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ABSTRACT The antibiotic resistance of bacterial pathogens has become one of the most serious global
health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to
determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages
and limitations in clinical applications. In this contribution, we aim to assess and automate the detection
of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using
a combination of image processing and machine learning algorithms. Therein, microscopic images were
collected from different E. coli strains, then the convolutional neural network U-Net was implemented to
segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as
a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility
of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always
trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were
predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume
that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the
control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-
control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM
models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean
sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively.
The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not
fully detected by the proposed method.

INDEX TERMS Antibiotic resistance, E. coli strains, U-Net convolutional neural network, one-class SVM.

I. INTRODUCTION
Escherichia coli (E. coli) is a large and diverse bacterial
species that can be found almost everywhere. This bacterial
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species shows a high degree of biological variance, where
many of E. coli strains are essential in the digestive tract while
other strains exhibit pathogenic properties and can cause
many complications in the urinary tract or in the intestinal
tract. On order to cure such infections, antibiotics are utilized.
Their selection is becoming increasingly complicated due
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to the overuse and misuse of these drugs yielding resistant
bacteria [1]. The extensive and often unnecessary application
of antibiotics both in health care as well as in agriculture
increases the evolutionary pressure on these bacteria and
leads to the development of new mechanisms to resist the
existing antibiotics, and subsequently the antibiotics lose
their ability to treat bacterial infections [2]. Consequently, the
impact of antibiotic resistance is increasing dangerously to
extreme levels all over the world.

To select an effective antibiotic for treating severe infec-
tions, the determination of the susceptibility profile of the
causing pathogen is required. This can be achieved via antibi-
otic susceptibility testing (AST) which should in an ideal
case be rapid, accurate and quantitative. In this context, most
AST in clinical praxis relies on culturing the pathogen in the
presence of antibiotics and therefore are slow, demanding an
initial therapy of a patient with broad-spectrum (and some-
times ineffective) drugs, which might later be changed to a
narrow spectrum antibiotic featuring the appropriate mecha-
nism of action to cover the bacterial sensitivity profile. Tradi-
tionally, AST was performed by disk diffusion (Kirby-Bauer)
methods, where the size of the growth-free zone determines
the susceptibility reaction of bacterial pathogens towards a
particular antibiotic [3]. Later studies recommended deter-
mining the minimal inhibitory concentration (MIC) of an
antimicrobial drug. This MIC offers a precise determina-
tion of the lowest concentration (in pug/mL) of a drug that
inhibits visible growth of bacteria. The classical method to
identify the MIC of a specific antibiotic is still the broth
micro dilution (BMD) test. Thereby, a defined volume of
liquid medium is mixed with a defined concentration of the
antibiotic drug and incubated for 16 to 20 h with the bacteria.
Then, the MIC is read as the lowest concentration that pre-
vents the visible bacterial growth [4]. Recently, many novel
techniques for fast estimation and prediction of antibiotic sus-
ceptibility have arisen. These are mainly so-called genotypic
methods including polymerase chain reaction (PCR)-based
techniques [5] matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) [6]
and whole-genome sequencing [7]. Here, the existence of
genes or gene products that induce resistance against certain
antibiotics is detected, requiring knowledge of the resistance
mechanism and the underlying gene product. Though these
genotypic methods are quite fast, not all resistances will be
detected, especially when they are caused by new sponta-
neous mutations. Innovative approaches to accelerate pheno-
typic AST rely on a reduced culturing period in the presence
of antibiotics and a subsequent appropriate readout of pheno-
typic changes caused by antibiotics to susceptible bacteria.
These approaches often use microfluidics [8] or microar-
rays [9] in addition to more sensitive detection methods like
Raman spectroscopy [4], [10], [11] or real-time imaging of
single cells, where in addition to the detection of the cell
count, often an altered cellular morphology upon interaction
with antibiotics can be detected in sensitive strains [12].
A number of morphological changes induced by antibiotics
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in sensitive strains have been described including -among
others- filamentation, spheroplast formation, ovoid cell for-
mation, swelling of cells and blebbing (see [13] for a review
on this topic). Filamentation can be caused by several mech-
anisms including an inhibition of DNA synthesis, of protein
synthesis and an inhibited peptidoglycan synthesis. The latter
can further lead to spheroplast formation or cell lysis [13].
Each of the previously described methods for antimicrobial
susceptibility detection feature its advantages and limitations
regarding the type of resistance, costs and time requirements
to analyze.

