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ABSTRACT Zero Shot Learning (ZSL) aims to solve the classification problemwith no training sample, and
it is realized by transferring knowledge from source classes to target classes through the semantic embeddings
bridging. Generalized ZSL (GZSL) enlarges the search scope of ZSL from only the seen classes to all
classes. A large number of methods are proposed for these two settings, and achieve competing performance.
However, most of them still suffer from the domain shift problem due to the existence of the domain gap
between the seen classes and unseen classes. In this article, we propose a novel method to learn discriminative
features with visual-semantic alignment for GZSL. We define a latent space, where the visual features and
semantic attributes are aligned, and assume that each prototype is the linear combination of others, where the
coefficients are constrained to be the same in all three spaces. To make the latent space more discriminative,
a linear discriminative analysis strategy is employed to learn the projection matrix from visual space to latent
space. Five popular datasets are exploited to evaluate the proposed method, and the results demonstrate the
superiority of our approach compared with the state-of-the-art methods. Beside, extensive ablation studies
also show the effectiveness of each module in our method.

INDEX TERMS Generalized zero-shot learning, linear discriminative analysis, visual semantic alignment,
prototype synthesis.

I. INTRODUCTION
With the development of deep learning technique, the task
of image classification has been transfered to large scale
datasets, such as ImageNet [1], and achieved the level of
human-beings [2]. Does it mean that we are already to solve
large-scale classification problems? Two questions should be
answered: 1) Can we collect enough samples of all the classes
appeared all over the world for training? 2) Can the trained
model with limited classes be transfered to other classes
without retraining? The first question cannot be given an
affirmative answer because there are 8.7 million classes only
in animal species [3] and over 1000 new classes are emerging
everyday. Therefore, many researchers moved their focus to
the second question by employing transfer learning [4], [5]
and Zero-shot Learning (ZSL) [6].

ZSL tries to recognize the classes that have no labeled
data available during training, and is usually implemented by
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employing auxiliary semantic information, such as semantic
attributes [7] or word embeddings [8], which is similar to the
process of human recognition of new categories. For example,
a child who has not seen a ‘‘zebra’’ before but knows that
a ‘‘zebra’’ looks like a ‘‘horse’’ and has ‘‘white and black
stripes’’, will be able to recognize a ‘‘zebra’’ very easily when
he/she actually sees a zebra.

Since the concept of ZSL was first proposed [9], many
ZSL methods have been proposed and most of them try to
solve the inherent domain shift problem [10]–[13], which
is caused by the domain gap between the seen classes and
unseen classes. Although these methods can alleviate the
domain shift problem and achieve certain effect, their perfor-
mance are limited due to their negligence of unseen classes.
To fully solve the domain shift problem, Fu et al. [14]
assumed that the labeled seen samples and the unlabeled
unseen samples can be both utilized during training, which
is often called transductive learning. This type of method can
significantly alleviate the domain shift problem and achieve
the state-of-the-art performance [15]–[17], but the unlabeled
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unseen data usually is inaccessible during training in realistic
scenarios.

In addition, conventional inductive learning often assumes
that the upcoming test data belongs to the unseen classes,
which is also unreasonable in reality because we cannot
have the knowledge of the ascription of the future data in
advance. Therefore, Chao et al. suggested to enlarge the
search scope for test data form only the unseen classes to
all classes [18], including both seen and unseen categories,
which is illustrated in Fig. 1. To better solve the domain shift
problem on the more realistic GZSL setting, many synthetic
based methods have been proposed [19]–[22]. They often
train a deep generative network to synthesize unseen data
from its corresponding attribute by applying the frameworks
ofGenerativeAdversarial Network (GAN) [23] orVariational
Auto-Encoder (VAE) [24], and then the synthesized data and
the labeled seen data are combined to train a supervised
close-set classification model. The synthetic based methods
can also achieve state-of-the-art performance, but there is
a serious problem that when a totally new object emerges
the trained model will inevitably fail unless new synthetic
samples are generated and retrained with previous samples.

FIGURE 1. An illustration of the difference between ZSL and GZSL.

To solve the above mentioned problems, in this article,
we proposed a novel method to learn discriminative projec-
tions with visual semantic alignment in a latent space for
GZSL, and the proposed framework is illustrated in Fig. 2.
In this framework, to solve the domain shift problem,
we define a latent space to align the visual and semantic pro-
totypes, which is realized by assuming that each prototype is a
linear combination of others, including both seen and unseen
ones. With this constraint, the seen and unseen categories
are combined together and thus can reduce the domain gap
between them. Besides, to make the latent space more dis-
criminative, a Linear Discriminative Analysis (LDA) strategy
is employed to learn the projection matrix from visual space
to latent space, which can significantly reduce the within
class variance and enlarge the between class variance. At last,
we conduct experiments on five popular datasets to evaluate
the proposed method. The contributions of our method is
summarized as follows,
1) We proposed a novel method to solve the domain shift

problem by learning discriminative projections with
visual semantic alignment in latent space;

2) A linear discriminative analysis strategy is employed to
learn the projection from visual space to latent space,
which can make the projected features in the latent space
more discriminative;

3) We assume that each prototype in all three spaces,
including visual, latent and semantic, is a linear sparse
combination of other prototypes, and the sparse coeffi-
cients for all three spaces are the same. This strategy can
establish a link between seen classes and unseen classes,
reduce the domain gap between them and eventually
solve the domain shift problem;

4) Extensive experiments are conducted on five popular
datasets, and the result shows the superiority of our
method. Besides, detailed ablation studies also show that
the proposed method is reasonable.

The main content of this article is organized as follows:
In section II we briefly introduce some related existing meth-
ods for GZSL. Section III describes the proposed method
in detail, and Section IV gives the experimental results and
makes comparison with some existing state-of-the-art meth-
ods on several metrics. Finally in section V, we conclude this
article.

