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ABSTRACT Glycosylation is the most complex post-modification effect of proteins. It participates in
many biological processes in the human body and is closely related to many disease states. Among them,
N-linked glycosylation is themost contained glycosylation data. However, the current N-linked glycosylation
prediction tool does not take into account the serious imbalance between positive and negative data. In this
study, we used protein sequence and amino acid characteristics to construct an N-linked glycosylation
prediction model called N-GlycoGo. Based on sequence, structure, and function, 11 heterogeneous features
were encoded. Further, XGBoost was selected for modeling. Finally, independent testing of human and
mouse prediction models showed that N-GlycoGo is superior to other tools with Matthews correlation
coefficient (MCC) values of 0.397 and 0.719, respectively, which is higher than other glycosylation
site prediction tools. We have developed a fast and accurate prediction tool, N-GlycoGo, for N-linked
glycosylation. N-GlycoGo is available at http://ncblab.nchu.edu.tw/n-glycogo/.

INDEX TERMS Ensemble learning, machine learning, N-linked glycosylation.

I. INTRODUCTION
Glycosylation is the most complex and common
post-translational modification and involves the enzymatic
attachment of sugars to proteins. Glycosylation affects many
important biological processes like protein folding, cell-to-
cell information transmission, gene expression, and control
of cellular metabolism. Four main types of glycosylation
patterns are known: N-linked, O-linked, C-linked, and GPI
anchors. N-linked glycosylation, the most common, involves
the attachment of carbohydrates to the amine group (NH2)
of asparagine at the conserved motifs N-X-S and N-X-T,
where X can be any amino acid except proline [1], [2].
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To control and predict glycosylation, various genetic or
cell culture methods of modification [3] and dynamics [4],
genetic engineering [5], and genome models [6] have been
used. the construction of these models requires computing
tools and biological experimental methods and parameter
adjustment training and repeated experiments require con-
siderable time, especially for the mechanistic kinetic mod-
els [7]. Although these technologies have high accuracy,
the instrument is expensive. Moreover, the large amount of
data generated consumes considerable experimental material
and labor. Therefore, using machine learning methods to
develop tools for predicting glycosylation sites within a
few hours is essential. Several prediction tools use amino
acid sequences to predict post-translational modification
sites.
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Publicly available glycosylation prediction tools include
NetNGlyc [8], GPP [9], GlycoPP [10], GlycoEP [11],
SPRINT-Gly [12], and N-GlyDE [13]. NetNGlyc 1.0
uses artificial neural networks (ANNs) to predict the
N-glycosylation sites on human proteins. GPP employs sec-
ondary structure (SS) and surface accessibility (ASA) [14]
of mammalian protein sequences and then uses random
forest (RF) prediction. GlycoPP performs binary profile of
patterns (BPP), composition profile of patterns (CPP), and
PSSM profile of patterns (PPP) for human protein sequences
and then uses support vector machine (SVM) for prediction.
GlycoEP performs BPP, CPP, PPP, SS, and ASA coding for
eukaryotic protein sequences and then uses SVM to predict.
SPRINT-Gly uses deep neural networks (DNNs) to predict
glycosylation sites on N-linked and O-linked human and
mouse protein sequences. N-GlyDE uses SVM to gener-
ate a two-stage prediction model for human glycosylation.
Although the current prediction methods are accurate, some
problems remain, such as the dataset of the training model
is relatively small, amino acid information used for feature
encoding is incomplete, and feature selection technology is
not used to remove unimportant feature values. The choice
of classifier also uses older methods; and several new clas-
sification algorithms are available that can greatly improve
accuracy.