Nowadays, machine learning (ML) algorithms are widely
implemented in several biomedical studies including the
detection of the antibiotic susceptibility of bacteria. Therein,
ML algorithms are designed to automate the resistance anal-
ysis for a certain AST. In this context, many applications
were established to predict antimicrobial MICs [14] or to
identify the bacterial resistance towards a specific antibi-
otic [15], [16] based on whole genome sequence (WGS) data.
Also, image-based identification was often utilized to detect
the morphological changes in treated bacteria using ML algo-
rithms [12], [17], [18]. Likewise, ML approaches showed
quite promising results in automating bacteria susceptibility
detection based on their Raman spectra [4], [19].

In this contribution, we present an image-based approach
to identify the susceptibility of E. coli strains with dif-
ferent susceptibility patterns towards the following antibi-
otics: ciprofloxacin, cefotaxime, piperacillin (see figure S1).
Hereby, microscopic images of one E. coli laboratory strain
and 11 clinical E. coli isolates were acquired, where a part
was untreated and used as control bacteria while other parts
were treated with different antibiotics for a short period of
time (90 min). Then a combination of image processing
and ML algorithms were applied to detect the morpholog-
ical changes caused by these antibiotics. In our analysis,
an anomaly detection approach was implemented to find
the morphological changes in treated bacteria based on their
images. In terms of machine learning, the task is to detect
anomalous objects of a certain class, which can be performed
by a one-class classifier after training it on normal objects
of the same class. Using the previous property, we could
train a one-class support vector machine (OCSVM) model
on images of only untreated bacteria, which were utilized
as control. Then image labels of treated bacteria with antibi-
otics were predicted as control or non-control. The detection
results of E. coli susceptibility were presented for two types
of image features and for two training methods to construct
OCSVM models.

Il. SAMPLE PREPARATION AND COLLECTION

Bacteria were obtained from the strain collection of the Insti-
tute of Medical Microbiology at the Jena University Hospital.
AG100 is a laboratory strain derived from E. coli K12 and
the other strains (E. coli 407, E. coli 416, E. coli 422, E. coli
455, E. coli 500, E. coli 544, E. coli 545, E. coli 554, E. coli
579, E. coli 673, E. coli 683) are clinical isolates from sepsis
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FIGURE 1. Sample preparation and image collection methods. (A) The bacteria are inoculated with three antibiotics; namely ciprofloxacin, cefotaxime
and piperacillin. After inoculating, the bacteria were incubated for 90 min at 37°C, then the bacteria are washed twice in water to remove the antibiotic.
Five ul of these washed bacteria are pipetted onto a slide and left to dry at room temperature (RT) over night. Finally, images of these dried bacteria
are collected using a bright field microscope. (B) An example of piperacillin (PIP) interaction with E. coli bacteria of strains E. coli AG100 and E. coli 579.
Treating bacteria of strain E. coli AG100 with PIP prevents bacterial growth and causes the observed morphological changes. Treating bacteria of strain

E. coli 579 with the same antibiotic does not affect the bacterial growth.

patients at Jena University Hospital. Quantitative MIC val-
ues were determined using VITEK-2 system (bioMeirieux)
or E-Test (Liofilchem MIC Test stripes) and susceptibility
categorization in sensitive (S) or resistant (R) is based on
the EUCAST clinical breakpoints [20]. The upper EUCAST
clinical breakpoint (R>) which categorizes resistance if the
corresponding MIC is higher, was selected as test concentra-
tion (see table S1). More detailed information on the strains,
their reference MIC values, and categorization are given in
Kirchhoff et al. [4].

