes up the processing
time of the machine, and has no effect on the liveness of
the system. Therefore, it can be considered that the token
generated by tij-firing directly reaches pij3, and for simplicity,
transitions tij1 and tij2 are omitted in the transition sequence of
coding α′(I).

On the other hand, the processing order of jobs in the same
workstation can be arranged in many ways, such as in first
come first processing, or the same type of jobs can be put
together for continuous processing as much as possible if the
set-up time of machines is considered. Therefore, in order
to reduce the encoding length, this article does not code the
activity order of jobs in the workstations, but leaves it in

165400 VOLUME 8, 2020

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

the simulation algorithm, and the principle of ‘‘first come
first process’’ is adopted in the simulation of the proposed
algorithm.

Therefore, in order to make α′(I) complete, we only need
to add the last transition of the processing route of each job to
the back of α′(I), and denote the resulting transition sequence
as α(I).
Example 2: Consider the FJS in Example 1. Its PNS model

is shown in Figure 1. There are five jobs to be processed:
three type-A jobs, denoted as J1 − J3, and two type-B jobs,
denoted as J4 and J5. Type-A jobs have two processing routes
π1 and π2, while type-B jobs have only one route π3. Then,
Sr1 = (π2, π2, π1, π3, π3) is the route part of an individual,
where the routes of J1, J2, J3, J4, and J5 are set to π2, π2,
π1, π3, and π3, respectively. Since λ(π1) = 3, λ(π2) = 4,
λ(π3) = 3, we know that χ (A)=max{λ(π1), λ(π2)} = 4, and
χ (B) = λ(π3) = 3. Then the numbers of type-A and B jobs
that are contained in the operation section of an individual
should be 4 and 3, respectively. For example, So1 = (J2, J2,
J2, J1, J4, J1, J1, J3, J3, J4, J5, J1, J5, J4, J2, J3, J5, J3)
can be regarded as the operation part of an individual.
Then, I1 = (So1; Sr1) = (J2, J2, J2, J1, J4, J1, J1, J3, J3,
J4, J5, J1, J5, J4, J2, J3, J5, J3;π2, π2, π1, π3, π3) represents
an individual. According to the given route in Sr , we can
obtain the sequence of operations corresponding to So1,
1(So1) = (o21, o22, o23, o11, o41, o12, o13, o31, o32, o42, o51,
o14, o52, o43, o24, o33, o53), where oki is the i-th operation of
job Jk . Then by matching an operation with its preparatory
transition, we have the sequence of transitions corresponding
to I1, α′(I1) = (t11, t22, t23, t11, t31, t22, t23, t11, t12, t32, t31,
t24, t32, t33, t24, t13, t33), where commas are added just for
clarity.

Note that χ (A) = 4, and each of J1, J2, and J3 appears
4 times in So1. The route for J3 specified in Sr1 is π1 and
has 3 operations, and hence, the 4-th J3 in So1 is redundant
in converting So1 to 1(So1). On the other hand, the second
operation of J3, o32, is processed in w2, and its preparatory
transition is t12, that is we have t12[o32]; while the routes for
J1 and J2 given by Sr1 are π2. Then their second operations
o12 and o22 are processed in w4, and hence their preparatory
transitions are t22, and t22[o12] and t22[o22] is hold. Then
the complete transition sequence for individual I1 is α(I1) =
(t11, t22, t23, t11, t31, t22, t23, t11, t12, t32, t31, t24, t32, t33, t24,
t13, t33, t14, t14, t14, t34, t34).

2) AMENDING
According to the above encoding and decoding method, indi-
vidual I corresponds to the unique transition sequence α(I).
Although α(I) includes the number of transitions required
from M0 to Mf , but α(I) itself may not be feasible. It may
not be fired in order, and/or cause deadlock. Thus, the mod-
ification of such I or α(I) is necessary. For example, con-
sider individual I1 and its corresponding transition sequence
α(I1) in Example 2. Let α(I1) = σ1σ2 where σ1 =
t11t22t23t11t31t22t23t11t12, and M0[σ1 > M1. Then M1 6=

Mf , and under M1, all transitions are dead. Thus α(I1) is

not feasible. Thus, the feasibility of each individual should
be checked and the infeasible individuals are translated into
feasible ones. In this article, the detection and amending
algorithm (Algorithm DA) proposed in [25] is embedded in
a decoding process to obtain the feasible sequence of firing
transitions from M0 to Mf . The reader can refer to [25] for
more details.

B. FITNESS FUNCTION
The fitness function could be used to guide the EDA. In this
article, it is the makespan, i.e., the completion time of the
last job.

For an individual and its complete and feasible sequence
of transitions α(I) = t0t1t2 . . . tL−1, let Mk [tk > Mk+1,
k = 0, 1, . . . ,L − 1, and f (tk [oij]) denote the firing time of
tk , i.e., when job Ji enters workstation w(oij). Since there is
only one machine that can process jobs inw(oij), job Ji cannot
be processed immediately after transition tk fires when the
machine is busy.

