IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 24, 2020, accepted August 7, 2020, date of publication September 7, 2020, date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021355

Deep Learning for Service Function Chain
Provisioning in Fog Computing

NAZLI SIASI”, (Member, IEEE), MOHAMMED JASIM 2, (Member, IEEE),
ADEL ALDALBAHI“3, (Member, IEEE), AND NASIR GHANI“4, (Senior Member, IEEE)

! Department of Physics, Computer Science and Engineering, Christopher Newport University, Newport News, VA 23606, USA
2School of Engineering, University of Mount Union, Alliance, OH 44601, USA

3Department of Electrical Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia

“*Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA

Corresponding author: Nazli Siasi (nazlisiasi@mail.usf.edu)

ABSTRACT Cloud and fog computing along with network function virtualization technology have sig-
nificantly shifted the development of network architectures. They yield in reduced capital and operating
expenditures, while achieving network flexibility and scalability to accommodate the massive growth in data
traffic volumes from user terminals requesting various services and applications. Now cloud solutions here
offer abundant computing and storage resources, at the detriment of high end-to-end delays, hence limiting
quality of service for delay-sensitive applications. Meanwhile, fog solutions offer reduced delays, at the
detriment of limited resources. Existing efforts focus on merging the two solutions and propose multi-tier
hybrid fog-cloud architectures to leverage their both saliencies. However, these approaches can be inefficient
when the applications are delay-sensitive and require high resources. Hence this work proposes a novel
standalone heterogeneous fog architecture that is composed of high-capacity and low-capacity fog nodes,
both located at the terminals proximity. Thereby, realizing a substrate network that offers reduced delays
and high resources, without the need to relay to the cloud nodes. Moreover, the work here leverages and
deploys a deep learning network to propose a service function chain provisioning scheme implemented on
this architecture. The scheme predicts the popular network functions, and maps them on the high-capacity
nodes, whereas it predicts the unpopular network functions and maps them on the low-capacity nodes. The
goal is to predict the next incoming function and prefetch it on the node. Hence, when a future request
demands the same function, it can be cached directly from the node, at reduced resources consumption,
processing times, cost, and energy consumption. Also, this yields in higher number of satisfied requests and
increased capacity. The deep learning network yields reduced loss model and high success rates.

INDEX TERMS Cloud computing, deep learning, fog computing, function popularity, long short-term
memory, network function virtualization, service function chain, preteching and caching.

I. INTRODUCTION

Cloud computing technology provides a centralized paradigm
for computationally intensive tasks for network providers.
This is attributed to its abundant available resources at
the network backbone. Here the computational complexity,
power consumption at the network terminals are alleviated
by eliminating local data processing [1], [2]. However, cloud
computing introduces increased delays in the network due
to the extended link propagation distances between ter-
minals and stationary cloud nodes that are geographically

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

distributed. This also leads to prolonged processing times
of various tasks, end-to-end latencies, congestion and jitters,
packet losses, and mobility management challenges, i.e., long
handover times [3], [4]. This can further be aggregated by
the massive growth of internet of things (IoT) terminals
that require real-time and delay-sensitive applications. Hence
cloud computing solutions can present a bottleneck, despite
the abundant resources offered in accommodating massive
traffic information.

Along these lines, fog computing paradigms are proposed
to overcome the aforementioned cloud limitations. This is
accomplished by transferring the compuing and storage
resources, relaying and caching services from the cloud to the

167665

https://orcid.org/0000-0003-0409-828X
https://orcid.org/0000-0002-3982-327X
https://orcid.org/0000-0003-1903-0480
https://orcid.org/0000-0002-9475-7439
https://orcid.org/0000-0001-8041-0197

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

edge of the network. Tasks are then processed and executed in
a decentralized manner, intermediary between terminals and
cloud nodes. This reduces delays and latencies and alleviates
overloads at cloud nodes. Hence computational services are
now deployed on fog nodes with location-aware and mobility
support. Despite these saliencies, however fog computing can
suffer from limited resources at high traffic volume scenar-
ios, which impose excessive needs for scheduling and load
balancing.

Furthermore, virtualization technologies, such as network
function virtualization (NFV) and software defined network
(SDN) [5], [6] facilitate accessing and sharing cloud or fog
nodes resources and services by various applications. NFV
here decouples network functions (NFs) such as firewall,
DNS, caching, and evolved packets, from proprietary hard-
ware (nodes) [7], and enables them as virtual network func-
tions (VNFs) to run as software instances over dispersed
(cloud or fog) nodes at various locations.

Research Problem: A major design challenge is VNF map-
ping onto the underlying nodes, in order to realize the net-
work virtualization paradigm. Moreover, the VNFs are often
chained together in a specific sequence specified by terminal
requests, thereby forming a service function chain (SFC).
Now performing efficient SFC provisioning on cloud or fog
nodes is a challenging task, in particular achieving efficient
resources utilization, reduced delays, energy and cost, and
high network capacity.

Hence this paper aims to address the problems of VNF
mapping and SFC provisioning in standalone fog computing.
Note that the aforementioned efforts in NFV-based fog net-
works lack SFC provisioning (dependency) when mapping
and embedding the VNFs onto the fog nodes. Moreover,
existing fog architectures suffer from limited processing and
storage capabilities, as opposed to nodes in the cloud domain.
Hence ii ts important to propose fog architectures that can
accommodate requests at reduced delays and high processing
capabilities. Here it is also important to study key perfor-
mance metrics, such as usage rate, network saturation and
capacity, power and energy consumption and cost.