For each experiment, a fresh overnight culture was pre-
pared from a —80°C bacterial cryo stock. Four culture flasks
were prepared with 30 ml CASO broth (Roth GmbH); in three
flasks antibiotic was added to give a final antibiotic concen-
tration of 0.5 mg/l ciprofloxacin (ciprofloxacin hydrochlo-
ride, AppliChem), 2 mg/l cefotaxime (cefotaxime sodium,
Sigma-Aldrich) or 16 mg/l piperacillin (piperacillin sodium,
Sigma-Aldrich); respectively. The fourth flask served as a
control without antibiotic treatment. Flasks were pre-warmed
until inoculation. The overnight cultures were diluted for
measuring the optical density with a spectrophotometer
(Spark, Tecan) and inoculated into the pre-warmed flasks
to adjust a final inoculum of 5 x 10° bacteria/ml. The cul-
tures with and without antibiotic treatment were incubated
for 90 min at 37°C while shaking at 160 rpm in an incu-
bator (Infors HT Ecotron). After 90 min the bacterial sus-
pensions were transferred into a tube and centrifuged for
5 min with a relative centrifugal force of 4,000 g (Universal
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320R, Hettich). The bacterial pellet was re-suspended in
1 mL deionized water and washed twice by centrifuging them
for 1.5 min with a relative centrifugal force of 11,500 g
(MiniSpin®, Eppendorf AG). Finally, the washed pellet was
suspended in 20 pl of deionized water. 1 ul and 5 ul
of this suspension were pipetted onto a glass slide and
allowed to dry at room temperature until the microscopic
analysis. Microscopic images were acquired within 5 days
after sample preparation. For each sample, a tile scan of
5 x 5 bright field images was recorded using an Axiob-
server.Z1 (Carl Zeiss AG, Oberkochen, Germany) equipped
with an LD Plan Neofluar 63x/0.75 Korr objective (Zeiss)
and an Orca Flash 4.0 camera (Hamamatsu). The total imaged
area per sample was 972 x 972 pum. On order to com-
pensate for focal variations within the sample, 5 differ-
ent focal planes with a distance of 1 um were collected.
Overall, the collected number of replicates for the strains
E. coli 579, E. coli AG100 and E. coli 673 is four, three
and two independent biological replicates; respectively, while
the remaining strains were cultivated in a single biological
replicate.

In this experiment, the considered centrifugation protocol
is a standard technique in microbiology, and it was applied on
order to concentrate the samples and wash the bacteria. These
centrifugation protocols are well established and applied in
numerous studies [4], [21], [22]. Nevertheless, viable bacteria
have been obtained after centrifugation without any observed
alteration in the bacteria behavior or in the cell morphology if
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FIGURE 2. A schematic diagram of the segmentation process of the bacteria area using the U-Net network. Each bacteria image is enhanced and sliced
into patches of the size 512 x 512 pixels, which are down-sampled and fed into the U-Net network. The up-sampled binary patches are stitched
together to create a mask, that can be overlaid with the enhanced image on order to get the segmented image.

they were compared to samples without prior centrifugation
steps (see [23]).

Ill. IMAGE PROCESSING AND MACHINE LEARNING

A. COMPUTATIONAL ANALYSIS

All computations were carried out based on in-house writ-
ten functions in the programming language Python version
3.6.5 and the statistical programing language R version 3.4.2.
The utilized packages are Scikit-learn 0.22 [24], Numpy
1.17.4 [25], OpenCV 4.1.3 [26], Pandas 0.25.3 [27], Tensor-
Flow 2.00, Imager 0.41.2 [28] and Radiomics 0.1.3 [29]. All
these functions are available upon request.

B. SEGMENTATION OF BACTERIA AREA

On order to improve the prediction of the antibiotic suscep-
tibility and to exclude artefacts due to the drying process,
only image areas with a high bacterial density were included
in the analysis. Therefore, each image was segmented into
a region with a high density of bacteria and a background
region based on the convolutional neural network U-Net [30].
This network showed exceptional performances in semantic
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segmentation tasks in biomedical applications. The utilized
U-Net network consists of an encoder and a decoder with
four blocks in each (see Figure 2). The encoder blocks are
composed of two convolutional layers, a dropout layer and
a max pooling layer, while each decoder block contains an
up-convolutional layer, a concatenation layer, two convolu-
tional layers and a dropout layer. The input of the first layer
of the encoder is a grayscale-image of the size 128 x 128
pixels and the output of the decoder is a binary image of the
same size.