II. RELATED WORKS
In this section, we will briefly review some related ZSL and
GZSL works for the domain shift problem.

A. COMPATIBLE METHODS
Starting from the proposed ZSL concept [9], many ZSL
methods have been emerging in recent several years. Due
to the existence of the gap between the seen and unseen
classes, an inherent problem, called domain shift problem,
limits the performance of ZSL. These methods often project
a visual sample into semantic space, where Nearest Neighbor
Search (NNS) is conducted to find the nearest semantic proto-
type and its label is assigned to the test sample. Kodirov et al.
tried to use an autoencoder structure to preserve the semantic
meaning from visual features, and thus to solve the domain
shift problem [13]. Zhang et al. exploited a triple verification,
including an orthogonal constraint and two reconstruction
constraints, to solve the problem and achieved a significant
improvement. Akata et al. proposed to view attribute-based
image classification as a label-embedding problem that each
class is embedded in the space of attribute vectors [25], they
employed pair-wise training strategy that the projected pos-
itive pair in the attribute space should have shorter distance
than that of negative pair. However, the performance of these
method are limited due to their negligence of unseen classes
during training.

In addition, conventional ZSL assumes that the upcoming
test sample belongs to the target classes, which is often unrea-
sonable in realistic scenarios. Therefore, Chao et al. extended
the search scope from only unseen classes to all classes,
including both seen and unseen categories [18]. Further-
more, Xian et al. re-segmented the five popular benchmark
datasets to avoid the unseen classes from overlappingwith the
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FIGURE 2. Illustration of the proposed method. The visual features and the semantic attributes are both projected into the latent space, where the
projected vectors are scattered between classes and clustered within classes. Besides, the combinational coefficients are kept same in all three
spaces to make the visual-semantic alignment.

categories in ImageNet [26]. Beside, they also proposed a
new harmonic metric to evaluate the performance of GZSL,
and release the performance of some state-of-the-art method
on the new metric and datasets. From then on, many methods
have been proposed on this more realistic setting. For exam-
ple, Zhang et al. proposed a probabilistic approach to solve
the problem within the NNS strategy [27]. Liu et al. designed
a Deep Calibration Network (DCN) to enable simultaneous
calibration of deep networks on the confidence of source
classes and uncertainty of target classes [28]. Pseudo distri-
bution of seen samples on unseen classes is also employed to
solve the domain shift problem on GZSL [29]. Besides, there
are many other methods developed for this more realistic
setting [30], [31].

B. SYNTHETIC BASED METHODS
To solve the domain shift problem, synthetic based methods
have attracted wide interest among researchers since they can
obtain very significant improvement compared with tradi-
tional compatible methods.

Long et al. [32] firstly tried to utilize the unseen attribute
to synthesize its corresponding visual features, and then train
a fully supervised model by combining both the seen data
and the synthesized unseen features. Since then, more and
more synthetic based methods have being proposed [8], [30],
[31], [33], and most of them are based on GAN [23] or
VAE [24] because adversarial learning and VAE can facilitate
the networks to generate more realistic samples [34], [35].
CVAE-ZSL [36] exploits a conditional VAE (cVAE) to
realize the generation of unseen samples. Xian et al. pro-
posed a f-CLSWGAN method to generate sufficiently dis-
criminative CNN features by training a Wasserstein GAN
with a classification loss [19]. Huang et al. [37] tried to
learn a visual generative network for unseen classes by
training three component to evaluate the closeness of an
image feature and a class embedding, under the combination

of cyclic consistency loss and dual adversarial loss. Dual
Adversarial Semantics-Consistent Network (DASCN) [20]
learns two GANs, namely primal GAN and dual GAN, in a
unified framework, where the primal GAN learns to syn-
thesize semantics-preserving and inter-class discriminative
visual features and the dual GAN enforces the synthesized
visual features to represent prior semantic knowledge via
semantics-consistent adversarial learning.

Although these synthetic basedmethods can achieve excel-
lent performance, they all suffer from a common serious prob-
lem that when an object of a new category emerges, the model
should be retrained with the new synthesized samples of
the new category. Different from these GAN or VAE based
synthetic methods, our approach is a compatible one, which
does not have the previous mentioned problem, and it can still
accept new category without retraining even though there will
be a little performance degradation.

C. TRANSDUCTIVE METHODS
Fu et al. tried to include the unlabeled unseen data in train-
ing, which is often called transductive learning, to solve the
domain shift problem and achieved a surprising improve-
ment [14]. Unsupervised Domain Adaptation (UDA) [38]
formulates a regularized sparse coding framework, which
utilizes the unseen class labels’ projections in the semantic
space, to regularize the learned unseen classes projection thus
effectively overcoming the projection domain shift problem.
QFSL [15] maps the labeled source images to several fixed
points specified by the source categories in the semantic
embedding space, and the unlabeled target images are forced
to be mapped to other points specified by the target cate-
gories. Zhang et al.proposed a explainable Deep Transduc-
tive Network (DTN) by training on both labeled seen data
and unlabeled unseen data, the proposed network exploits a
KL Divergence constraint to iteratively refine the probability
of classifying unlabeled instances by learning from their high
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confidence assignments with the assistance of an auxiliary
target distribution [17]. Although these transductive methods
can achieve significant performance and outperform most
of conventional inductive ZSL methods, the target unseen
samples are usually inaccessible in realistic scenarios.

III. METHODOLOGY
A. PROBLEM DEFINITION
Let Y = {y1, · · · , ys} and Z = {z1, · · · , zu} denote a set of s
seen and u unseen class labels, and they are disjointY∩Z = ∅.
Similarly, let AY = {ay1, · · · , ays} ∈ Rl×s and AZ =
{az1, · · · , azu} ∈ Rl×u denote the corresponding s seen and
u unseen attributes respectively. Given the training data in
3-tuple of N seen samples: (x1, a1, y1), · · · , (xN , aN , yN ) ⊆
X s × AY × Y , where X s is d-dimensional features extracted
from N seen images. When testing, the preliminary knowl-
edge is u pairs of attributes and labels:(̂a1, ẑ1), · · · , (̂au, ẑu) ⊆
AZ × Z. Zero-shot Learning aims to learn a classification
function f : Xu → Z to predict the label of the input image
from unseen classes, where xi ∈ Xu is totally unavailable
during training.