Let s(oij) denote the start time of operation oij, the j-th
operation of Ji, that is, for example, the firing time of tran-
sitions t111 or t331 in Figure 1. Then, f (tk [oij]) ≤ s(oij), and
s(oij) = f (tk [oij]) only if the machine is idle when job Ji
enters workstation w(oij).
For Ji, tk [oij] can be fired only after operation oi(j−1) is

finished. Hence, f (tk [oij]) ≥ s(oi(j−1)) + d(oi(j−1)). On the
other hand, the transitions in α(I) are sequentially fired, and
the firing time of tk [oij] should be after the firing of tk−1,
i.e., f (tk [oij]) ≥ f (tk−1). Then, we have

f (tk [oij]) = max{s(oi(j−1))+ d(oi(j−1)), f (tk−1)} (1)

If there are no other jobs in workstation w(oij) when job Ji
enters it for its operation oij, job Ji can start its operation oij,
i.e., the start time of oij is

s(oij) = f (tk [oij]) (2)

If there exist other jobs in w(oij) that arrive earlier than job
Ji, then the start time of oij is not earlier than the completion
time of any of their operations that have already been started
at f (tk [oij]) or before. That is, the start time of oij is

s(oij) = max{s(omn)+ d(omn), f (tk [oij])|w(omn)

= w(oij) and f (tl[omn]) ≤ f (tk [oij])} (3)

By (1)-(3), the firing time of every transition and the start
time of every operation can be computed recursively. The
fitness function of individual I is obtained

f (I) = f (tL−1).

C. INITIALIZATION
The initial population can be randomly generated. For gen-
erating an individual I = (So; Sr), first randomly create a
permutation with repetition of jobs in which each type-q job
appears χ (q) times, and then, randomly select a route for each
job from its route set. Through Algorithm DA, the infeasible

VOLUME 8, 2020 165401

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

individuals are amended into feasible ones. Let � denote the
current population of feasible individuals.

Decoding each individual in� and calculating their fitness
values. Sort all individuals in � according to the ascending
order of their fitness values, and select the best ρ × |�|(ρ ∈
(0, 1]) individuals as the elite set, denoted as �e. In the
simulation of this example, the ρ value is obtained by using
an experimental optimization approach, and ρ = 0.3.

D. PROBABILISTIC MODEL AND GENERATING
NEW INDIVIDUALS
The probabilistic model represents a main issue for EDA and
its performance is closely related to it [32]. The best choice
of a model is crucial. On the other hand, the efficiencies
of model constructing and information sampling are closely
related to the performance of the algorithm. Hence, the choice
of the probabilistic model plays an important role in EDA’s
success.

In this article, the probability model is designed as a domi-
nance matrix. It is based on the global statistic information
from the elite set. Since an individual contains two parts:
operation and route, two kinds of probability sub-models
are constructed, i.e., the operation probability model 5, and
the route probability model 4. They are used together to
construct a new individual. Such two probability models are
first constructed as follows.

Let51 = (aij) be an n×L matrix where n is the number of
jobs to be processed and L is the length of So. Let γij denote
the number of individuals in�e, in which job Ji is at position
j of their operation parts, and aij = γij/|�e|).

In 51 = (aij) defined above, each individual in �e
is treated equally. In order to distinguish their importance,
in this article, we set a weight for each individual according
to their fitness values.

Let Iw and Ib be the worst and best individuals in cur-
rent elite set �e. The weight of individual I ∈ �e is
defined as g(I) = (f (Iw) − f (I) + 1)/f (Ib). It is obvious
that individuals with smaller fitness values or makespans
are given larger weights. With this weight function g(I) and
51 = (aij) defined above, we can design our operation prob-
ability matrix 5 and route probability matrix 4. 5 has the
same dimension as51 and can be obtained by modifying51,
and 4 is an n× K matrix, where K is the total number of all
different processing routes for all jobs.

The detailed algorithm for constructing probabilityModels
5 and 4 is given in algorithm CPM.
In the above Algorithm CPM, the operation probability

matrix 5 and route probability matrix 4 are determined by
the voting method of elite individuals in �e. Although each
elite individual in �e participates in voting, the better the
individual is, the greater the contribution to 5 and 4.