In our work, the collected bacterial images were resized
into 9216 x 9216 pixels, and the image contrast was adjusted
based on the contrast limited adaptive histogram equalization
algorithm (CLAHE) [31]. Thereafter, the enhanced images
were sliced into patches of the size 512x x512 pixels, and
the bacterial areas of the obtained patches were predicted
using the presented U-Net network. This area predication was
performed for all image patches, whether they were acquired
from untreated control bacteria or treated bacteria, after
down-sampling the patches with a factor of four. The obtained
binary patches from the U-Net were up-sampled again by
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FIGURE 3. Overview of the considered patch selection method and the utilized machine learning techniques. (A) Only image patches that have 90%
of their area covered by bacteria are selected to predict the antibiotic susceptibility. (B) Two types of features (SF, DF) are extracted from all selected
image patches. Then the predication of the antibiotic susceptibility is performed using a once-class SYM model constructed based on features of the

control patches. The obtained classifier is utilized afterwards to predict patch

a factor of four, and the up-sampled patches were stitched
together to reconstruct a binary image with the original size of
9216 x 9216 pixels. This binary image separates the enhanced
image into two regions; e.g. a bacteria containing area and a
background region. Nevertheless, the training procedure of
the presented U-Net network was accomplished based only
on images of the strains E. coli AG100 and E. coli 579 while
the bacteria area of the remaining image was not used for
training the U-Net network. The selection of training set
was done due to a pre-experiment, in which the antibiotic
susceptibilities of stains E. coli AG100 and E. coli 579 were
checked. In this per-experiment, the enhanced images of
both strains were manually converted into binary images
using the Java-based image processing program ImageJ [32].
Thereafter, these enhanced images and binary images were
portioned with the ratio 2:1 into a training set and a validation
set; respectively. Lastly, the U-Net network was trained based
on the binary and the enhanced images for 50 epochs using
a mini-batch of 50 patches and the Adam optimizer with a
learning rate of 0.001 to minimize the binary-cross entropy
loss function on the validation set. After training the U-Net,
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labels of treated bacteria.

the best model was saved and utilized to segment the bacteria
containing area of all remaining images. Here, the default
value of learning rate for Adam optimizer was considered
while the other hyperparameters; i.e. batch size and number
of epochs, were manually selected due to the complexity of
the presented segmentation task.

C. PATCH SELECTION AND FEATURE EXTRACTION

The segmented images based on the U-Net network were cut
into patches of the size 256 x 256 pixels. Then, image patches
that have at least 90% of their area covered by bacteria were
selected. The previous selection of the bacteria threshold
was considered to ensure approximately the same foreground
areas in all selected patches (see Figure 3-A). Thereafter,
the texture of the selected patches was quantified based on
two types of image features. These image features are the
first-order statistics-based features (SFs) of the intensity and
the bottleneck features of the trained U-Net network. The
latter features are indicated later as DFs. The SFs characterize
texture properties of the area of interest of an image, and
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they measure the spatial distribution of intensity values for
image pixels [33], [34]. In our work, the energy, entropy,
skewness, uniformity, kurtosis, variance, mean deviation, root
mean square, mean, median, minimum and maximum were
calculated for each selected patch. In table S2, the utilized sta-
tistical features were presented. Here, each feature describes
a specific property of the gray level distribution of a selected
patch I(x, y) that has the size 256 x 256 pixels [34]. The other
type of features; i.e. the DFs, can be simply extracted from
the trained U-Net model after removing the decoder layers.
The encoder in this case represents an image feature extractor
where 256 features per patch can be extracted as it is shown
in Figure 2.