Il. RELATED WORK

Various studies have looked at the SFC provisioning prob-
lem onto cloud and fog architectures. First, the work in [§]
integrates NFV with fog computing for reduced overhead
and network flexibility for fog access points (F-AP) with
fixed catches to support a handover scheme for 5G systems.
Similarly, the work in [9] presents a centralized VNF map-
ping approach to accommodate stringent delay constraints.
Here the VNF mapping problem is formulated as a graph-
clustering optimization model and a genetic algorithm is
leveraged to minimize fronthaul cost. Moreover, authors
in [10] propose a multi-tier architecture for platform as-a-
service (PaaS) that splits VNF mapping onto cloud and fog
nodes, as opposed to fog nodes to measure end-to-end delay.
however, the work here is limited to a single VNF and does
not consider mapping onto fog nodes only. Similarly, work

167666

in [11] supports provisioning for healthcare applications with
components spanning both cloud and fog nodes. This work
focuses only on mechanisms for providing control, signaling,
and data interfaces between the cloud and fog nodes in a
hybrid settings.

Also, authors in [12] present various methods to monitor
and migrate applications components between cloud and fog
nodes, where tradeoff between power consumption and delay
is studied. Namely, the mapping problem here is formulated
as an optimization model, and then an approximate solution
is proposed to decompose the primary problem into three
subproblems of corresponding subsystems (solved indepen-
dently). Overall, the goal is to alleviate link bandwidth usage,
reduce transmission latencies, at the detriment of high com-
puting resources. Note that VNF mapping is not considered
here. Additionally, work in [13] presents the benefits associ-
ated with service migration from cloud to multi-tier fog nodes
based on SDN for video distribution. The required time for
migration between the different tiers is studied in efforts to
minimize traffic at the core network. However, the work here
does not consider the resource limitations at highly congested
multi-tier fog nodes and lacks the study on delay-tolerant
applications with high capacity demands, as well as VNF
mapping.

Moreover, an application component placement scheme
for NFV-based in a single-tier fog architecture is proposed
in [14], where placement decisions are determined from an
ILP solver to achieve cost minimization. This work is limited
to small-scale scenarios and considers a single VNF type in a
single-tier fog nodes. Also, work in [15] presents a multi-tier
fog architecture for video streaming applications. Namely,
it is composed of three tiers that are classified in terms
of coverage, computing and storage capacities. Nonetheless,
the work here only demonstrates suitable services for multi-
tier architectures. It also lacks SFC provisioning and it is lim-
ited to video-streaming applications. Moreover, the extended
three fog tiers model highly increases realization costs.

Machine learning techniques have been leveraged to per-
form NFV placement and SFC provisioning. First, the work
in [16] focuses on the reliability requirement of requested ser-
vices when performing NFV placement. Authors deploy deep
reinforcement learning to model the NFV placement problem
considering the reliability requirement of the services, when
failure occurs. The output of the introduced model determines
optimal placement in each state at minimized placement
cost and increased number of admitted services. Work here
considers failure probabilities, where if any of the servers
hosting the VNFs fails, the service is then disrupted. Simi-
larly, authors in [17] also consider the reliability-aware NFV
placement problem on servers to achieve higher admission
ratio and reduced cost. Here a deep Q-network (DQN) is used
instead to meet the reliability requirement of the incoming
services, when performing the SFC provisioning.

Furthermore, the work in [18] formulates the VNF
placement problem in SDN/NFV-enabled networks as
a binary integer programming (BIP) problem. Then a

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

deep reinforcement learning algorithm termed as, double
deep Q-network based VNF placement algorithm (DDQN-
VNFPA) is used to determine the optimal solution. The algo-
rithm impact on the network performance is tested in terms
of the reject number and reject ratio of the SFC requests, cost,
throughput, delay, running time and load. However, the work
does not specify the architecture of the nodes that host the
VNFs, i.e., lacking the fog computing architecture attributes,
in terms of delays, distribution, delay, energy, cost, and usage
settings.

A. MOTIVATIONS

Existing efforts in NFV-based fog networks lack SFC pro-
visioning (dependency) when mapping and embedding the
VNFs onto the fog nodes. Moreover, existing fog architec-
tures suffer from limited processing and storage capabilities,
as opposed to nodes in the cloud domain. Hence the research
problem here is developing SFC provisioning schemes in
fog computing. Namely, it is important to propose fog archi-
tectures that can accommodate requests at reduced delays
and high processing capabilities. Here it is also important to
study key performance metrics, such as usage rate, network
saturation and capacity, power and energy consumption and
cost.

The main goal is to propose SFC provisioning for fog
computing. A compressive framework includes the request
models from terminals, the fog computing architecture, and
the mapping/routing methods that couple the services onto
the network infrastructure. The goal also enables SFC provi-
sioning for requests demanding various practical applications
(VNFs of various types), while taking into accounts differ-
ent network settings and constraints, such as request delay
bounds, resources requirements, and node processing capac-
ities. This benefits the network operators to accommodate
for multiple requests of different specifications, e.g., delay-
sensitive, delay-tolerant, data-intensive, while accommodat-
ing high traffic volumes with reduced dropping rates.

Overall, aforementioned efforts lack SFC provision-
ing (dependency) when mapping the VNFs, with components
splitting between multi-tier fog and cloud nodes. Hence,
the goal is to achieve SFC provisioning for requests demand-
ing several applications (VNFs of various types), while tak-
ing into accounts different network setting, such as request
delay bounds, resources requirements, and node processing
capacities. This allows the network to account for multiple
requests, e.g., delay-sensitive, delay-tolerant, data-intensive,
while accommodating high traffic volumes with reduced
dropping rates.

B. CONTRIBUTIONS

This paper presents an initial study on leveraging deep learn-
ing networks for an efficient SFC provisioning scheme in
fog computing. The work proposes a novel heterogeneous
fog (HF) architecture, over which the deep learning scheme
is implemented, in order to overcome limitations associ-
ated with existing multi-tier fog and cloud architectures.