With probability models 5 and 4, we can construct new
individuals. Two methods for constructing new individuals
are proposed in this article. In them, element aij in 5 is
considered as the probability of selection of job Ji in the j-th
position. In the first one, we first extend n × L matrix 5

Algorithm CPM //Constructing Probabilistic Models
Input: �e;
Output: 5 and 4; Begin

1: At the beginning, set5 ≡ (aij)n×L = 0; B ≡ (bij)n×L =
0; 4 ≡ (cik)n×K = 0; D ≡ (dik)n×K = 0;
2: for (i = 1; i ≤ n; i++){ // J = (J1, J2, . . . , Jn) is given.
3: for (each I ∈ �e){ // I = (So, Sr) where So =
(p0, . . . , pL−1) and Sr = (σ1, σ2, . . . , σn).
4: g(I) = [f (Iw)− f (I)+ 1]/f (Ib);
5: for (l = 1; l ≤ L; l ++){;
6: if (pl = Ji){ail := ail + 1; bil := bil + g(I); };
7: }end for (l);
8: for (k = 1; k ≤ K ; k + +){ // for πj and π =
(π1, π2, . . . , πK) is given;
9: if (σi = πk){cik := cik + 1; dik := dik + g(I); };
10: }end for (k)
11: }end for (each I)
12:}end for(i)
13:for (j = 1; j ≤ L; j++){
14: 5j := 5j/|�e|; // 5 normalization; 5j is the j-th
column of 5.
15: Let bj =

∑
i bij;Bj := Bj/bj; // Bj is the j-th column

of B.
16: 5 := (5+ B)/2; // 5 operation probability matrix.
17: } end for (j)
18: for (i = 1; i ≤ n; i++){
19: Let ci =

∑
j cij; 4i := 4i/ci; // 4 normalization; 4i

is the i-th row of 4.
20: Let di =

∑
j dij; Di := Di/di; // D normalization; Di

is the i-th row of D.
21: 4 := (4+ D)/2; // 4 route probability matrix.
22:}end for (i)
23:Output 5 and 4;

End

to L × L matrix 5ext so that a row of 5 corresponding to
job Ji is χ (Ji) rows of5ext in succession. Then, according to
the descending order of elements in 5ext and for maximum
element aij, set job i to position j in the sequence of a new
individual, and then set all elements on the row and column
in which aij is into −1. Repeat until all the elements of 5ext
are −1.
In the second method, selecting job for each position and

a route for a job in the new individual is done by roulette
based on5 and4. The details of algorithms called CNI1 and
CNI2 where CN represents Constructing New-individuals are
as follows.

E. LOCAL SEARCH
To balance the global and local searches and to further
improve the performance, a simplified simulated annealing
(SSA) algorithm is employed as the local search. Note that
simulated annealing has been successfully combined with
other intelligent optimization methods. SSA is acted on new

165402 VOLUME 8, 2020

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

Algorithm CNI1 // Constructing a New Individual I =
(So; Sr) Through 5 and 4
Input: 5 and 4;
Output: I = (So; Sr); Begin

1: Let So and Sr be 1× L and 1× n empty arrays;
2: Let 5ext be the extended matrix of 5; Let 41 = 4;
3: for (count = 0; count < L; count++){ // Constructing
So through 5ext .
4: 1.1) Find an element euj with the maximum value in
5ext ; // (select the first one if there is more than one such
element);
5: 1.2) If the row, in which euj is located, corresponds to
job Ji, add job Ji at position j in So;
6: 1.3) Set all elements in row u and column j of 5ext as
-1;
7: } end for // So is constructed;
8: for (count = 0; count < n; count ++){ // Constructing
route Sr for So through 4
9: 2.1) find an element cij with the maximum value in 4;
10: 2.2) add route πj at position i in Sr , that is, set πj as the
route of job Ji in Sr ;
11: 2.3) Set all elements in row i of 4 as -1;
12:}end for // Sr is constructed;
Output: I = DA(So; Sr); // A new feasible individual I is
constructed.

End

individual with a probability pα(pα ∈ (0, 1]). Its parameter
temperature, Temp, is supposed to be constant. If individual
I is selected to execute local search, Temp = f (I)/(U × n)
where U is a constant. Its termination condition is that the
maximum number of iterations, imax , is reached or I has been
improved for x times. In the simulation, we set imax = 30
and x = 3. A new individual is produced by the so-called
Neighbor Search (NS), in which three operations, job-insert,
job-swap, and route-change, are executed sequentially. These
three operations are defined as follows.

Job-insert: Randomly choose two different jobs from the
operation part So of I , and then insert the back one before the
front one.

Job-swap: Randomly select two different jobs Ju and Jv
from the operation part So of I , and then swap them.

Route-change: Randomly select a job with multiple routes,
and then change its current route in route part Sr of I to any
one of its other routes.

Algorithm SSA is shown as follows.