Therefore, we constructed N-GlycoGo to improve the
prediction method of glycosylation sites through integrated
models [15], use all positive and negative imbalance data,
solve the problem of imbalanced data, and develop a more
accurate model for predicting glycosylation. In addition to
the sequence and structure based features for feature encod-
ing, the subcellular location of a protein contains important
information about protein function and is closely related to
the signal peptide [16]. Therefore, SignalP-5.0 [17] has been
added as a function-based feature. N-GlycoGo uses a total
of five coding tools to generate 11 features. XGBOOST [18]
was used to build a prediction model for N-linked glycosyla-
tion sites. In the independent tests of humans and mice, the
highest MCC was 0.957 and 0.738, respectively. From the
performance of other tools, it can be seen that the early tools
have lower MCC, and glycosylation sites cannot be predicted
across species.

II. MATERIALS AND METHODS
N-GlycoGo uses an ensemble model [19] to predict using
heterogeneous features.. The flowchart for constructing
N-linked glycosylation prediction tools for humans and mice
is shown in Figure 1.

A. DATA COLLECTION
The glycosylation data sources used by N-GlycoGo
include Universal Protein Resource (UniProt), dbPTM, and
O-GlycBase v6.00.

1) UNIPROT
UniProt [20] is a database of protein sequence and annotation
data jointly developed by the European Molecular Biology

FIGURE 1. Flow chart of N-GlycoGo.

Laboratory European Bioinformatics Institute (EMBL-EBI),
the Swiss Institute of Bioinformatics (SIB), and Protein Infor-
mation Resources (PIR), which includes UniProtKB [21],
UniRef [22], and UniParc [23].

2) DBPTM
dbPTM [24] is a post-translational modifications database
that integrates experimentally verified data from multiple
databases.

3) O-GLYCBASE V6.00
O-GlycBase v6.00 [25] is a non-redundant glycosylation
database and contains 242 protein sequences.

B. DATA PREPARATION
1) HUMAN TRAINING SET
The training set used by N-GlycoGo was obtained from
UniProt. Using the post-translational modification informa-
tion database, search with the keyword glycosylation was
done and data labelled CARBOHYD and verified by experi-
ments was annotated (excluding the annotation lines labeled
probable, potential, and similar). The experimentally verified
glycosylated or non-glycosylated N-linked sites were consid-
ered positive and negative sites, respectively. The sequences
were fragmented with 21 window size and the glycosylation
action site was placed at the center with 10 amino acids on
the left and right each. for a blank value, a virtual amino
acid ‘‘-’’ was added. Thereafter, CD-HIT was used to remove
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sequences that were more than 30% similar to avoid machine
learning over-evaluation. A total of 3836 positive and 18277
negative sites were obtained for humans.

2) MOUSE TRAINING SET
The same is protocol was used to obtain mouse protein data
from UniProt as that used for the human training set. A total
of 57 positive and 948 negative sites were obtained for mice.

3) HUMAN INDEPENDENT SET
Glycosylation data from different sources were used to evalu-
ate the stability of the model. For humans, data was collected
from dbPTM and O-GlycBase. Next, after removing the pro-
teins that appeared in the human training set, CD-HIT was
used to remove more than 30% similar sequences and a total
of 57 glycosylation sites remained. Thereafter, positive and
negative sites were extracted to yield 57 positive and 948 neg-
ative sites.

4) MOUSE INDEPENDENT SET
Glycosylation sites of mouse protein data from dbPTM
and O-GlycBase were selected for evaluation. Next, after
removing the proteins that appeared in the mouse training
set, CD-HIT was used to remove more than 30% similar
sequences. Finally, 13 glycosylation sites, including 13 posi-
tive sites and 145 negative sites were selected.

C. PREDICTIVE MODEL
In the training and independent testing data, the difference in
the ratio between positives and negatives is clear. Therefore,
ensemble learning is used to construct the model to solve the
problem of imbalanced data [19]. N-GlycoGo uses ensemble
learning to extract samples from negatives so that the number
of negatives and positives for each model are similar; finally,
these models are integrated to improve the overall perfor-
mance. The constructed algorithm includes Random Forest,
SVM, and XGBoost.

D. FEATURE ENCODING
N-GlycoGo uses five coding tools to generate 11 features
and is divided into three categories: sequence-, structure-, and
function-based features.