VOLUME 8, 2020

TABLE 1. Parameter settings for the Istm network.

Parameter Value
LSTM layers, number of cells 4,150,50,50,50]
Dense layer: Activation function ReLU
Batch size 16
Epochs 350
Dropout rate 0.2
Optimizer RMSprop
Learning rate 0.001
Drop-out regularization rate 0.2

Namely, the proposed architecture possesses heterogeneous
fog nodes of different resources at close proximity to ter-
minals, as opposed to conventional homogeneous multi-tier
fog solutions. These nodes include a set of high-capacity
fog (HCF) nodes that host high-frequency (popular) VNFs,
and low-capacity fog (LCF) nodes hosting low-frequency
(unpopular) VNFs from, high and low incoming traffic vol-
umes, respectively. The deep learning network continuously
monitors incoming requests and their VNFs, and aims to pre-
dict the future incoming VNFs and their popularity classes.
Namely, the popular and unpopular VNFs are predicted, then
prefetched and mapped to nodes that are close to the termi-
nals. Thereafter, when a new request demands the same VNF,
itis cached from the same node for faster retrieval. This elim-
inates redundant VNF mapping and duplicate transmissions,
which reduces the processing times, minimizes network traf-
fic, and saves node resources (used instead to accommo-
date additional new requests). The deep learning network
model yields high success rates with low mean square error,
i.e., hence enhancing the accuracy of the proposed scheme.
Overall, the SFC provisioning scheme features reduced net-
work delays, resources, energy consumption, and realization
costs, as well as achieving high number of satisfied requests.

This paper is organized as follows. The proposed HF
architecture is first proposed in Section III. Then the net-
work model incorporating the topology and request model
is presented in Section IV. The proposed deep learning SFC
provisioning scheme is detailed in Section V. This is followed
by simulation results in Section VI, performance evaluation
in Section VII, along with conclusion in Section VIII. More-
over, Tables 1,2,3 and 4 in this paper list the parameter set-
tings for the LSTM-based deep learning network, simulation
parameters assignment, acronyms & abbreviations, and key
notations, respectively.

llIl. PROPOSED HETEROGENEOUS FOG ARCHITECTURE
Consider a geographical area composed of adjacent fog clus-
ters, each comprises multiple high-capacity fog (HCF) nodes
and low-capacity fog (LCF) nodes. This combination forms
heterogeneous fog (HF) architecture that serves multiple ter-
minals, e.g., pedestrians, vehicles, indoor users, as depicted
in Figure 1. Consider the details.

Assumptions: Consider the following assumptions for the
requests, architecture for the proposed provisioning scheme.

First, the SFC requests generated from the terminals
vary in terms of the delay, processing, storage and cache

167667

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

FIGURE 1. Heterogeneous fog (HF) architecture composed of high- and low-capacity nodes.

TABLE 2. Simulation parameters.

TABLE 3. List of acronyms and abbreviations.

Pme (nlc)r Pme (nhC)
Power parameters: €(n), Wz, w(n), w(npe), w(nne)| 0.7, 15W, 65W,
120W, 200W

requirements, types and numbers of VNFs, frequency (num-
ber of popular/unpopular requests from terminals). The archi-
tecture is composed of heterogeneous nodes of different
resources and separation distances. The nodes and links pos-
sess finite resources in order to consider network congestion,
saturation (working with high traffic volume).

A. HIGH-CAPACITY FOG (HCF) NODE

This node is located at the edge of the network in proxim-
ity with terminals. Thereby, services are provided at short

167668

Parameter Value Torm Acronym
Num. Of Nodes: N, Nne, Nie (1.150], 25, 58 Authentication, Authorization & Accounting | AAA
Num. of Nodes per cluster [5,6] - .
- - - Binary Integer Programming BIP
Node processing capacity (GHz): Qpr(nic), | 5,15
Qur(nne) Deep Q-Network DQN
Node memory (GB): Qme (1), Qme (nhe) 32, 64 Double Deep Q Network DDQN
Link bandwidth capacity (Gbps): B(epm,ic). | 0.5,0.75,1,2,3 Fog access points F-AP
B(em,ne). Bleic,ic). B(€ic,ne): Bl€ne,he) Heterogeneous Fog HE
Num. VNF / request Rand[1-5] High-Capacity Fog HCF
Requested VNF processing, Q pr (va) 1-3 (uniform) Internet of Things ToT
Requested VNF memory, Qme (vy,) Rand [1-5] Low-Capacity Fog LCF
Request bandwidth (Mbps), B 1-10 (uniform) Long Short-Term Memory LSTM
Number of requests per batch, R 150 Mean Square Error MSE
Traffic load A,. (KB) 70 Network Controller NC
Edge transmission rate (rand[] ms)/traffic unit (GB): | [0.5, 1.5], [0.5, Network Function NF
6(em, i) 6(em,he)s 0(€ic,ic)» 0(€ic,he)s 0(ehe,he) 2.5], [2.5, 3.5], Network Function Virtualization NFV
(3.5, 5], [5, 10] Pico Base Station PBS
E‘(ige COS)t ($/GB): p(em,lc)» p(elc,lc)a p(elc,hc)a 1,2,25,3 Radio Remote Head RRH
P\€hc,hc
VNF processing rate at nodes: §(n;.), (npc) 0.03, 1.03 Soft\fvare Deﬁped Net.work SDN
: Service Function Chain SFC
VNF license cost ($): p(va) 100 -
- —— Platform-as-a Service Paas
Node cost per resource unit ($/processor): | 5,3 - -
por(11e), ppr () Virtual Network Funct.lon VNF
Node cost per resource unit ($/memory): | 6,4 VNF Placement Algorithm VNEPA

separation distances and thus enabling low propagation times
across links. Any HCF node is collocated with a high-power
transmission unit, e.g., radio remote head (RRH). Hence pro-
viding high traffic capacity in congested zones with demands
of different applications. A key saliency here is when termi-
nals are clustered in small regions, then this node can support
terminals with high processing and storage capacities, as well
as high data rates, at reduced network delays.