F. PROPOSED HYBRID ESTIMATION OF
DISTRIBUTION ALGORITHM
With the above design, we can propose the HEDA procedure
for solving flexible job shopmanufacturing environment with
limited capacity buffers as follows. It contains two main
parts in every generation. At global exploration, a probability
model is built with the elite individuals of an entire population

AlgorithmCNI2 // Constructing a New Individuals Through
5 and 4
// constructing So through 5 ≡ (aij);
1: Let So and Sr be 1× L and 1× n empty arrays;
2: Let 51 = 5; Let 41 = 4;
3: Let A[n] = (0, 0, . . . , 0); // A[j] is the number of Jj
appearing in So;
4: for (i = 0; i < L; i++){
5: µ =rand(0, 1);
6: for (j = 1; j ≤ n; j++){
7: if(µ ≤

∑
k=1,...,j aik && A[j] < χ(Jj)){ // Select a job

for position i by Roulette;
8: add job Jj at position i in So; A[j]←A[j]+ 1; break;
9: }
10: }end for(j)
11: } end for(i)
// Constructing route Sr for So through 4.
12:for (i = 0; i < n; i++){
13: µ =rand(0, 1); // generating a random number.
14: for (j = 0; j < K ; j++){
15: if (µ ≤

∑
s=1,...,j cis){ // Select a route for job i by

Roulette.
16: add route πj at position i in Sr , i.e., set πj as the route
of job Ji in Sr ; break;}
17: }end for(j)
18:} end for(i) // Sr is constructed;
19:Output I = DA(So; Sr); //A new feasible individual I is
constructed.

End

to generate new individuals. At local search, the newly gener-
ated individuals adopt in probability pα multiple local search
operators based on the problem characteristics for further
exploitation. The algorithm stopswhen themaximumnumber
of generations Gmax is reached.
If pα is set to 0, the local search SSA is not called in every

generation, and the algorithm is simplified into so-called
basic EDA.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
FJS with limited buffers is a new scheduling problem that
is first attempted to be studied in this article. In current
literature, there are no any algorithms and benchmarks to
be developed for it. As a result, except for the algorithms
proposed in this article, it is unrealistic to carry out a wider
comparison. In this section, the proposed HEDA is tested
by a simple FJS with limited buffers, which consists of nine
workstations w1 − w9. Each of w2, w3, w4, w6, and w7 has a
buffer with capacity 2 while w1, w5, w8 and w9 each have
a buffer with capacity 1. The considered FJS can process
three types of jobs, types-q1, q2, and q3. Its PN model is
shown in Figure 2. There are ϕ(qi) = ni, i ∈ Z3, type-qi
jobs to be processed, and n = n1 + n2 + n3. O(π1) = p1s
t11p111t111 p112t112p113t12p121t121p122t122p123t13p131t131p132
t132 p133 t14p141t141p142t142p143t15p151t151p152t152p153t16p1e,

VOLUME 8, 2020 165403

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

Algorithm SSA(I)
Input: I , I0 // I and I0 are individuals and I0 is the best one
in the current population �;
Output: Ind0; Begin
1:Ind0← I ; Ind1← I ;
2:Temp = f (I)/(U × n); u = v = 0;
3: While (the termination condition is not satisfied){
4: Ind1← NS(Ind1), Ind1← DA(Ind1);
5: If(f (Ind1) < f (Ind0)){
6: Ind0← Ind1; v← v+ 1;
7: } Else {
8: If ((rand(0, 1) ≤ exp(−(f (Ind1)− (f (Ind0))/Temp){
9: Ind0←Ind1; //accept worse individual;
10: }Else{
11: Ind2←NS(I0), Ind2← DA(Ind2);
12: If (f (Ind2) < f (Ind0)){ Ind0←Ind2}}
13: } //end Else
14: Ind1←Ind0;
15: u← u+ 1; //end Else
16:} end while
17:Return DA(Ind0); // Return an feasible individual.

End

FIGURE 2. PNS of the FJS.

and O(π4) = p4s t41p411t411p412 t412p413t42p421t421p422t422
p423t43p431t431p432t432p433t44p441t441p442t442p443t45p451t451
p452t452p453t46p4e, respectively. Type-q2 jobs have two

Algorithm HEDA
1:Initial parameters Gmax ,Npop,Nesc,NNew, and pα;
2:Randomly generate initial population �;
3: Sorting� // according to in ascending order of individual
fitness values, and denote � as � = {I0, I1, . . . , INpop};
4: select �e = {I0, I1, . . . , INesc−1}; // I0 is the best indi-
vidual in �;
5: For (g = 0; g < Gmax; g++){
6: Let(5,4) = CPM(�e); // establish5 and 4 from �e.
7: Ind0 = CNI1(5,4);
8: For(i = 1; i < Nnew; i++){
9: Ind i = CNI2(5,4)
10: If (rand(0, 1) < pα){
11: Ind i = SSA(Ind i); }
12: Add Ind i to �1;
13: } // end For(i)
14: Sorting � ∪�1; select the first Nesc best individuals
as �e, �e = {I0, I1, . . . , INesc−1}; // the best individual is
denoted as I0.
15: }end For(g)
16:output I0;