B. OBJECTIVE
In this subsection, we try to propose an novel idea to learn
discriminative projection with visual semantic alignment for
generalized zero shot learning, the whole architecture is
illustrated in Fig. 2.

1) SAMPLING FROM PROTOTYPES
Supposewe have already know the prototypes of seen classes,
the seen features should be sampled from these prototypes,
so we can have the following constraint,

Lbasic = ‖X s − PsY s‖2F , (1)

where, Ps is the prototypes of seen categories, Y s is the
one-hot labels of seen samples, and ‖·‖2F denotes for the
Frobenius norm.

2) PROTOTYPE SYNTHESIS
Here we think each class prototype can be described as
the linear combination of other ones with corresponding
reconstruction coefficients. The reconstruction coefficients
are sparse because the class is only related with certain
classes. Moreover, to make the combination more flexible,
we define another latent space, and construct a sparse graph
in all three space as,

Lsyn = ‖P − PH‖2F + α‖C − CH‖
2
F

+β‖A− AH‖2F ,

s.t. diag(H) = 0, (2)

where, H is the coefficient matrix; P = [Ps,Pu], Ps and
Pu are visual prototypes of seen classes and unseen classes
respectively; C = [Cs,Cu], Cs and Cu are the prototypes
of seen classes and unseen classes respectively in latent

space; A = [As,Au], α and β are the balancing parameters.
We apply diag(H) = 0 to avoid the trivial solution.

3) VISUAL-SEMANTIC ALIGNMENT
In the latent space, the prototypes are the projections from
both visual space and semantic space, so the alignment can
be represented as,

Leqnarray = ‖WT
1 P − C‖

2
F + ‖W

T
2A− C‖

2
F , (3)

where, W1 and W2 are the projection matrices from visual
space and semantic space respectively.

4) LINEAR DISCRIMINATIVE PROJECTION
In visual space, the features might not be discriminative,
which is illustrated in Fig. 2, so the direct strategy is to
cluster them within class and scatter them between classes.
Linear Discriminative Analysis is the proper choice and we
canmaximize the following function to achieve such purpose,

LLDA =
WT

1 SBW1

WT
1 SWW1

, (4)

where, SB and SW are the between-class scatter matrix and
within-class scatter matrix respectively.

C. SOLUTION
Since we have already defined the loss function for each con-
straint, we can combine them and obtain the final objective
as follows,

L = Lsyn + γLeqnarray − κLLDA + λLbasic
+ θ (‖W1‖

2
F + ‖W2‖

2
F + ‖H‖

2
F + ‖P‖

2
F+‖C‖

2
F ), (5)

where γ , κ and λ are the balancing coefficients.

1) INITIALIZATION
Since Eq. 5 is not joint convex over all variables, there is
no close-form solution simultaneously. Thus, we propose an
iterative optimization strategy to update a single unresolved
variable each time. Because proper initialization parameters
can not only improve themodel performance but also increase
the convergence speed, we further split the solution into two
sub problems, i.e., initializing the parameters with reduced
constraints, and iterative optimizing them with the full con-
straints.
Initializing H: Since A is known in advance, we initialize

H first with the last term of Eq. 2. We exploit the following
formulation as the loss function for H ,

LH = β‖A− AH‖2F + θ‖H‖
2
F ,

subject to diag(H) = 0. (6)

To solve the constraint diag(H) = 0, we calculate H once
per column,

H i = argmin
H i

β‖Ai − A\iH i‖
2
F + θ‖H i‖

2
F

= (AT
\iA\i +

θ

β
I)−1AT

\iAi, (7)
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whereH i is the ith column ofH and the ith entry ofH i is also
removed, A\i is the matrix of A excluding the ith column.
Initializing Ps: We use Eq. 1 to initialize Ps, and the

closed-form solution can be obtained as follows,

Ps = X sYTs (Y sY
T
s + θI)

−1, (8)

Initializing Pu: Since there is no training data for unseen
classes, we cannot use the similar initialization strategy as Ps
to initialize Pu. However, we have already get H with Eq. 7
in advance, it is easy to utilize Ps and H to calculate Pu. The
simplified loss function can be formulated as follows,

LPu = ‖[Ps,Pu]− [Ps,Pu]H‖2F + θ‖Pu‖
2
F

= ‖[Ps,Pu]− [Ps,Pu]
[
Hs1 Hu1
Hs2 Hu2

]
‖
2
F + θ‖Pu‖

2
F

= ‖[Ps − PsHs1 − PuHs2,Pu − PsHu1 − PuHu2]‖2F
+ θ‖Pu‖2F

= ‖PuHs2 + PsHs1 − Ps‖2F
+‖Pu(I −Hu2)− PsHu1‖

2
F + θ‖Pu‖

2
F . (9)

By computing the derivative of Eq. 10 with respected to Pu
and setting it to zero, we can obtain the following solution,

Pu = (PsHT
s2 − PsHs1HT

s2 + PsHu1(I −HT
u2))

×(Hs2HT
s2 + (I −Hu2)(I −HT

u2)+ θI)
−1. (10)

Initializing W1: Since C is unknown till now, we cannot
calculateW1 withe Eq. 3. The only way forW1 is to optimize
Eq. 4, from which we can deduce the following formulation,