Moreover, the high processing capabilities here enable
elastic scalability to the network. In particular, when traffic
volumes increase. Then the HCF node can provide simulta-
neous signaling services to terminals without the need for

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

TABLE 4. Key notations and variables.

Input Parameter

Notation

N Set of all terminal and network nodes
E Set of all network links
N, Nie, Npe Number of terminals, LCF, HCF

€m,lc> €m,hcs €lc,he

Links between terminals & LCF/HCF
nodes

€lc,lcs €lc,hcs Ehc,he

Links between LCF and HCF nodes

Qp'r (nlc)’ Q;DT (nhc)

LCF, HCF node computing resources

Qme (nlc)7 Qme (nhc)

LCF, HCF node memory resources

Qch (nlc)s Qch (nhc)

LCF, HCF node cache capacity

B(e) Link bandwidth capacity of link e

R Number of requests per batch

U Total number of VNF types

Vi Set of required VNF types for request

Vay VNF of type u € U

S Set of VNF instances associated to vy,

Dep,. SFC dependency order

Qpr(Vu), Qme(vu), | Processing, memory and chase resources

Qch(Vu) demands for v,,

Qpr(Nhe), Available processing, memory and chase

Qme(Mhe),Qen (Mhe) resources at HCF node ny,.

Qpr(nie), Qme(1c), | Available processing, memory and chase

Qen(ic) resources at LCF node n;.

Pr Request delay bound

B, Request bandwidth

A Traffic load for request r

L, Request lifetime

Vi Y. Captured power level of LCF, HCF nodes

Q(n), Q(e) Node and link weights

k, K Path vector, set of path vectors between
source and least-loaded candidate nodes.

d(e) Edge transmission rate of link e

p(e) Edge cost of link e

o(nye), 0(npe) VNF processing rate at nodes

Aby Number of VNFs of a type w in 7

7 Number of virtual mapped links in r

p(vw) License cost for vy,

ppr(”lc)’ Ppr (nhc)

Node cost per resource unit ($/processor)

Pme (nlc), Pme (nhc)

Node cost per resource unit ($/memory)

ﬂEaT‘ﬂn Tt'r'ain

Learning period and training period

Vo, Vi

Set of popular and unpopular VNFs

ﬂ(nlc)’ ﬂ(nh(‘)

Number of popular and unpolular VNFs
cached in the LCF and HCF

Vpref (nlc)vvpref (nhc)

VNF preteching list on LCF and HCF

Ver (nlc)’ Ver (nhc)

Erasing list for LCF and HCF

DPT(n/)

Processing delay of candidate node n”

Diran(€”), Dprop(€’)

Link transmission and propagation delays
for candidate link e’

T

Total number of VNFs in the traffic

offloading to other clusters or relaying to the cloud node.
This in turn alleviates signaling traffic on the network fron-
thaul, and reduces usage of cloud nodes. Note that each HCF
possesses high processing, memory, and cache capacities,
denoted by Qp,(1hc), Ome(tinc), Qcn(npe), respectively. These
capacities are dedicated to support high-frequency (popular)
VNFs, as detailed later.

B. LOW-CAPACITY FOG (LCF) NODE

This node is also located at the terminals proximity, and it
possesses processing, memory, and cache capacities, denoted
by Opr(nic), Ome(nic), Ocn(nie), respectively. These resources
are fold less than the HCF node resources, i.e., Qpr () <
Qpr(nhc), Ome(nic) K Qme(nne), and Qcn(nye) K Qen(Mne).

VOLUME 8, 2020

This is important for efficient resources utilization, mini-
mizing cost and power consumption design goals, as these
nodes are intended to support low-frequency (unpopular)
VNFs in the incoming requests. Therefore, each LCF node
is collocated with a low-power radio unit, e.g., pico base
stations (PBS) to support low traffic volumes and seam-
less coverage in sparse terminals distribution. Moreover,
the deployment of multiple LCF nodes in each cluster can
provide ubiquitous coverage for terminals.

Note that the HCF locations are modeled as homogeneous
Poisson point process distribution that act as parent point
process to the LCF nodes in the cluster, which follow point
process of symmetric normal distribution around the HCF
nodes. Here the radio units are all responsible for radio inter-
facing, i.e., system broadcasting information, control and data
signaling with terminals. For example, this includes associ-
ation, mobility management, and quality of service control,
and authentication, authorization, and accounting (AAA).
Meanwhile, the fog nodes host the VNFs of the incoming
requests. They monitor incoming traffic, generate database,
report to the network controller (NC) and operate in learning
and training modes during the SFC provisioning scheme,
as detailed later.

C. CLOUD NODE

High-end cloud nodes are connected to the HCF and LCF
by the NC through high bandwidth network backbone. Cloud
nodes are responsible for migrating requested (network func-
tions) NFs to the fog clusters, where it possesses high com-
puting and memory resources to process and store enormous
amounts of data, at the detriment of high end-to-end delays.
However, provisioning in this work is performed solely on the
fog clusters.