End

TABLE 1. Job numbers in different instances.

processing routes, O(π2) = p2st21p211t211p212t212p213t22p221
t221p222t222p223t23p231t231p232t232p233t24p241t241p242t242p243
t25p251t251p252t252p253t26p2e or O(π3) = p2st21p211t211p212
t212p213t32p321 t321p322t322p323 t33p331t331p332t332p333t34p341
t341p342t342p343t35p251t251p252t252p253t26p2e. Sixteen instan-
ces with different numbers of jobs, (n1, n2, n3), are designed
to evaluate the performance of the proposed HEDA, and they
are shown in Table 1. In these instances, we suppose that job
processing time is randomly distributed in the range [4, 40],
and the detailed values are shown in Table 2.

165404 VOLUME 8, 2020

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

TABLE 2. Processing time for operations.

TABLE 3. Parameter values of different factor level.

A. PARAMETER DETERMINATION
In the simulation calculation, the first two parameters of
AlgorithmHEDA, population size |�| andmaximum number
of generationsGmax , are set as |�| = 100 andGmax = 50× n,
respectively. The other four parameters, the elite individual
percentage ρ, the number of new individuals Nnew, the prob-
ability of acting SSA on a new individual pα , and temper-
ature constant U , will be determined by using the Taguchi
method [36].

Parameter ρ determines directly the size of the elite set that
provides information for the probability model. If it is too
large, some poor individuals are included and have bad effect
on the probability model; while if it is too small, the popu-
lation may mature too early. Parameter Nnew determines the
size of the seed set. A small Nnew leads to obtain only a few
good genes and has a too fast convergence speed while a
large value implies that poor individuals could be involved
in. Parameter pα is the probability of local search conducted
on new individuals, which balances the global search and the
local search. Temperature Temp in SSA has influence on the
probability accepting a worse solution. It is proportional to
a constant U , i.e., Temp= f (I)/(U × n). The value domains
these four parameters are set as ρ ∈ {0.1, 0.3, 0.5}, Nnew ∈
{10, 20, 30}, pα ∈ {0.02, 0.04, 0.08}, and U ∈ {14, 16, 18},
respectively. For each parameter, three factor levels are used
and listed in Table 3, and hence, the orthogonal array L9(34)
is chosen. For each parameter combination of L9(34), HEDA
is run 10 times independently regarding instance In03. The
makespan average in 10 run times is used as the response vari-
ables (RV). The orthogonal array and the values of response
variables are listed in Table 4, and then the statistic results are
summarized in Table 5.

TABLE 4. Orthogonal array L9(34) and response variable values.

TABLE 5. Statistic results.

FIGURE 3. The convergence tendency of EDA and HEDA with makespan
on In03 and In08.

From Table 5, it can be seen that pα has the most signifi-
cant impact on HEDA performance. Nnew ranks the second,
U the third, and ρ the last. According to their corresponding
factor levels (the bold face), the suggested parameter set-up
for HEDA are determined as ρ = 0.3,Nnew = 30, pα = 0.04,
and U = 14.

B. EXPERIMENTAL RESULTS
In order to test the effectiveness of our proposed algorithms
and explain the improvement effect of SSA on EDA, Algo-
rithms EDA and HEDA are run 10 times independently on

VOLUME 8, 2020 165405

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

TABLE 6. Comparison of simulation results and runtime of EDA and HEDA.

all 16 instances and their experimental results are compared.
Their average and best (or minimum) makespan values are
listed in Table 6, where BST denotes the best makespan
among 10 trials, TIME/B denotes the runtime of a trial
through which the best makespan is obtained, and AVG and
TIME/A denote the average makespan and average runtime
of 10 trials, respectively.

From Table 6,we know that two algorithms can give fea-
sible solutions for each instance in a relatively short time.
The shortest time is only a few seconds, and the longest
average time is 2993.3 seconds of HEDA for In16. For each
instance, the makespan results obtained by HEDA are supe-
rior to those obtained by the basic EDA. This shows that
the embedding SSA has greatly improved the performance
of EDA. The larger the scale of the problem, the greater the
improvement. For example, the performance improvement
for average makespans of In01, In08, In09, and In16 are
(124.5-109.2)/124.5 = 12.3%, 20.8%, 22%, and 20.3%,
respectively. Of course, these improvements are time-
consuming. Thus, it is better to run algorithm HEDA in order
to obtain at the better schedules at the expense of more time.

The convergence tendency of EDA and HEDA of In03 and
In08 with makespan is shown in Figure 3. It can be seen that
EDA is easy tomature early, and converges faster thanHEDA.
It also shows that SSA plays a certain role in overcoming the
early maturing phenomenon and HEDA owns better global
searching ability. HEDA’s makespan is improving globally
and constantly, especially for In08 and hence, it is reasonable
and necessary to increase the maximum iteration times as
the scale of the problem increases, i.e., Gmax = 50 × n.
For In08, an optimal or suboptimal schedule with makespan
491 is obtained by HEDA.