(WT
1 SwW1)SBW1 = SwW1(WT

1 SBW1). (11)

If we define WT
1 SBW1

WT
1 SWW1

= τ , then W1 can be solved by

obtaining the eigenvector of S−1W SB.
InitializingC: SinceW1 andP are already known, it is easy

to initialize C with the first item of Eq. 3, and the solution is,

C = WT
1 P. (12)

Initializing W2: By employing the second item of Eq. 3,
W2 can be solved with following formulation,

W2 = (AAT + θI)−1ACT . (13)

2) OPTIMIZATION
Since the initialized value of each variable has already been
obtained, the optimization of them can be executed iteratively
by fixing others.
Updating H: Similar as that for initializing H , we can

obtain H once per column with the following loss function,

LH i = ‖P i − P\iH i‖
2
F + α‖C i − C\iH i‖

2
F

+β‖Ai − A\iH i‖
2
F + θ‖H i‖

2
F . (14)

By taking the derivative of LH i with respect to H i, and
setting the result to 0, we can obtain the solution of H i as
follows,

H i = (PT
\iP\i + αC

T
\iC\i + βA

T
\iA\i + θI)

−1

×(PT
\iP i + αC

T
\iC i + βAT\iAi). (15)

Updating Ps: By fixing other variables except Ps, we can
obtain the following loss function from Eq. 5,

LPs =‖PsHu1 + PuHu2 − Pu‖2F
+‖Ps(I −Hs1)− PuHs2‖

2
F

+ γ ‖WT
1 Ps−Cs‖

2
F+λ‖X s−PsY s‖2F+θ‖Ps‖

2
F , (16)

which can be expanded as,

(γW1WT
1 + θI)Ps
+Ps((I −Hs1)(I −HT

s1)+Hu1HT
u1 + λY sY

T
s )

= PuHs2(I −HT
s1)− PuHu2HT

u1 + PuH
T
u1

+ γW1Cs + λX sYTs . (17)

If we set Â = γW1WT
1 + θI , B̂ = (I −Hs1)(I −HT

s1)+
Hu1HT

u1+λY sY
T
s , and Ĉ = PuHs2(I−HT

s1)−PuHu2HT
u1+

PuHT
u1 + γW1Cs + λX sYTs , then Eq. 17 can be simplified

to ÂPs + PsB̂ = Ĉ, which is a well-known Sylvester
equation and can be solved efficiently by the Bartels-Stewart
algorithm [39]. Therefore, Eq. 17 can be implemented with a
single line of code Ps = sylvester(Â, B̂, Ĉ) in MATLAB.
Updating Pu: Similar as that for Ps, we fix other variables

except Pu, and obtain,

LPu = ‖PuHs2 + PsHs1 − Ps‖2F
+‖Pu(I −Hu2)− PsHu1‖

2
F

+ γ ‖WT
1 Pu − Cu‖

2
F + θ‖Pu‖

2
F . (18)

By taking the derivative of LPu with respect to Pu, and set
the result to 0, we can obtain the following equation,

(γW1WT
1 + θI)Pu
+Pu((I −Hu2)(I −HT

u2)+Hs2HT
s2)

= PsHu1(I −HT
u2)− PsHs1HT

s2

+PsHT
s2 + γW1Cu. (19)

Similarly, if we set Ã = γW1WT
1 + θI , B̃ = (I −

Hu2)(I − HT
u2) + Hs2HT

s2, and C̃ = PsHu1(I − HT
u2) −

PsHs1HT
s2+PsH

T
s2+γW1Cu, then Eq. 19 can be simplified

to ÃPu+PuB̃ = C̃, which can also be solved efficiently with
Pu = sylvester(Ã, B̃, C̃) in MATLAB.
Updating C: If we only let C variable and make others

fixed, Eq. 5 can be reduced as,

LC = α‖C − CH‖2F + γ (‖W
T
2A− C‖

2
F

+‖WT
1 P − C‖

2
F )+ θ‖C‖

2
F . (20)

By taking the derivative of LC with respect to C, and set
the result to 0, we can obtain the solution of C as follows,

C = (γWT
1 P + γW

T
2A)((2γ + θ )I

+α(I −H)(I −HT ))−1. (21)

UpdatingW2: As forW2, Eq. 5 can be simplified as,

LW2 = γ ‖W
T
2A− C‖

2
F + θ‖W2‖

2
F . (22)
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By taking the derivative ofLW2 with respect toW2, and set
the result to 0, we can obtain the solution ofW2 as follows,

W2 = (AAT +
θ

γ
I)−1ACT . (23)

UpdatingW1: Similar asW2 forW1, Eq. 5 can be reduced
as,

LW1 = γ ‖W
T
1 P − C‖

2
F − κ

WT
1 SBW1

WT
1 SWW1

+ θ‖W2‖
2
F . (24)

Due to the direct derivative of Eq. 22will cause the negative
order ofW1, we rewrite it as follows,

LW1 = γ ‖W
T
1 P − C‖

2
F

− κ(WT
1 SBW1 − ηWT

1 SWW1)+ θ‖W1‖
2
F , (25)

where, η is a coefficient and set as the maximum eigenvalue
of S−1W SB here.
By taking the derivative ofLW1 with respect toW1, and set

the result to 0, we can obtain the solution ofW1 as follows,

W1 = (PPT −
κ

γ
SB +

κη

γ
SW + θI)−1PCT . (26)

After these steps, the test sample can be classified by
projecting it into the latent space and finding the nearest
neighbor of it from C. The algorithm of the proposed method
is described in Alg. 1.

IV. EXPERIMENTS
In this section, we first briefly review some datasets applied in
our experiments, then some settings for the experiments are
given, and at last we show the experiment results and abla-
tion study to demonstrate the performance of the proposed
method.