1) SEQUENCE-BASED FEATURES
iLearn [26] can encode through DNA, RNA, and pro-
tein sequences. We used iLearn’s binary, AAindex [27],
amino acid composition (AAC) [28] and the composition of
k-spaced amino acid pairs (CKSAAP) [29]. Binary encodes
amino acids in a binary manner. The 20 amino acids are
converted into 0 and 1 with 20-dimensional vector encoding
to form 20 different combinations of sequence codes; window
size 21 is used for sequence encoding. Features of 420 bits
are used. It can be the most primitive and direct expression
of the composition and distribution of the linear amino acid
sequence. AAindex is a database for the physical and bio-
chemical properties of amino acids. It is divided into three

sections: AAindex1, AAindex2, and AAindex3. N-GlycoGo
only uses AAindex1 because glycosylation is related to pep-
tide binding and has nothing to do with amino acid muta-
tions (AAindex2). Moreover, these peptides are linear and
do not form secondary structures (AAindex3). Therefore,
only AAindex1 is used. The 531 physical, chemical, and
biochemical properties of the data are coded as features. The
AAC code calculates the frequency of each amino acid type
in a protein or peptide sequence. CKSAAP coding calculates
the frequency of amino acid pairs separated by k residues
(k = 0, 1, 2, . . . , 5. The default maximum value of k is 5).
The Pse-in-One [30] tool was developed by the Harbin

Institute of Technology, and can generate pseudo com-
ponents of DNA, RNA, and protein sequences. We used
three protein prediction modules of this tool—Kmer, parallel
correlation pseudo amino acid composition (PC-PseAAC),
series correlation pseudo amino acid composition (SC-
PseAAC)—and made evaluations according to the out-
put results, taking into account complete protein sequence
and window size 21 sequence features to increase fea-
ture information. The value of Kmer represents the occur-
rence frequencies of k adjacent amino acids. PC-PseAAC
combines continuous local sequence-order information and
global sequence-order information into protein sequence
feature vectors. SC-PseAAC is a variant of PC-PseAAC,
which combines local sequence-order information and global
sequence-order information into a protein sequence feature
vector.

WebLogo 3 [31] displays multiple sequences of amino
acids or nucleic acids through alignments. The amino acid
at each position in the sequence can be stacked with the
English abbreviation of the nucleic acid, and the height of
the stacked letters represents the relative frequency of the
amino acid or nucleic acid at that position. The glycosylation
site is conserved. Previous studies on N-linked glycosylation
have reported that the glycosylation site N-X-S or N-X-T is
conserved, where X can be any amino acid except proline.
We used WebLogo 3 to evaluate the frequency value of each
amino acid in the positive segment. For a gap, the value was 0.

2) STRUCTURE-BASED FEATURES
NetsurfP-2.0 [32] can predict the structural characteristics
of the protein or amino acid sequences through deep learn-
ing, including the surface accessibility data for exposed and
embedded amino acids, probability of α-helix, β-strand and
random coil, data for structural disorder of proteins [33],
and phi/psi value of dihedral angles [34] for amino acids.

Protein surface accessibility (relative/absolute surface
accessibility, RSA/ASA) includes evaluation of buried or
exposed residues and ASA Z-score (Z-score is a prediction
of surface area and does not contain structural information).
Buried and exposed residues are scored as 10 and 01, respec-
tively, and the Z-scores of RSA/ASA and ASA are added to
the score. The secondary structure provides the possibility
scores for α-helix, β-strand, and random coil, and the three
values are used for scoring.
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3) FUNCTIONAL-BASED FEATURES
SignalP 5.0 [17] is based on the amino acid sequence of
archaea, gram-positive bacteria, gram-negative bacteria, and
eukaryotic proteins through a deep neural network to pre-
dict signal peptides (SP) [35] cleavage site. The subcellular
localization of the protein depends on the signal peptide [16].
SignalP 5.0 is used to predict the signal peptide cleavage site
on the sequence. The prediction result includes the C-score,
the score of the original cleavage site, and the S-score. The
signal peptide score and Y-score include the score of the
cleavage site. Moreover, three values are evaluated.