V. CONCLUSION
In this article, the production scheduling problem of FJS
with limited buffers is studied. Based on the place-timed
Petri net model of the considered system, a novel hybrid
estimation of distribution algorithm (HEDA) is proposed to
minimize the makespan. A candidate solution is coded as an
individual that consists of two sections. In the first section,
a processing route is set for each job; and the second part
is a possible sequence of operations. Under the monitoring
of a deadlock controller, such an individual can be decoded
as a feasible schedule. Corresponding to different sections of
an individual, two probability models, route and operation
probability models, are established via a voting procedure in
which individual weighted differences are considered. Based
on these models, an effective procedure for constructing
offspring individuals is proposed. For each new individual,
a simple local search, SSA, is performed with a certain prob-
ability in order to improve the performance of EDA. Simu-
lation results show the effectiveness of the proposed method
over EDA.

Thiswork is of important practice significance for job-shop
scheduling with limited buffers. Since no existing compara-
ble results are available, more studies for establishing more
effective methods are needed in the future. On the other hand,
there are many evolutionary algorithms that may be used to
solve the problem considered here. But for each different
algorithm, as done in this article, we need to establish the
corresponding encoding and decoding scheme, the relevant
operators, and the parameter setting scheme, and how to
improve the performance of the algorithm by embedding
appropriate local searches. All these are worthy of further
study.

165406 VOLUME 8, 2020

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

REFERENCES

[1] I. A. Chaudhry and A. A. Khan, ‘‘A research survey: Review of flexible
job shop scheduling techniques,’’ Int. Trans. Oper. Res., vol. 23, no. 3,
pp. 551–591, May 2016.

[2] M. Pinedo, Scheduling: Theory, Algorithms and Systems, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2008.

[3] O. Holthaus and C. Rajendran, ‘‘A study on the performance of scheduling
rules in buffer-constrained dynamic flowshops,’’ Int. J. Prod. Res., vol. 40,
no. 13, pp. 3041–3052, Jan. 2002.

[4] B. Liu, L. Wang, and Y.-H. Jin, ‘‘An effective hybrid PSO-based algo-
rithm for flow shop scheduling with limited buffers,’’ Comput. Oper. Res.,
vol. 35, no. 9, pp. 2791–2806, Sep. 2008.

[5] Q.-K. Pan, L. Wang, L. Gao, and W. D. Li, ‘‘An effective hybrid discrete
differential evolution algorithm for the flow shop scheduling with interme-
diate buffers,’’ Inf. Sci., vol. 181, no. 3, pp. 668–685, Feb. 2011.

[6] C. H. Papadimitriou and P. C. Kanellakis, ‘‘Flowshop scheduling with
limited temporary storage,’’ J. ACM, vol. 27, no. 3, pp. 533–549, Jul. 1980.

[7] B. Qian, L. Wang, D.-X. Huang, W.-L. Wang, and X. Wang, ‘‘An effec-
tive hybrid DE-based algorithm for multi-objective flow shop scheduling
with limited buffers,’’ Comput. Oper. Res., vol. 36, no. 1, pp. 209–233,
Jan. 2009.

[8] C. Zhang, Z. Shi, Z. Huang, Y.Wu, and L. Shi, ‘‘Flow shop scheduling with
a batch processor and limited buffer,’’ Int. J. Prod. Res., vol. 55, no. 11,
pp. 3217–3233, Jun. 2017.

[9] P. Brucker, S. Heitmann, J. Hurink, and T. Nieberg, ‘‘Job-shop scheduling
with limited capacity buffers,’’ OR Spectr., vol. 28, no. 2, pp. 151–176,
Apr. 2006.

[10] A. D’Ariano, D. Pacciarelli, and M. Pranzo, ‘‘A branch and bound algo-
rithm for scheduling trains in a railway network,’’ Eur. J. Oper. Res.,
vol. 183, no. 2, pp. 643–657, Dec. 2007.

[11] S. A. Fahmy, T. Y. ElMekkawy, and S. Balakrishnan, ‘‘Deadlock-free
scheduling of flexible job shops with limited capacity buffers,’’ Eur. J. Ind.
Eng., vol. 2, no. 3, pp. 231–252, Feb. 2008.

[12] S. A. Fahmy, T. Y. ElMekkawy, and S. Balakrishnan, ‘‘Mathematical
formulations for scheduling in manufacturing cells with limited capacity
buffers,’’ Int. J. Oper. Res., vol. 7, no. 4, pp. 463–486, Apr. 2010.

[13] M. C. Gomes, A. P. Barbosa-Póvoa, and A. Q. Novais, ‘‘Optimal schedul-
ing for flexible job shop operation,’’ Int. J. Prod. Res., vol. 43, no. 11,
pp. 2323–2353, Jun. 2005.