A. DATASETS
In this experiment, we utilize five popular datasets to eval-
uate our method, i.e., SUN (SUN attribute) [40], CUB
(Caltech-UCSD-Birds 200-2011) [41], AWA1 (Animals with
Attributes) [42], AWA2 [42] and aPY (attribute Pascal and
Yahoo) [43]. Among them, SUN and CUB are fine-grained
datasets while AWA1/2 and aPY are coarse-grained ones.
The detailed information of the datasets is summarized in
Tab. 1, where ‘‘SS’’ denotes the number of Seen Samples
for training, ‘‘TS’’ and ‘‘TR’’ refer to the numbers of unseen
class samples and seen class samples respectively for testing.

TABLE 1. Summary of the five employed datasets. ‘‘SS’’ denotes the
number of Seen Samples for training, ‘‘TS’’ and ‘‘TR’’ refer to the numbers
of unseen class samples and seen class samples respectively for testing.

Algorithm 1 The Training Framework of the Proposed
Method
Input:

The set of visual features of seen classes: X s;
The set of one-hot labels of X s: Y s;
the set of semantic attributes, including both seen and
unseen classes: A; The number of iterative time for opti-
mization: iter ;
The hyper-parameters: α, β, γ , λ, κ and θ ;

Output:
The projection matrices:W1 andW2;
The visual prototypes of both seen and unseen classes:
Ps and Pu;
The latent prototypes of both seen and unseen classes:Cs
and Cu;

1: Initializing H with Eq. 7 once per clolumn;
2: Initializing Ps and Pu with Eq. 8 and Eq. 10 respectively;

3: Initializing W1 with the eigenvectors of S−1W SB from
Eq. 11;

4: Initializing C with Eq. 12;
5: for k = 1→ iter do
6: Update H with Eq. 15 once per column;
7: Update Ps with Eq. 17 by applying Ps =

sylvester(Â, B̂, Ĉ);
8: Update Pu with Eq. 19 by applying Pu =

sylvester(Ã, B̃, C̃);
9: Update C with Eq. 21;
10: UpdateW2 with Eq. 23;
11: UpdateW1 with Eq. 26;
12: end for
13: return W1,W2, Ps, Pu and C.

Moreover, we use the same split setting, which is proposed
by Xian et al. in [26], for all the comparisons with the state-
of-the-art methods listed in Tab. 2.

B. EXPERIMENTAL SETTING
We exploit the extracted features with ResNet [2] as
our training and testing samples, which are released by
Xian et al. [26], and all the the settings, including both
attributes and classes split, are also the same as those in
[26]. In addition, there are six hyper-parameters α, β, γ ,
λ, κ and θ . Since θ is only used to control the regu-
larization terms, we set it with a small value 1 × 10−4.
As for other five parameters, due to the fact that differ-
ent dataset usually performs well with different parame-
ters, thus we choose our hyper-parameters from the set of
{0.001, 0.01, 0.1, 1, 10, 100, 1000} by adopting a cross vali-
dation strategy. To be specific, we hereby compare the differ-
ence of ZSL cross-validation to conventional cross-validation
for machine learning approaches. Compared to inner-splits
of training samples within each class, ZSL problem requires
inter splits by in turn regarding part of seen classes as
unseen, for example, 20% of the seen classes are selected
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TABLE 2. Comparison of our method and state-of-the-art methods under GZSL setting. Bold font stands for the best result of the corresponding column
and ‘-’ means not reported.

as the validational unseen classes in our experiments, and
the parameters of best average performance of 5 executions
are selected as the final optimal parameters for each dataset.
It should be noted that the parameters may not be the most
suitable for the test set, because the labels of test data are
strictly inaccessible during training.

C. COMPARISON WITH BASELINES
In this subsection, we conduct experiments to compare our
method with some baselines methods. In addition to the
methods evaluated in [26], we also compare our method
with some newly proposed frameworks, such as GFZSL [50],
LAGO [51], PSEUDO [52], KERNEL [53], TRIPLE [54],
LESAE [55], LESD [56] and VZSL [22]. To be specific,
we directly cite the results from [26] or from their own papers
if it is feasible, otherwise we re-implement them according to
the methods described in their own papers. We exploit the
harmonic mean H to evaluate our model under the GZSL
setting, and it is defined as,

H =
2× acctr × accts
acctr + accts

, (27)

where, acctr and accts are the accuracies of test samples from
seen classes and unseen categories respectively, and we adopt
the average per-class top-1 accuracy as the final result.

Since our method utilizes both seen and unseen semantic
attributes and focuses on the more realistic GZSL setting,
we do not report the result on conventional ZSL setting. The
results of our method and the compared method are recorded
in Tab. 2, and the best result of each column is highlighted
with bold font. From this table, we can clearly discover that
our method can outperform the state-of-the-art methods on
both ts andH . Concretely, ourmethod can improve ts by 0.8%
on SUN, 4.0% on CUB, 6.5% on AWA1, 5.7% on AWA2 and
5.2% on APY, and enhance H by 0.6% on SUN, 0.2% on

CUB, 9.8% on AWA1, 7.7% on AWA2 and 8.0% on APY
respectively compared with the best methods LESAE and
TRIPLE. Besides, compared to those existing methods that
have high tr but low ts and H , such as DAP and CONSE,
our method can achieve more balanced performance on ts
and tr and eventually obtain a significant improvement onH .
We ascribe this improvement to the discriminative projection
with LDA and the prototype synthesis with both seen and
unseen classes, because the first one can make the projected
features from same class cluster and from different classes
disperse, and the second one combines both seen and unseen
classes into a unified framework to alleviate the domain shift
problem.

D. ABLATION STUDY
1) EFFECT OF LATENT SPACE
In our method, we utilize the latent space as the interme-
diate space for both visual and semantic features and we
have claimed that this space can obtain more discriminative
projection and alleviate the domain shift problem. Therefore,
it is necessary to verify whether this space can achieve such
statement. In this subsection, we remove the latent prototypes
from Eq. 2 and Eq. 3, modify the discriminative projection
item with LDA, and redefine the three loss functions as
follows,

Lsyn = ‖P − PH‖2F + β‖A− AH‖
2
F

Leqnarray = ‖WTP − A‖2F

LLDA =
WTSBW

WTSWW
.