E. FEATURE SELECTION
N-GlycoGo uses mRMR for feature selection. mRMR is
a feature filter, where ‘‘relevance’’ and ‘‘redundancy’’ are
defined using mutual information, correlation, t-test/F-test,
distance, etc. A total of three feature ranking results are the
output, includingmax-relevance andMRMRcalculated using
two schemes of mutual information difference (miD) and
mutual information quotient (miQ).

F. ALGORITHMIC ENSEMBLE TECHNIQUES
The simple integration method continuously draws samples
from the majority class, making the number of samples of the
majority and minority classes the same and finally integrates
these models. The main purpose of the ensemble method is to
improve the performance of a single classifier. This method
constructs several two-level classifiers from the original data
and then assembles the predicted results.

G. MODEL EVALUATION
To judge the quality of the model requires certain crite-
ria; therefore, the choice of evaluation indicators is also
important. Accuracy (ACC), sensitivity (Sn), specificity (Sp),
and Matthews correlation coefficient (MCC) are common
indicators used to evaluate machine learning. ACC is the
most intuitive evaluation indicator when evaluating models,
as shown in equation (1), where TP, FP, FN, and TN, are true
positives, false positives, false negatives, and true negatives,
respectively. Sn represents the proportion of all positives
that are correctly predicted, as shown in equation (2), which
reflects the model’s ability to predict positives. Sp represents
the ratio of all correctly predicted negatives. As shown in
equation (3), this ratio shows the model’s ability to correctly
predict negatives. MCC is a suitable evaluation index when
the ratio of positives to negatives is not even. The value
of MCC approaches 0, when almost all the predictions are
wrong; MCC is equal to 1, when all predictions are correct;
MCC = −1, when all predicted results and actual values are
opposite, as shown in formula (4).

ACC =
TP+ TN

TP+ TN+ FP+ FN
(1)

Sn =
TP

TP+ FN
(2)

Sp =
TN

TN+ FP
(3)

MCC =
TP× TN−FP× FN

√
(TP+ FP) (TP+ FN ) (TN + FP) (TN + FN )

(4)

III. RESULTS AND DISCUSSION
A. COMPARISON OF ALGORITHM
To solve the problem of data imbalance, we constructed
a model in ensemble learning. The prediction method was
evaluated by ten-fold cross-validation, as shown in Table 1.
For data with CD-HIT deduplication, XGBoost can reach
0.981 in MCC, which is much higher than 0.96 of traditional
SVM and 0.961 of RandomForest.

TABLE 1. Comparison with traditional methods after adding features.

B. FEATURE ANALYSIS
To explore the importance of each feature in predicting
N-linked glycosylation sites in humans, N-GlycoGo uses
mRMR to test the top 10 and 100 features from 14383 fea-
tures for modeling and prediction, and accuracy calculation.

TABLE 2. Feature selection and model stability.

As seen in Table 2, the ensemble learning construction
model can slightly improve MCC when there are a small
number of features, only when the features selected by MIQ
schemes are selected, the MCC decreases; however, when
the number of features reaches 100, because the features
are taken by other schemes, the ensemble learning models
have the same and stable predictions; therefore, second stage
predictions cannot improve the accuracy of the predictions.

As seen in Table 2, selection of more features does not
necessarily increase accuracy and slows down the running
speed. Choosing the right number of features can increase the
prediction speed and accuracy of the data.
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TABLE 3. Forecast site comparison.

C. PERFORMANCE OF INDEPENDENT TEST
We have compiled the existing prediction models for gly-
cosylation sites in Table 3. The table contains the model-
ing methods, type of glycosylation, and species for each
model. NetNGlyc [8], GPP [9], GlycoPP [10], GlycoEP [11],
SPRINT-Gly [12], and N-GlyDE [13] were selected for this
study.