[14] S. Heitmann, ‘‘Job-shop scheduling with limited buffer capacities,’’
Ph.D. dissertation, Dept. Math./Inform., Univ. Osnabrück, Osnabrück,
Germany, 2007.

[15] S. Q. Liu, E. Kozan, M. Masoud, Y. Zhang, and F. T. S. Chan, ‘‘Job shop
scheduling with a combination of four buffering constraints,’’ Int. J. Prod.
Res., vol. 56, no. 9, pp. 3274–3293, May 2018.

[16] M. Pranzo and D. Pacciarelli, ‘‘An iterated greedy metaheuristic for the
blocking job shop scheduling problem,’’ J. Heuristics, vol. 22, no. 4,
pp. 587–611, Aug. 2016.

[17] M. Sama, A. D’Ariano, P. D’Ariano, and D. Pacciarelli, ‘‘Scheduling
models for optimal aircraft traffic control at busy airports: Tardiness, pri-
orities, equity and violations considerations,’’ Omega, vol. 67, pp. 81–98,
Mar. 2017.

[18] H. Toba, ‘‘A tight flow control for job-shop fabrication lines with
finite buffers,’’ IEEE Trans. Autom. Sci. Eng., vol. 2, no. 1, pp. 78–83,
Jan. 2005.

[19] A. Witt and S. Vo beta, ‘‘Job shop scheduling with buffer constraints and
jobs consuming variable buffer space,’’ in Proc. Int. Heinz Nixdorf Symp.
Berlin, Germany: Springer, 2010.

[20] M. P. Fanti and M. Zhou, ‘‘Deadlock control methods in automated man-
ufacturing systems,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,
vol. 34, no. 1, pp. 5–22, Jan. 2004.

[21] Z. Li, N.Wu, andM. Zhou, ‘‘Deadlock control of automatedmanufacturing
systems based on Petri nets—A literature review,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 437–462, Jul. 2012.

[22] Y. Feng, K. Xing, H. Liu, and Y. Wu, ‘‘Two-stage design method of robust
deadlock control for automated manufacturing systems with a type of
unreliable resources,’’ Inf. Sci., vol. 484, pp. 286–301, May 2019.

[23] N. Wu and M. Zhou, ‘‘Deadlock resolution in automated manufactur-
ing systems with robots,’’ IEEE Trans. Autom. Sci. Eng., vol. 4, no. 3,
pp. 474–480, Jul. 2007.

[24] K. Xing, M. Chu Zhou, H. Liu, and F. Tian, ‘‘Optimal Petri-net-based
polynomial-complexity deadlock-avoidance policies for automated man-
ufacturing systems,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,
vol. 39, no. 1, pp. 188–199, Jan. 2009.

[25] K. Xing, L. Han, M. Zhou, and F. Wang, ‘‘Deadlock-free genetic schedul-
ing algorithm for automated manufacturing systems based on deadlock
control policy,’’ IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 42, no. 3,
pp. 603–615, Jun. 2012.

[26] R. Leisten, ‘‘Flowshop sequencing problems with limited buffer storage,’’
Int. J. Prod. Res., vol. 28, no. 11, pp. 2085–2100, Nov. 1990.

[27] J.-Q. Li and Q.-K. Pan, ‘‘Solving the large-scale hybrid flow shop schedul-
ing problem with limited buffers by a hybrid artificial bee colony algo-
rithm,’’ Inf. Sci., vol. 316, pp. 487–502, Sep. 2015.

[28] R. S. Hansmann, T. Rieger, and U. T. Zimmermann, ‘‘Flexible job shop
scheduling with blockages,’’ Math. Methods Oper. Res., vol. 79, no. 2,
pp. 135–161, Apr. 2014.

[29] J. Lange and F. Werner, ‘‘Approaches to modeling train scheduling prob-
lems as job-shop problems with blocking constraints,’’ J. Scheduling,
vol. 21, no. 2, pp. 191–207, Apr. 2018.

[30] A. Mascis and D. Pacciarelli, ‘‘Job-shop scheduling with blocking and
no-wait constraints,’’ Eur. J. Oper. Res., vol. 143, no. 3, pp. 498–517,
Dec. 2002.

[31] Y. Mati, C. Lahlou, and S. Dauzère-Pérès, ‘‘Modelling and solving a
practical flexible job-shop scheduling problem with blocking constraints,’’
Int. J. Prod. Res., vol. 49, no. 8, pp. 2169–2182, Apr. 2011.

[32] P. Larra naga and J. A. Lozano, Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation., Boston, MA, USA: Kluwer,
2001.