(28)

We replace the three itemsLsyn,Leqnarray andLLDA in Eq. 5
and re-optimize it, the performancewith the new loss function
is illustrated in Fig. 3, form which it can be clearly seen that
the accuracies with the latent space are higher than those
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FIGURE 3. Illustration of performance with and without the latent space
in our proposed method.

without the latent space on all five datasets. To be specific,
we can obtain more improvement on SUN and CUB than on
AWA and APY, especially on the metric ts. We attribute this
phenomenon to that the learned vectors in latent space can
preserve more discriminative characteristic, and the employ-
ment of unified synthesis framework on both seen and unseen
classes can well alleviate the domain shift problem.

2) EFFECT OF LDA
In our method, we utilize the LDA strategy to project visual
features into latent space to make them more discriminative,
so it is necessary to find how much this mechanism can
improve the final performance. In this experiment, we remove
the loss item LLDA from Eq. 5, and conduct the evaluation
on the five popular datasets. The experimental results are
illustrated in Fig. 4, from which it can be clearly observed
that the method with LDA can significantly outperform that
without LDA constraint. This phenomenon reveals that the
LDA constraint plays a very important role in improving the
performance due to its powerful ability of learning discrimi-
native features in latent space.

FIGURE 4. Illustration of performance with and without LDA on AWA1 in
our proposed method.

Moreover, to more intuitively display the improvement
of our method, we also show the distributions of unseen
samples on AWA1 with and without LDA in latent space with
t-SNE [57]. The results are illustrated in Fig. 5, from which
it can be discovered that the distribution with LDA is more
compact than that without LDA in each class, especially those
classes at the bottom of the figure. This situation further prove
that LDA is necessary for our method to learn discriminative
features in latent space.

FIGURE 5. Illustration of distributions of unseen samples with and
without LDA on AWA1 in our proposed method.

3) DIFFERENT DIMENSION OF LATENT SPACE
Since we apply latent space in our method, It is necessary to
discuss the effect of the dimension of the latent space on the
final performance. In our experiment, we take AWA1 as an
example and change the dimension of the latent space from
5 to 60 to show the performance change. The performance
curves are recorded in Fig. 6, from which it can be clearly
seen that the curves monotonically increase for both ts andH ,
and nearly stop increase when the dimension is larger than
50. This phenomenon reveals that we can obtain better perfor-
mancewhenwe have larger dimension in latent space, but this
increasing will stop when it reaches the number of classes.

FIGURE 6. Illustration of performance with different dimension of the
latent space in our proposed method.

E. ZERO SHOT IMAGE RETRIEVAL
In this subsection, we conduct experiments to show zero shot
retrieval performance of our proposed method. In this task,
we apply the semantic attributes of each unseen category as
the query vector, and compute the mean Average Precision
(mAP) of the returned images. MAP is a popular metric
for evaluating the retrieval performance, it comprehensively
evaluates the accuracy and ranking of returned results, and
defined as,

mAP =
1
u

u∑
i=1

 1
ri

ri∑
j=1

j
pi(j)

 , (29)

where, ri is the number of returned correct images from the
dataset corresponding to the ith query attribute, pi(j) repre-
sents the position of the jth retrieved correct image among
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all the returned images according to the ith query attribute.
In this experiment, the number of returned images equals the
number of the samples in unseen classes.

For the convenience of comparison, we employ the
standard split of the four datasets, including SUN, CUB,
AWA1 and aPY, which can be found in [26], and the results
are shown in Tab. 3. The values of the baseline methods
listed in Tab. 3 are directly cited from [58]. The results
show that our method can outperform the baselines on all
four datasets, especially on the coarse-grained dataset AWA1,
which reveals that our method can make the prototypes in
latent space more discriminative.

TABLE 3. The mean Average Precision (mAP) for zero shot image retrieval.

V. CONCLUSION
In this article, we have proposed a novel method to learn
discriminative features with visual-semantic alignment for
generalized zero shot learning. in this method, we defined a
latent space, where the visual features and semantic attributes
are aligned. We assumed that each prototype is the linear
combination of others and the coefficients are the same in all
three spaces, including visual, latent and semantic. To make
the latent space more discriminative, a linear discrimina-
tive analysis strategy was employed to learn the projection
matrix from visual space to latent space. Five popular datasets
were exploited to evaluate the proposed method, and the
results demonstrated the superiority compared with the state-
of-the-art methods. Beside, extensive ablation studies also
showed the effectiveness of each module of the proposed
method.

REFERENCES
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:

A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[3] A. Zhao, M. Ding, J. Guan, Z. Lu, T. Xiang, and J.-R. Wen, ‘‘Domain-
invariant projection learning for zero-shot recognition,’’ in Proc. 32nd Int.
Conf. Neural Inf. Process. Syst., 2018, pp. 1027–1038.

[4] J. Li, K. Lu, Z. Huang, L. Zhu, and H. T. Shen, ‘‘Transfer independently
together: A generalized framework for domain adaptation,’’ IEEE Trans.
Cybern., vol. 49, no. 6, pp. 2144–2155, Jun. 2019.

[5] J. Li, Y. Wu, and K. Lu, ‘‘Structured domain adaptation,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 27, no. 8, pp. 1700–1713, Aug. 2017.

[6] H. Zhang, Y. Long, W. Yang, and L. Shao, ‘‘Dual-verification network for
zero-shot learning,’’ Inf. Sci., vol. 470, pp. 43–57, Jan. 2019.

[7] Y. Long and L. Shao, ‘‘Describing unseen classes by exemplars: Zero-shot
learning using grouped simile ensemble,’’ inProc. IEEEWinter Conf. Appl.
Comput. Vis. (WACV), Mar. 2017, pp. 907–915.