D. MACHINE LEARNING FOR SUSCEPTIBILITY DETECTION
Based on the extracted features, the anomaly detection was
performed to identify the susceptibility of E. coli strains
towards the considered antibiotics. This anomaly detection
is usually implemented to identify anomalous objects of a
specific class [35]. The basic idea is to let a classification
model learn on an available dataset in which all objects
belong to a same class. Then, this learnt model is utilized to
identify normal and anomalous objects of a new dataset with
respect to that considered class.

For the presented study, the images of untreated control
bacteria were always considered as normal objects while
the treated bacterial images were predicted as normal or
anomalous patches. This prediction was accomplished by
comparing the intrinsic and control-specific morphology of
bacterial strains with the morphological changes caused by
antibiotics. So, if a particular antibiotic affects the cultivated
bacteria, it changes their morphology and let these bacte-
ria look anomalous as compared to untreated control ones
(see Figure S2-A). In contrast, when the bacteria resist an
antibiotic, they keep growing as untreated bacteria doing (see
Figure S2-B) [36]. Under this assumption, an OCSVM model
is ideal to detect the sensitivity of treated bacteria to an antibi-
otic drug. This detection was performed based on a principal
component analysis (PCA) based dimension reduction of the
feature matrix. The PCA space is formed by new uncorrelated
features, i.e. the principal components, which maximize the
data variance and often increase the interpretability. Then
an OCSVM model was constructed using principal compo-
nents (PCs) that include 99% of the variation within the
untreated control bacteria patches. The obtained classifier
was finally utilized to predict labels of treated bacteria as
normal (control) or anomalous (non-control).

IV. RESULTS

The susceptibility identification of E. coli strains towards the
considered antibiotics was accomplished based on a dataset
comprising microscopic images collected from 12 E. coli
strains. Within this dataset, the strains E. coli 579, E. coli
AG100 and E. coli 673 were cultivated in four, three and
two independent biological replicates; respectively, while
the other E. coli strains were grown in a single replicate.
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From each replicate, images of control and treated bacteria
were collected using a bright field microscope. After data
acquisition, the described image processing pipeline, a patch
extraction and a patch selection were applied. The selected
image patches were afterwards utilized to identify the antibi-
otic resistance based on an OCSVM model that was trained
on features extracted either from the first-order intensity
statistics or from the trained U-Net network, as it is described
in Figure S3.

A. THE IDENTIFICATION OF ANTIBIOTIC

RESISTANCE IN E. COLI STRAINS

We present in this subsection the obtained results for pre-
dicting the antibiotic susceptibility of E. coli strains within
each biological replicate. In Figure 3-B, a schematic view of
the utilized features extraction methods and machine learning
techniques is presented. For each biological replicate, the SFs
and DFs were extracted, then a feature mean centering was
applied with respect to the features of the control patch
of each replicate. Later, two PCA models were constructed
based on the extracted features from the selected untreated
control patches; i.e. the PCA model based on the SFs and
the PCA model based on DFs. Using the PCs that describes
99% of the variation within the control patch features, two
OCSVM models were built. These OCSVM models rep-
resent the OCSVM based on the statistical features (SFs)
named SF-OCSVM and the OCSVM based on the bottle-
neck features of the trained U-Net network (DFs) termed
DF-OCSVM. For both models, a radial kernel was optimized
for the regularization parameter ve {0.001, 0.01, 0.1, 0.25,
0.50, 0.75, 0.90, 0.99} and the kernel coefficient ye {0.001,
0.01, 0.1, 0.25, 0.50, 0.75, 0.90, 1}. This hyperparameters
optimization was accomplished via a grid search using the
previous noted values of ¥ and y. The hyperparameter values,
that performed the best identification results, were selected to
construct a final OCSVM model. This model was used later
to predict patch labels of treated bacteria cultivated within the
same replicate. As we mentioned earlier, if a specific bacterial
pathogen resists an antibiotic, image patches of this pathogen
are predicted as control. In contrast, if an antibiotic prevents
the growth of a specific bacterial pathogen, it can change
the bacteria’s morphology. Therefore, the images of bacteria
sensitive to this antibiotic are expected to be identified as non-
control; e.g. dissimilar to bacteria grown without antibiotics
that represent here the control bacteria. In the latest case,
the untreated control and treated bacteria were cultivated
in same experiment hence we are sure that any changes in
the bacteria’s morphology were caused only by the antibi-
otics. Based on these assumptions, we predicted labels for all
selected patches, and we calculated the percentage of patches
predicted as control for each treatment within each replicate.
This percentage was denoted in the following by CP.