D. NETWORK CONTROLLER

This controller is utilized for optimal mapping management.
It acts as the network manager that controls traffic assign-
ment and broadcasting information between the fog (HCF,
LCF) and cloud nodes. It maintains lists of the popular and
unpopular VNFs, over which it broadcasts them to all par-
ticipating fog nodes in clusters. Namely, it creates policies
on whether VNFs are processed by a HCF or LCF node.
This also includes processing, mapping, offloading, storing,
prefetching and caching decisions. The policies are created
based on the VNFs popularity classes developed during the
in the deep learning network, as well as consideration for
latency requirements, available resources, and energy con-
sumption.

Overall, the NC maintains global knowledge of the entire
network traffic collected and aggregated from the fog nodes.
Meanwhile, fog nodes maintain local knowledge that relates
to the traffic of their clusters.

As aresult, each node is now aware of the mapped VNFs in
neighboring nodes in the cluster. This avoids duplicate VNFs
mapping, saves computing resources, eliminates redundant

167669

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

traffic flow and link congestion in the network. This also
increases capacity by accommodating new VNFs of new
requests.

IV. NETWORK MODEL

A. SUBSTRATE NETWORK TOPOLOGY

The substrate network for the proposed architecture is mod-
eled as an undirected graph, G = (N, E). It consists of
vertices n € N, N = {n : ny, ny, np}, where n can be
either a terminal node n,, € N,,, a LCF node n;. € Ny,
or HCF node nj. € Np., where N,,,, N;. and Ny, are the total
number of terminals, LCF and HCF nodes in the network,
respectively. Also, E represents the set of links in the network,
ie, E ={e: enic. €mhe, €ic.nc}- Here a single link is denoted
by e, and it can be either a link between a terminal and a LCF,
em,ic and HCF, e, j, respectively, or between a LCF and HCF
node, ejc hc-

Furthermore, each node can host one or more VNF, v, €
Ve,ie,u=1,2,...,U, where U denotes the total number
of VNF types. Moreover, V,, is the set of all required VNFs in
request r. The available substrate resources here are bounded
by a finite set of constraints. Namely, the overall resources
capacities at the HCF possess higher available resources than
the LCF in the cluster. In general, each node n has a spe-
cific computing capability, expressed by the total processing
capacity bounded by Q,,(n), memory bounded by Q.(n),
and the available link bandwidth on a substrate link bounded
by B(e). These boundaries present a practical network realiza-
tion and implementation for different traffic volumes, where
the requested resources are higher than the available substrate
resources.

B. TERMINAL REQUEST MODEL

A model is developed here for the terminal request r € R
of specific resources and delay requirements, where R is
the set of total requests from terminals. Each request r is
expressed by 7-tuple r =< src, dst, V., Dep,, By, pr, Ly >.
The variables src, dst € N, denote in order the source (often
terminals), destination nodes hosting last VNF in the SFC.
The variables V, and Dep, represent the set of desired VNF
types, and their dependency conditions, ordered in the SFC in
r, Ve, =[vi,v2,...,w], Dep, = {vi = vo — v,}. Also, B,
and p, specify the required link bandwidth that interconnects
VNFs, and the maximum network delay boundary for the
request, respectively. Now each hosted VNF in the nodes
requires specific processing Qp-(v,) and memory Qye(Vy)
resources. Finally, the variable L, represents the service life-
time for the request, after which the request is cleared from
the network. Figure 2 shows the network model for multiple
incoming requests, with different dependency sequence as
specified by Dep,., as well as different popularities.

V. DEEP LEARNING SFC PROVISIONING SCHEME

The proposed SFC provisioning scheme operates in three
modes, i.e., learning, training and running modes, as per
Figure 3. In the first mode, the network learns about the

167670

traffic and establishes popularity classes and lists. In the sec-
ond mode, the network is trained, while achieving training
objectives and enhancing success rates. In the third mode,
the long short-term memory (LSTM) provisioning scheme is
proposed, as detailed later.

Now key design factors and constraints are taken into
consideration for the SFC provisioning scheme. Foremost,
the node and link capacity requirements.

1) Node Capacity Requirements: Each VNF, v, in the
request list is mapped to either a LCF node n;. or a HCF
node np. on the substrate network that has enough available
computing Qp,(n) and memory resources Qpe(n), n € N —
{n,}. A key condition here is that the sum of processing
and memory capacities required by VNF instances mapped
to the nodes cannot exceed the amount of available physical
resources. This in turn avoids node overloading and requests
drops. In notations,

DD D My Qo) < Qpr(m). Y €N — (), (1)

reR v, eV, ses,,

DD D My Qi) < Ome(n). ¥n € N — {nn}. (2)

reR vy eV, ses,,

where 1], denotes the number of VNFs of a specific type u in
request r mapped to a node, and s € S, is a single instance
in total of S, instances for the VNF of type v,,.

2) Edge Capacity Requirements: Here each link between
two consecutive VNF nodes in the SFC request must be
mapped to a substrate link, e,e € E of enough available
bandwidth, B(e), i.e., larger than the request bandwidth, B,..
This is necessary in order to transverse sufficient amount of
flow (required by SFC requests) at reduced overloading. This

is modeled as,
> b, < Be), (©)

r€R ecE’

where I"] denotes the number of virtual links in request r
mapped to the network.

A. MODE I: LEARNING MODE

This is the mode (Figure 3) for learning for the VNFs pop-
ularity classes, during which the network is collecting and
learning the traffic patterns. The network still lacks sufficient
traffic patterns at the start of its operation, since the learn-
ing period,Tjeqm, is still less than the training period, Tygin-
Therefore, conventional provisioning is conducted for all the
VNFs (network operating in normal settings). Here all the
VNFs are mapped regardless of their frequencies and pop-
ularity classes. Hence each VNF occupies its own dedicated
resources in the node.