[8] H. Zhang, Y. Long, L. Liu, and L. Shao, ‘‘Adversarial unseen visual feature
synthesis for zero-shot learning,’’ Neurocomputing, vol. 329, pp. 12–20,
Feb. 2019.

[9] C. H. Lampert, H. Nickisch, and S. Harmeling, ‘‘Attribute-based classifica-
tion for zero-shot visual object categorization,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 3, pp. 453–465, Mar. 2014.

[10] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome,
G. S. Corrado, and J. Dean, ‘‘Zero-shot learning by convex combination
of semantic embeddings,’’ in Proc. Int. Conf. Learn. Represent., 2014,
pp. 1–10.

[11] Z. Akata, S. Reed, D.Walter, H. Lee, and B. Schiele, ‘‘Evaluation of output
embeddings for fine-grained image classification,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 2927–2936.

[12] H. Zhang, Y. Long, and L. Shao, ‘‘Zero-shot leaning and hashing
with binary visual similes,’’ Multimedia Tools Appl., vol. 78, no. 17,
pp. 24147–24165, Sep. 2019.

[13] E. Kodirov, T. Xiang, and S. Gong, ‘‘Semantic autoencoder for zero-shot
learning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 3174–3183.

[14] Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong, ‘‘Transductive
multi-view embedding for zero-shot recognition and annotation,’’ in Proc.
Eur. Conf. Comput. Vis., 2014, pp. 584–599.

[15] J. Song, C. Shen, Y. Yang, Y. Liu, and M. Song, ‘‘Transductive unbiased
embedding for zero-shot learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 1024–1033.

[16] Y. Yu, Z. Ji, X. Li, J. Guo, Z. Zhang, H. Ling, and F. Wu, ‘‘Transductive
zero-shot learning with a self-training dictionary approach,’’ IEEE Trans.
Cybern., vol. 48, no. 10, pp. 2908–2919, Oct. 2018.

[17] H. Zhang, L. Liu, Y. Long, Z. Zhang, and L. Shao, ‘‘Deep transductive
network for generalized zero shot learning,’’ Pattern Recognit., vol. 105,
Sep. 2020, Art. no. 107370.

[18] W.-L. Chao, C. Soravit, B. Gong, and F. Sha, ‘‘An empirical study and
analysis of generalized zero-shot learning for object recognition in the
wild,’’ in Proc. Eur. Conf. Comput. Vis., 2016, pp. 52–68.

[19] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, ‘‘Feature generating networks
for zero-shot learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 5542–5551.

[20] J. Ni, S. Zhang, and H. Xie, ‘‘Dual adversarial semantics-consistent net-
work for generalized zero-shot learning,’’ inProc. Adv. Neural Inf. Process.
Syst., 2019, pp. 6146–6157.

[21] F. Zhang and G. Shi, ‘‘Co-representation network for generalized zero-shot
learning,’’ in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 7434–7443.

[22] W. Wang, Y. Pu, V. K. Verma, K. Fan, Y. Zhang, C. Chen, P. Rai, and
L. Carin, ‘‘Zero-shot learning via class-conditioned deep generative mod-
els,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 4211–4218.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Annu. Conf. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[24] P. D. Kingma andM.Welling, ‘‘Auto-encoding variational Bayes,’’ inProc.
Int. Conf. Learn. Represent., 2014, pp. 1–14.

[25] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, ‘‘Label-embedding
for image classification,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 7, pp. 1425–1438, Jul. 2016.

[26] Y. Xian, B. Schiele, and Z. Akata, ‘‘Zero-shot learning—The good, the bad
and the ugly,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 4582–4591.

[27] H. Zhang, H. Mao, Y. Long, W. Yang, and L. Shao, ‘‘A probabilistic
zero-shot learning method via latent nonnegative prototype synthesis of
unseen classes,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7,
pp. 2361–2375, Jul. 2020.

[28] S. Liu, M. Long, J. Wang, and M. I. Jordan, ‘‘Generalized zero-shot
learning with deep calibration network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 2005–2015.

[29] H. Zhang, J. Liu, Y. Yao, and Y. Long, ‘‘Pseudo distribution on unseen
classes for generalized zero shot learning,’’ Pattern Recognit. Lett.,
vol. 135, pp. 451–458, Jul. 2020.

[30] V. K. Verma, G. Arora, A. Mishra, and P. Rai, ‘‘Generalized zero-shot
learning via synthesized examples,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 4281–4289.

[31] E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata, ‘‘General-
ized zero- and few-shot learning via aligned variational autoencoders,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 8247–8255.

VOLUME 8, 2020 166281



P. Du et al.: Learning Discriminative Projection With Visual Semantic Alignment for GZSL

[32] Y. Long, L. Liu, L. Shao, F. Shen, G. Ding, and J. Han, ‘‘From zero-
shot learning to conventional supervised classification: Unseen visual data
synthesis,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1627–1636.

[33] L. Chen, H. Zhang, J. Xiao, W. Liu, and S.-F. Chang, ‘‘Zero-shot visual
recognition using semantics-preserving adversarial embedding networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1043–1052.

[34] W. Zhang, Z. Zuo, Y. Wang, and Z. Zhang, ‘‘Double-integrator dynam-
ics for multiagent systems with antagonistic reciprocity,’’ IEEE Trans.
Cybern., vol. 50, no. 9, pp. 4110–4120, Sep. 2020.

[35] Y. Zhang and Y. Liu, ‘‘Nonlinear second-order multi-agent systems subject
to antagonistic interactions without velocity constraints,’’ Appl. Math.
Comput., vol. 364, Jan. 2020, Art. no. 124667.

[36] A. Mishra, S. K. Reddy, A. Mittal, and H. A. Murthy, ‘‘A generative model
for zero shot learning using conditional variational autoencoders,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2018, pp. 2188–2196.