After calculating the CP values for bacterial images,
the prediction performance of the SF-OCSVM and
DF-OCSVM models was evaluated and compared using
receiver operating characteristic (ROC) curves. In Figure 3-B,
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the ROC curves of SFF-OCSVM and DF-OCSVM models
were depicted. It is clear that the OCSVM model trained
on the bottleneck features of U-Net network shows larger
area under the curve (AUC) than the AUC of the ROC
curve obtained by SF-OCSVM models. Here, the AUC of
SF-OCSVM and DF-OCSVM is 72% and 83%; respectively.
In Table S1, the susceptibility predictions of bacterial image
slides are presented based on two indicated thresholds of the
ROC curves in Figure 3-B. These thresholds are 78.46% and
99.07%, and they are corresponding to the highest sensitivity
and specificity introduced by classification models. One
can note that both selected thresholds describe high values
of the ROC curves, which can be interpreted that treated
bacteria are predicted as control if a large percentage of image
patches captured from these bacteria were classified as con-
trol patches; i.e. high percentages of CP. Nevertheless, within
Table S1, antibiotic MIC values are presented beside the pre-
dictions of the E. coli susceptibility of both SF-OCSVM and
DF-OCSVM models. Also, the antibiotic breakpoints and the
reference antibiotic susceptibilities are shown with respect to
each E. coli strain. It is observed that the OCSVM based on
DFs could predict the susceptibility of E. coli strains toward
piperacillin and cefotaxime quite well in comparison to
predictions provided by the SF-OCSVM models. In contrast,
neither the SF-OCSVM model nor the DF-OCSVM model
could predict the susceptibility of ciprofloxacin in good
manner based on the selected thresholds. In Table 1, a sum-
mary of the predicted susceptibility is presented as confusion
matrices with respect to each antibiotic and each OCSVM
model. For the susceptibility predictions of piperacillin, the
mean sensitivity of OCSVM model increased from 41.07%
to 86.61% when this classifier was trained on the bottleneck
features of the U-Net network instead of using the SFs.
Also, the mean sensitivity of cefotaxime improved around
4% when the DF-OCSVM was considered as the mean
sensitivity of SF-OCSVM and DF-OCSVM are 87.5% and
91.67%; respectively. The mean sensitivities of SF-OCSVM
and DF-OCSVM models for ciprofloxacin are only 70.14%
and 59.72%. These results exhibit that the changes in bacteria
morphology is not sufficient to predict the resistance towards
ciprofloxacin.

TABLE 1. The confusion matrices using local 0CSVM models. For each
antibiotic, the reference susceptibility, and the predicted susceptibilities
(S: sensitive, R: resistant) based on SF-OCSVM and DF-OCSVM models are
presented, then the mean sensitivities of each antibiotic and each
classifier are calculated.

SF-OCSVM SD-OCSVM
Antibiotic -—————————e M, Sens. = M. Sens.
R S R S
R 2 6 7 1
PIP 41.07% 86.61%
S 3 4 1 6
R 5 1 5 1
CTX 87.5% 91.67%
S 1 11 0 12
R 5 3 6
CIP 70.14% 59.72%
S 2 7 5
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Overall, the DF-OCSVM models have better identifica-
tion performance than the obtained predictions using the
SF-OCSVM. These prediction results are strongly influenced
by two main factors: the selected threshold by the ROC curve
and the changes in bacteria shape when a particular antibiotic
was applied. In case of ciprofloxacin, quite small changes
in bacteria morphology were detected after incubating the
bacteria while the selected threshold seems to be not suitable.