Thereafter, once the first learning period has elapsed, then
the network is trained, i.e., Tiearn > Ttrain. Sufficient traffic
patterns are now collected (dataset), which are used as in
the training phase. Therefore, the learning mode replaces
conventional mapping with the output of the training phase
in the subsequent learning periods. Consider the details.

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

GGG [

* . Yoar
“en .
- -
3 N =
%
.
.

.
.
>

A A

Service Function Chain (SFC) Terminal Request

r=<src,dst, V., Dep,, B;, p;. L,> r €R, V,= {v, ... v,}. Dep,={vi—>w,—w}, ue U

Source
node, src

Bandwidth B, Destination

3 b oyt i e —Q' '''''' O node. dst

==-=# Data Flow

] ucF

FIGURE 2. SFC provisioning concept with proposed demand model.

=3 ILCF

A Terminal D VNF

[N (B £ =y
Mode 1T Mode III
Mode I Training Mode Running Mode
Learning Mode
\ y | / g
Start Network Operation LSTM Network LSTM-based provisioning

Input: G(NE).re kR
T, = 0.traffic patterns unavaialble yet

Input: Dataset

Conventional Provisioning
Tk T collect traffic patterns

an raEr

Establish popularity classes (dataset)
Output: Dataset, mapped requests =

Give service, Counter = L,

Input vector /" = embed(p,)
i/

Loss(F:, F) = %Zlf £y

Create popular VINF 7, list

Create unpopular VINFs 72 list

Offline Prefetching ‘

Output: Labeled dataset (classes) e

Input: GINE).rER

Labeled dataset. Vp:VE

Online caching

Map popular VINFs F, on HCF
Map unpopular VINFs V,‘r on LCF
Output: Mapped SFC requests
Give service, Counter =1L,

FIGURE 3. Different operating modes for the proposed LSTM-based SFC provisioning scheme.

Conventional SFC Provisioning: Since the scheme lacks
traffic patterns at the start of the network operation. There-
fore, the learning period is initialized (Tjoq = 0). Hence
the popular and unpopular lists are set to nulls, Vy,, = {},
and V5 = {}. Therefore, for each request, r, the scheme
iterates and tries to map the VNFs in V, and set up their
interconnecting links.

Consider a terminal that transmits a request r € R to
its closest fog node based on the highest signal power, Y,’;l,
which can be either a HCF node of Y, ;l . captured power level
or LCF node of Yl’; power level, i.e., Y,’;i = max{Y;;c, Ylic}.
For each request, a temporary variable is initialized to track

VOLUME 8, 2020

total request delay, Counter, versus the request delay bound,
or. Moreover, the closest fog node must possess sufficient
resources to host the first VNF v, in the request, v, €
V.. This is achieved by pruning the network to construct a
temporary feasible graph G’ composed of candidate nodes
N’ that possess sufficient processing and memory resources,
i.e., Qme(®') > Opme(vy) and Qp, (') > Qpr(vy), and candidate
links E’, with sufficient bandwidth, B(¢') > B,.

Once the network is pruned and the temporary feasible
graph G’ is constructed. Now the scheme selects a candidate
node n’ to map the VNF based upon two objectives. First,
minimizing SFC delay. Second, improving load balancing

167671

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

across network nodes and links. Hence the objective function,
@, is defined as to achieve this goal, formulated as,

@Y = min(D(src, n/) + Q(”/)-(Qme(n/) + Qpr(n/))
+ Q()(B(e), (4)

where D(src, n’) is the link delay between the source src
and the candidate node n’. The variables (') and Q(e’) in
order denote the node and link load weights, i.e., Q(n') =
|Vinap()|/ V|, where |Vyqp(n')] is the total number of VNFs
mapped onto the node and |V, | is the total number of VNFs
in the request. Similarly, the link weight is computed Q(e") =
B(r)/B(¢’). The network here continuously monitors the load
weights at each node and link, and dynamically updates them
based upon the volume of the incoming traffic. For instant,
when traffic is high at a particular node, then the weight is
reduced to avoid node overloading. Meanwhile, when the
node has low traffic density, then the weight is increased to
accommodate more requests.

Now the scheme identifies a set of path (route) vectors, K
between the src and the least-loaded candidate nodes. Then
the scheme sorts these paths based on the shortest distance in
an ascending order, and thereafter selects first node and link
in the path, k, k € K that yields the shortest distance. Here
if the Counter < L,, then this node is selected as the hosting
node 7 and link e, at which the VNF is mapped and routed,
respectively.

The hosting node 7 and link ¢ are now added to the pruned
network graph G’. This link is established from src to the
node hosting the last VNF, prev(prev < n). The node and
link resources are reserved now for this VNF, i.e., Qp.(n =
Ome() — Ome(Vu), Qpr(ﬁ) = Qpr(ﬁ) + Qpr(vu) Be) =
B(e) — B,.

For subsequent VNFs, the scheme again computes delay-
bound candidate paths set, K, from prev to the candidate node
that maps the subsequent VNF, n’, n’ € N’ — prev, forming
new set of vectors K. Each vector k satisfies minimum net-
work delay for least-loaded nodes, i.e., min{D(n') + D(¢')} <
pr. From these routes, a candidate node 7’ is selected based on
minimum delay and least-load requirements, hence achieving
minimum delay with previous node that hosts last mapped
VNE, prev.

When all VNFs in request r are mapped, then r is flagged
successful and data transmission phase is initiated for the ter-
minal, while reserving resources for the entire lifetime period
of the request, L,. The Counter records the elapsed time
over which a request is in transmission phase. Once this time
has reached the request lifetime, Counter = L,, then data
transmission phase is terminated and resources are released
by updating hosting nodes and link available resources in
G' = (N',E’). In notations, Qpe(1) = Ome() + Ome(Vu).
Qpr(;l) = Qpr(ﬁ) + Qpr(Vu) and B(e) = B(é) + B,. As a
result, this setting relieves the limited resources in the nodes
for use by other requests. In turn, network available resources
is increased.