NetNGlyc 1.0 uses artificial neural networks (ANN) to
predict the glycosylation sites on N-linked human protein
sequences. However, it can only predict data for which
sequence length is less than 2000. GPP uses SS and ASA to
score mammalian protein sequences and uses random forest
to predict. GlycoPP uses BPP, CPP, PPP, and ASA + BPP to
predict glycosylation sites in prokaryotes through SVM. Gly-
coEP uses features such as BPP, CPP, PPP, and ASA + BPP
to predict through SVM, and provides four features for users
to choose. According to the training set, it is divided into two
prediction tools: Standard Predictor (S) and Advanced Pre-
dictor (A). SPRINT-Gly uses a Deep neural network (DNN)
to predict glycosylation sites on N-linked and O-linked
human and mouse protein sequences. N-GlyDE uses SVM
to carry out a two-stage sequence prediction model. The first
stage provides a prediction score for each protein, and the
second stage glycosylation prediction score can be adjusted
according to the prediction score.

To evaluate the predictive performance and stability of
N-GlycoGo, the protein sequence in the independent set was
used for prediction, Sn, Sp, ACC, and MCC were calculated
based on the prediction results, and the existing glycosylation
site predictions were used for comparison. The accuracy of
N-GlycoGo for the independent set in human is shown in
Table 4. The MCC value is 0.397, which is tied for first place
with GlycoEP_A_BPP. The accuracy of the independent set
for mouse is shown in Table 5. GlycoEP’s BPP has the highest
MCC value of 0.766, followed by N-GlycoGo’s 0.719. But
the performance of GlycoEP in 6 different prediction models
with large variation. The average MCC of GlycoEP is only

TABLE 4. Comparison of predictors with independent test of humans.

TABLE 5. Comparison of predictor with independent test of mouse.

0.382. It may be difficult for users to choose a suitable predic-
tion model. NetNGlyc is the earliest glycosylation prediction
tool. The early data is relatively incomplete and so the MCC
is the lowest. GPP is also an early prediction tool. GlycoPP
targets prokaryotes and does not perform well for eukaryotes,
such as humans and mice. The glycosylation sites of different
species are different. GlycoEP provides multiple prediction
models and the differences between the models are very
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large. Sprint-Gly establishes prediction models for mice and
humans, whereas N-GlyDE establishes prediction models for
humans. Sprint-Gly and N-GlyDE were released in 2019 and
have better performance than other tools.

IV. CONCLUSION
N-GlycoGo is based on the ensemble learning model. It uses
information from human and mouse N-linked glycosylation
sites and considers sequence based features, structure based
features, and function based features. A total of 11 feature
codes are present. The best model is integrated with the rel-
evant information. First, Binary, AAindex, AAC, CKSAAP,
Kmer, PC-PseAAC, SC-PseAAC, Motif, RSA/ASA, SS, and
SignalP are encoded by 21 window size amino acid frag-
ments; the results are predicted using various integrated mod-
els through tenfold cross-validation and XGBoost performed
best with an MCC of 0.968. Using the independent set eval-
uation model compiled by dbPTM and O-GlycBase, which
is different from the training data set, XGBoost can also
reach an MCC of 0.397 and 0.719 in human and mouse,
respectively. Therefore, XGBoost is used as the basic model
for N-GlycoGo prediction.

The independent set was used for existing glycosylation
site prediction websites, including NetNGlyc, GPP, GlycoEP,
GlycoPP, SPRINT-Gly, and N-GlyDE. For accuracy evalu-
ation conducted using the independent set for human. The
MCC values of N-GlycoGo and GlycoEP_A_BPP are tied
for first place. For accuracy evaluation, conducted by using
the independent set of mouse, all performance of other tools
were lower than that ofN-GlycoGo except GlycoEP’s BPP.
N-GlycoGo was much higher than the average MCC of dif-
ferent models of GlycoEP.

N-GlycoGo was developed by strictly analyzing and inte-
grating the best architecture in each step for glycosylation site
prediction in human and mouse. It will help researchers to
reduce time greatly and predict accurately.
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