B. STUDYING THE PREDICTION PERFORMANCE

OF ANTIBIOTIC SUSCEPTIBILITY BASED ON
LOCAL-TRAINED/GLOBAL-TRAINED

OCSVM MODEL

The main goal of the following study is to check the pre-
diction quality of the OCSVM models based on two train-
ing techniques: the local-training and the global-training.
Here, we denote by local-trained OCSVM an OCSVM model
that is trained and tested on one individual replicate, while
global-trained models describe the OCSVM models that are
trained on a larger number of replicates and tested on other
independent replicates. For local-trained models, the control
bacteria images from a specific replicate are utilized to train
an OCSVM model. This model is implemented to predict
the resistance of treated bacteria cultivated in the same repli-
cate but were not used for model training. A global-trained
OCSVM model is built upon control images of a number
of replicates, then this classifier can be utilized to pre-
dict antibiotic susceptibilities of bacteria images acquired
from other replicates. In both cases, the prediction of newly
acquired test data is possible and linked to the estimated accu-
racy. To perform such comparison, the different replicates of
strain E. coli 579 and strain E. coli AG100 were considered.
Therein, the bottleneck features of the trained U-Net network
were extracted for all selected patches of both E. coli strains,
and a feature mean centering was applied as was explained
previously. Finally, a leave-one-replicate-out cross-validation
(LORO-CV) was performed based on the PCs extracted from
control patches. For model construction based on LORO-CYV,
we always exclude one replicate and optimize a radial kernel
for the regularization parameter ¥ and the kernel coefficient
y using patches extracted from the remaining replicates. This
procedure is iterated until the susceptibility of all patches
selected from all replicates are identified once.

Based on the ROC curves, a comparison between the
performance of local-trained OCSVM and global-trained
OCSVM was performed. First of all, we calculated the CP
values for each treatment and for all replicates. Figure 4-A
presents the ROC curves of the OCSVM models using both
training methods. Our results showed that the susceptibility
prediction using a local-trained OCSVM model is much bet-
ter than the predictions by global-trained models. Thereby,
around 31% increase in the AUC can be observed by local-
trained OCSVM models. In Table 2, the identification results
of E. coli susceptibility using local-trained and global-trained
models are presented based on selected thresholds of ROC
curves in Figure 4-A. It turned out that a local-training for the
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FIGURE 4. (A) The obtained ROC curves of local-OCSVM and global-OCSVM models. These models were constructed based on the bottleneck features
of the trained U-Net network. The antibiotic susceptibilities were determined for the percentage of predicted patches as control (CP) (B) Images
collected from the third replicate of strain E. coli 579. The reference susceptibility of E. coli 579 is resistant, but the image patches of the treated
bacteria are obviously different to the control image patches of the strain E. coli 579.

TABLE 2. A comparison of local-OCSVM and global-OCSVM models.

The predicted susceptibilities (S: sensitive, R: resistant) were determined
based on selected thresholds. It turns out that the identification of
antibiotic resistance using local-OCSVM models is much better than the
predictions by global-OCSVM models.

Local-OCSVM Global-OCSVM

Antibiotic . S <80.77% S <55.20%
& strain  Replicate o R>80.77% & R>55.20%
CP(%) Pred. CP(%) Pred.

1 86.64 R 55.20 R
2 85.76 R 65.33 R

o 579
£ R 3 19.53 S 11.39 S
§ 4 80.96 R 2.57 S
£ 1 12.35 S 78.3 R
AG100 2 33.39 S 45.06 S
®) 3 8.15 S 4.01 S
1 93.33 R 86.87 R
2 88.77 R 74.22 R

o 579
£ ® 3 11.03 S 8.45 S
8 4 80.77 R 0.0 S

&

3 1 33.51 S 78.33 R
AGI100 2 29.58 S 072 S
) 3 41.01 S 20.59 S
1 97.50 R 975 R
2 90.96 R 92.4 R

£ 579
g ® 3 7.29 S 4.17 S

»

% 4 82.82 R 0.0 S
8 1 74.84 S 98.11 R
© AG100 2 85.90 R 88.83 R
()] 3 64.59 S 2721 S

OCSVM models introduced a better identification of strain
sensitivity compared to the identification by global-trained
models. In detail, only the treated bacteria of strain E. coli
579 in the third replicate, and the bacteria of strain E. coli

167718

AG100 treated with ciprofloxacin in second replicate were
misidentified when a local-trained OCSVM was considered.
However, 10 images of 21 images were misclassified when a
global-training for OCSVM models was applied.