167672

Note that if the candidate node in the cluster is resources
deficient, then the VNF is relayed to the adjacent node in the
cluster. Moreover, if no paths exist (P = 0) in the pruned
network, then the request is dropped.

In the learning mode, nodes monitor the incoming requests
and required VNFs, as well as creating dataset to model
the traffic probability distribution over time. The fog nodes
feed the current VNF at every time step to the deep
learning model for use in the training mode, as detailed
next.

B. MODE II: TRAINING MODE

The work here adopts a predictive framework that analyzes
terminals demand patterns, based on a deep learning net-
work, specifically, LSTM network, which is first proposed
in [19]. This artificial recurrent neural network (RNN) is used
to predict the VNF and its popularity class, derived from
frequency and volume of incoming VNF types. This yields
in a better utilization of resources in the substrate network,
by alleviating traffic peaks when proactively mapping the
popular VNFs on the HCF nodes in advance, and mapping
the unpopular VNFs on the LCF nodes, prior to the requests
arrival.

1) PROBLEM FORMULATION

The VNF prediction problem is formulated as a sequence
labeling prediction of the requested VNF v, € V, at (r + 1)th
time step, F, i, of Ay traffic volume, given the VNF status
at the (#)th time step of A, traffic volume, recorded over
i=1,2,...,1 observations. Hence the goal is maximize the
probability of successfully predicting the incoming VNFs and
their popularity classes, i.e., P[F; = F;], while minimizing
the least mean square error (MSE) and success rates, as pre-
sented later.

Here, the VNFs v, Vv, € V, in the incoming requests are
classified as either a popular VNF v, stored in the list V),.
Alternatively, they are classified as an unpopular VNF vz,
stored in the list V5. These lists are determined based upon
the observations of the popularity class p,p = 1,2,...P
over the I observations, where 1 and P indicate the least
and highest popular VNF class, respectively. Namely, any
VNF v, in request r is deemed as popular, v, if its fre-
quency hits §(v,) exceeds a frequency threshold value, §yp,
where this parameter highly impacts the aggressiveness con-
figuration of the prefetching and caching procedures in the
proposed scheme. Meanwhile, if the VNF frequency hits is
less that §;, then the VNF is classified as unpopular, v5. In
notations,

v, = Vp, if 3’(1)14). > Sths (5)
vy, otherwise.

Now the key operation elements of the proposed reconfig-
urable deep learning model are composed of the input (ini-
tialization) and training phases. Consider the procedures of
Mode II summarized in Figure 5.

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

1: Input: Network G = (N, E)
Request r =< src,dst, V., Depr, By, pr, Ly >
: Output: ~;™, path vector k
: Tiearn = 0/* Learning Period */
: Vpop = {}, V5 = {} 7* Null popular and unpopular lists */
: while Tjearn < Ttrain do
Before network is trained
Start conventional SFC provisioning Vr € R
Iterate and process all incoming requests

6
7
8: for (each r € R) do
9:
0
1

Counter = 0 /% Initialize delay tracking variable */
K = /* Reset path vectors set */
Iterate and map all v, € V. in request

12: for (each v,, € V) do

13: Mapping Function()

14: Prune network, build temporary graph G'(N’, E")

15: N’ < Remove n € N with Qme(n) < Qme(vy) or
Qpr(n) < Qpr(vu)

16: E’ + Remove e € E with B(e) < B,

17: for (eachn’ € N’) do

18: Compute shortest paths between src and least-

loaded candidate nodes N’
19: with o = min(D(sre,n’) + W(n')(Qme(n') +
Qpr(n)) + W(e')(B(e))

20: if K = {0} then

21: No feasible paths in K, drop request r

22: end if

23: Sort paths in K by ascending order

24: if K # {0} then

25: k=0 /* Choose first candidate path in list K*/

26: Choose hosting node 7 and link é

27: f < min(n' : p(n')) /% choose first node in

candidate path k */

28: prev <— n/* Set prev € route k for request r*/

29: Update tracking variable for request r

30: Counter = Counter + (proc. delay at n) +

(com. delay at é)

31: Reserve resources in G'(N', E")

32: Qme () = Qme () — Qme(vu)

33: Qpr(ﬁ) = Q;Dr(ﬁ) + QP*(UU)

34: B(é) = B(é) — B»

35: end if

36: end for

37: end for

38: end for

39: while nem'n Z Ttrain do
Next learning round after network is trained Traffic re-
ceived during Mode IT — input vector ;"

40: end while

41: end while

42: Start Training Mode II

43: Offline Prefetching()

FIGURE 4. Mode I: Learning mode.

2) INPUT PHASE

This is the initialization phase that achieves labeled data,
that finally yields the input vector y,i”. Namely, the input
to the deep learning network is the current VNF v, with p;
popularity index at the (¢)th time step. Then the layers in the
network start to map every VNF popularity index p; to the
input vector ¥, based on the traffic patterns (dataset).

yi" = embed(p;), (©6)

where the function embed is a lockup table learnt during
training.

VOLUME 8, 2020

1: Input (Initialization) Phase:

2: for each Tjcqrrn do

3 Collect traffic patterns

4: TInput vector v;" = embed(p)

5: if ﬂea'r‘n < Tirain then

6: Learning Mode: Conventional SFC Provisioning
7 else if T‘learn Z Ttv'ain then

8: Learning Mode: Traffic received during Mode II
9: End of learning Mode

10: end if
11: end for

12: Training Phase:

13: Output: Labeled dataset, V,, and V5

14: Create V), and Vj lists

15: Call Offline Prefetching() Function

16: Running Mode: LSTM-based SFC Provisioning

FIGURE 5. Mode II: Training mode.