[33] B. Jarboui, M. Eddaly, and P. Siarry, ‘‘An estimation of distribution
algorithm for minimizing the total flowtime in permutation flowshop
scheduling problems,’’ Comput. Oper. Res., vol. 36, no. 9, pp. 2638–2646,
Sep. 2009.

[34] M. C. Zhou and K. Venkatesh, Modeling, Simulation, and Control of
Flexible Manufacturing Systems: A Petri Net Approach. Singapore: World
Scientific, 1998.

[35] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han, and Q. Pan, ‘‘A review on
swarm intelligence and evolutionary algorithms for solving flexible job
shop scheduling problems,’’ IEEE/CAA J. Autom. Sinica, vol. 6, no. 4,
pp. 904–916, Jul. 2019.

[36] D. C. Montgomery, Design and Analysis of Experiments. Hoboken, NJ,
USA, Wiley, 2005.

[37] N. Qi Wu and M. Zhou, ‘‘Modeling, analysis and control of dual-arm clus-
ter tools with residency time constraint and activity time variation based
on Petri nets,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 446–454,
Apr. 2012.

[38] L. Bai, N. Wu, Z. Li, and M. Zhou, ‘‘Optimal one-wafer cyclic schedul-
ing and buffer space configuration for single-arm multicluster tools with
linear topology,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 46, no. 10,
pp. 1456–1467, Oct. 2016.

[39] Q. Zhu, Y. Qiao, andN.Wu, ‘‘Optimal integrated schedule of entire process
of dual-blade multi-cluster tools from start-up to close-down,’’ IEEE/CAA
J. Autom. Sinica, vol. 6, no. 2, pp. 553–565, Mar. 2019.

[40] Q. Zhu, Y. Qiao, N. Wu, and Y. Hou, ‘‘Post-processing time-aware optimal
scheduling of single robotic cluster tools,’’ IEEE/CAA J. Autom. Sinica,
vol. 7, no. 2, pp. 597–605, Mar. 2020.

[41] Y. Hou, N. Wu, Z. Li, Y. Zhang, T. Qu, and Q. Zhu, ‘‘Many-objective
optimization for scheduling of crude oil operations based on NSGA-III
with consideration of energy efficiency,’’ Swarm Evol. Comput., vol. 57,
Sep. 2020, Art. no. 100714.

[42] J. Luo, Z. Liu, S. Wang, and K. Xing, ‘‘Robust deadlock avoidance
policy for automated manufacturing system with multiple unreliable
resources,’’ IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 812–821,
May 2020.

[43] S. Wang, W. Duo, X. Guo, X. Jiang, D. You, K. Barkaoui, and M. Zhou,
‘‘Computation of an emptiable minimal siphon in a subclass of Petri nets
using mixed-integer programming,’’ IEEE/CAA J. Autom. Sinica, early
access, Jun. 2, 2020, doi: 10.1109/JAS.2020.1003210.

[44] B. Huang, M. Zhou, C. Wang, A. Abusorrah, and Y. Al-Turki, ‘‘Deadlock-
free supervisor design for robotic manufacturing cells with uncontrollable
and unobservable events,’’ IEEE/CAA J. Autom. Sinica, early access, Jun. 2,
2020, doi: 10.1109/JAS.2020.1003207.

VOLUME 8, 2020 165407

http://dx.doi.org/10.1109/JAS.2020.1003210
http://dx.doi.org/10.1109/JAS.2020.1003207

Z. Gao et al.: HEDA for Scheduling FJS With Limited Buffers Based on PNs

ZHENXIN GAO received the B.S. degree in
automation science and technology from the
Xi’an University of Posts and Telecommunica-
tions, Xi’an, China, in 2010. He is currently pursu-
ing the Ph.D. degree with the Systems Engineering
Institute, Xi’an Jiaotong University, Xi’an.

His research interest includes control and
scheduling of automated manufacturing systems.

YANXIANG FENG received the B.S. degree in
automation science and technology and the Ph.D.
degree in systems engineering from Xi’an Jiao-
tong University, Xi’an, China, in 2010 and 2017,
respectively.

He is currently with the State Key Laboratory
for Manufacturing Systems Engineering, Xi’an
Jiaotong University. His current research inter-
ests include petri net, discrete event systems, and
robust control.

KEYI XING received the B.S. degree in mathe-
matics from Northwest University, Xi’an, China,
in 1982, the M.S. degree in applied mathematics
from Xidian University, Xi’an, in 1985, and the
Ph.D. degree in systems engineering from Xi’an
Jiaotong University, Xi’an, in 1994.

He was with Xidian University, in 1985. Since
2004, he has been with Xi’an Jiaotong Univer-
sity, where he is currently a Professor of systems
engineering with the State Key Laboratory for

Manufacturing Systems Engineering and the Systems Engineering Institute.
His current research interests include control and scheduling of automated
manufacturing, discrete-event, and hybrid systems.

165408 VOLUME 8, 2020