[37] H.Huang, C.Wang, P. S. Yu, andC.-D.Wang, ‘‘Generative dual adversarial
network for generalized zero-shot learning,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 801–810.

[38] E. Kodirov, T. Xiang, Z. Fu, and S. Gong, ‘‘Unsupervised domain adapta-
tion for zero-shot learning,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 2452–2460.

[39] R. H. Bartels and G. W. Stewart, ‘‘Solution of the matrix equation AX +
XB = c [F4],’’ Commun. ACM, vol. 15, no. 9, pp. 820–826, Sep. 1972.

[40] G. Patterson, C. Xu, H. Su, and J. Hays, ‘‘The SUN attribute database:
Beyond categories for deeper scene understanding,’’ Int. J. Comput. Vis.,
vol. 108, nos. 1–2, pp. 59–81, May 2014.

[41] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, ‘‘The
caltech-ucsd birds-200-2011 dataset,’’ California Institute of Technology,
Pasadena, CA, USA, Tech. Rep. CNS-TR-2011-001, 2011.

[42] C. H. Lampert, H. Nickisch, and S. Harmeling, ‘‘Learning to detect unseen
object classes by between-class attribute transfer,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2009, pp. 951–958.

[43] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, ‘‘Describing objects
by their attributes,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2009, pp. 1778–1785.

[44] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, ‘‘Zero-shot learning
through cross-modal transfer,’’ in Proc. Annu. Conf. Neural Inf. Process.
Syst., 2013, pp. 935–943.

[45] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen,M.Hein, and B. Schiele, ‘‘Latent
embeddings for zero-shot classification,’’ inProc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 69–77.

[46] Z. Zhang and V. Saligrama, ‘‘Zero-shot learning via semantic similarity
embedding,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 4166–4174.

[47] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and
T. Mikolov, ‘‘Devise: A deep visual-semantic embedding model,’’ in Proc.
Annu. Conf. Neural Inf. Process. Syst., 2013, pp. 2121–2129.

[48] B. Romera-Paredes and P. Torr, ‘‘An embarrassingly simple approach to
zero-shot learning,’’ in Proc. ICML, 2015, pp. 2152–2161.

[49] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha, ‘‘Synthesized classifiers
for zero-shot learning,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 5327–5336.

[50] V. K. Verma and P. Rai, ‘‘A simple exponential family framework for zero-
shot learning,’’ in Proc. Eur. Conf. Mach. Learn. Princ. Pract. Knowl.
Discovery Databases, Skopje, Macedonia. Springer, 2017, pp. 792–808.

[51] Y. Atzmon and G. Chechik, ‘‘Probabilistic AND-OR attribute grouping
for zero-shot learning,’’ 2018, arXiv:1806.02664. [Online]. Available:
http://arxiv.org/abs/1806.02664

[52] T. Long, X. Xu, Y. Li, F. Shen, J. Song, and H. T. Shen, ‘‘Pseudo transfer
with marginalized corrupted attribute for zero-shot learning,’’ in Proc.
ACM Multimedia Conf. Multimedia Conf. MM, 2018, pp. 1802–1810.

[53] H. Zhang and P. Koniusz, ‘‘Zero-shot kernel learning,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7670–7679.

[54] H. Zhang, Y. Long, Y. Guan, and L. Shao, ‘‘Triple verification network
for generalized zero-shot learning,’’ IEEE Trans. Image Process., vol. 28,
no. 1, pp. 506–517, Jan. 2019.

[55] Y. Liu, Q. Gao, J. Li, J. Han, and L. Shao, ‘‘Zero shot learning via low-
rank embedded semantic AutoEncoder,’’ inProc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 2490–2496.

[56] Z. Ding, M. Shao, and Y. Fu, ‘‘Low-rank embedded ensemble semantic
dictionary for zero-shot learning,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2050–2058.

[57] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[58] Z. Ding, M. Shao, and Y. Fu, ‘‘Generative zero-shot learning via low-rank
embedded semantic dictionary,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 12, pp. 2861–2874, Dec. 2019.

[59] Z. Zhang and V. Saligrama, ‘‘Zero-shot learning via joint latent similarity
embedding,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 6034–6042.

[60] M. Bucher, S. Herbin, and F. Jurie, ‘‘Improving semantic embedding
consistency by metric learning for zero-shot classification,’’ in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 6034–6042.

[61] X. Xu, F. Shen, Y. Yang, D. Zhang, H. T. Shen, and J. Song, ‘‘Matrix
tri-factorization with manifold regularizations for zero-shot learning,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3798–3807.

PENGZHEN DU received the Ph.D. degree from
the Nanjing University of Science and Technol-
ogy, in 2015. He is currently an Assistant Pro-
fessor with the School of Computer Science and
Engineering, Nanjing University of Science and
Technology. His research interests include com-
puter vision, evolutionary computation, robotics,
and deep learning.

HAOFENG ZHANG received the B.Eng. and
Ph.D. degrees from the School of Computer Sci-
ence and Engineering, Nanjing University of Sci-
ence and Technology, Nanjing, China, in 2003 and
2007, respectively. From December 2016 to
December 2017, he was an Academic Visitor with
the University of East Anglia, Norwich, U.K. He is
currently a Professor with the School of Computer
Science and Engineering, Nanjing University of
Science and Technology. His research interests
include computer vision and robotics.

JIANFENG LU (Member, IEEE) received the B.S.
degree in computer software and the M.S. and
Ph.D. degrees in pattern recognition and intelligent
system from the Nanjing University of Science
and Technology, Nanjing, China, in 1991, 1994,
and 2000, respectively. He is currently a Professor
and the Vice Dean of the School of Computer
Science and Engineering, Nanjing University of
Science and Technology. His research interests
include image processing, pattern recognition, and
data mining.

166282 VOLUME 8, 2020