The results presented above showed that the local-training
of OCSVM models provide, in most cases, more stable iden-
tification results of the E. coli susceptibility towards antibi-
otics in comparison to global-trained models. These results
were expected because of the high biological variations
between the replicates which can confuse classifiers in case
of global-trained models. Another reason for these results is
that some pathogens might change their growing behavior;
e.g. stop duplicating or interacting differently with a partic-
ular antibiotic drug. In our study, the control bacteria culti-
vated in the third replicate of E. coli 579 stopped duplicating
while the treated bacteria started elongating (see Figure 4-B).
Therefore, the treated patches within this replicate were
mostly misclassified and were predicted as sensitive bacte-
ria as compared to untreated control ones, even though the
EUCAST clinical breakpoints indicate a resistance.

V. SUMMARY

We presented in this article the results of an image-based
identification approach to detect the antibiotic susceptibili-
ties of E. coli strains. The chosen antibiotics cause a strong
morphological alteration in sensitive strains leading to a
cell elongation (filamentation) while resistant strains retain
their normal morphological properties upon treatment. In the
presented work, different image processing techniques were
combined with machine learning algorithms on order to auto-
mate the susceptibility detection. We started the analysis
by enhancing the image contrast, and we segmented the
high-bacterial density areas based on the U-Net network.
The segmented images were afterwards cut into patches, and
the patches that have at least 90% of their area covered
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by bacteria were selected for further analyses composed of
feature extraction and modeling. In our work, the first-order
statistics-based features of the intensity (SFs) and the bot-
tleneck features of the trained U-Net network (DFs) were
extracted and used to train a one-class classification model;
specifically, an OCSVM model. This type of classification
is designed to detect anomalous objects of a particular class
after training the model only on normal objects of this con-
sidered class.

Based on the described data analysis pipeline, we per-
formed two comparisons to identify the E. coli susceptibility
using OCSVM models. In the first comparison, the antibiotic
sensitivity of each bacterial replicate was predicted using a
local-OCSVM model that was built on both types of image
features. The second comparison was performed to check the
prediction quality of the OCSVM models using two training
methods and using the DFs only. The results of the first
comparison showed that using the DFs to train local-OCSVM
models introduced larger area under the ROC curve than
the SF-OCSVM models. Also, for selected thresholds of
ROC:s, the classification mean sensitivities of piperacillin
and cefotaxime increased from 41.07% to 86.61% and from
87.5% to 91.67%; respectively, when OCSVM models were
constructed on the bottleneck features instead of using the
SFs. In contrast, both classifiers showed low identification
results based on the selected thresholds when the bacte-
rial pathogens were treated by ciprofloxacin. To investigate
this behavior, the DFs were utilized to perform the sec-
ond comparison. Therein, two training techniques; namely
local-training and global-training, were compared. While a
local-OCSVM model was trained and tested on untreated
control and treated bacteria patches of the same replicate,
different independent replicates were utilized to train and test
the global-OCSVM models. The evaluation of these models
proved that locally trained one-class models feature a great
potential in identifying the antibiotic sensitivity as compared
to global-trained OCSVM models.

VI. CONCLUSION

It was shown that the combination of bottleneck features of
the trained U-Net and the local trained OCSVM models intro-
duced quite promising results in identifying the susceptibility
of E. coli strains towards antibiotics. These local models
are correcting for the biological variations between differ-
ent replicates or patients and yielding better predictions of
individual patient’s susceptibility towards antibiotics. There-
fore, the presented local-one-class classification approach
can be easily implemented to predict other antibiotic sus-
ceptibilities, and an easy image-based antibiotic susceptibil-
ity tests (ASTs) can be generated. Since the morphological
changes appear already after short incubation times of antibi-
otics with bacteria (90 min), this image-based method might
be used for the development of fast phenotypic AST, maybe
in combination with statistical parameters from other readout
methods like Raman spectroscopy.
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