3) LSTM NETWORK STRUCTURE

LSTM is often insensitive to time gap length, as compared to
conventional RNN, hidden Markov and other sequence learn-
ing models [20]. LSTM cell introduces a long-term memory,
known as the cell memory state variable that is capable of
learning long-term dependencies information of the network
states. It focuses on the parameter information of previous
periods and then labels the next, hence reducing the complex-
ity of the prediction scheme. This presents a suitable predic-
tion solution for time-series of variable sequences lengths,
i.e., leveraged to predict future VNFs and their affiliated
popularity classes. The LSTM network leverages parametric
information of previous time steps and then labels the next
to predict the VNFs over the (¢ + 1)th time step. Namely,
the LSTM network recursively processes sequences (traffic
volumes data) of variable lengths at every time step, ¢, of the
input, and then maintains a hidden state which is a function
of the previous state and the current input.

4) TRAINING PHASE

The training settings for the deep learning network includes
four hidden layers and 50 LSTM units (cells) in each layer.
The training process is now detailed. First the cell state at time
t, &, which specifies information carried to the next sequence
is modified by the forget gate, g’t(, in the sigmoid layer placed
underneath. In turn, it is then adjusted by the input modulation
gate, g;””d , that delivers the new candidate cell state. The
forget gate receives hidden state vector, s,_1, (output vector
of the LSTM cell) at the (+ — 1)th time step, and input vector
at (#)th time step, ", as its inputs. It produces an output
number between 0 and 1 for each number in the previous
cell state at the t(r — 1)th time step, #;_1. Namely, the output
of the forget gate tells the cell state which information to
forget or discard by multiplying O to a position in the matrix.
Meanwhile, if the output of the forget gate is 1, then the
information is kept in the cell state, where a sigmoid function,
o, is applied to the weighted input/observation and previous
hidden state. Eqs. (7)-(11) represent the cell state ¢;, forget

167673

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

gate g’: , the input gate g, input modulation gate g;"”d , and

output gate (focus vector) g2/, all at the (¢)th time step [19].

G =gl + g, @)

g = og(Br[hi1, /"] + &), ®)
8" = ao(Bin[hi—1, "] + ctin). ©)
g;””d = lanh(ﬁ; [ht_l,)/,i"] + a;), (10)
82" = oo (Bour [h—1. "] + ctour)- (11)

The parameters B¢, Bin, Bour, and B; are the weight matri-
cesand oy, &, Ctoyr, and oy are the bias vectors for the forget,
input, output gates, and the cell state, respectively (learnt
during the training mode). Finally, the hidden state layer out-
put A, (working memory) is modeled as h, = g2 .tanh(&;).
This hidden state yields the deep learning output during each
time step 7, encompasses the model learnt about the VNF
popularity class unit this time step. Then the hidden state is
used to predict the most likely VNF at the next (¢ 4 1)th time
step.

Note that key parameters here for the model are the logistic
sigmoid and the hyperbolic tanh nonlinear activation function
for each gate to predict probability of the output. Foremost,
the input gate is a sigmoid function with range € [0, 1] only
adds memory, without the ability to forget memory, since the
cell state equation is a summation between the previous cell
state. Therefore, the input modulation gate is activated with a
tanh activation function with a [—1, 1] range that allows the
cell state to forget memory.

After the deep learning network is well-trained, the fog
nodes leverage it to predict the VNFs for new incoming
requests, map recurring popular VNFs on the HCF nodes, and
unpopular VNFs on the LCF nodes. At this stage, the network
is well-trained and it has established the V), and Vp lists with
minimum errors. Hence, it now performs offline pretching for
these VNFs, as detailed next.

5) OFFLINE PREFETCHING

The network performs offline predictive prefetching
(Figure 6) for the popular VNFs v, € V), on the LCF nodes,
and unpopular VNFs vz € V5 on the LCF nodes. Namely,
these VNFs are migrated from the cloud domain to the fog
nodes for faster retrieval by future terminals by providing a
cached copy, provided by the VNF instance. Note that the
VNF placement in the cache is based on the cache capacity
at each node. Here the total cache capacity at each node must
exceed the VNF instance s capacity requirements. This is
expressed as,

DY). Qanls) < Qenlne), (12)
reR vpeV),
D00 90u)-Qen(vi) < Qenie), (13)
rer VﬁEVF

where ¥ (nj.) and ©(n;) denote the number of popular
and unpolular VNFs cached in the HCF and LCF nodes,
respectively.

167674

1: Input: V}, and V5 lists, Nic, Npc

2: Output: Offline prefetching of V}, and V% from cloud to fog
nodes

3: foreachn € N’ do

4 if 2 = npe € Nne € N’ then

5: Prefetch the unmapped popular VNFs on np*

6 Voref(ne) = Vo — {Vinap N Vp}

7 ‘/pTef(nhc) — Nhe

8 Update resources on HCF node for each v, € Vjres

9: for each v, € Ver do
10: wa(nhc) = Qm,e(nhc) - Qme(vp)
11: Qpr(nne) = Qpr(nne) — Qpr(vp)
12: Erase unpopular VNFs from HCF node
13: ‘/ev‘(nhc) = Vmap - ‘/p
14: Nhe < Remove vy € Ve,
15: Update resources for each removed VNF €V, (n.)
16: wa(nhc) = Qm,e(nhc) + Qme (Uf) &Qpr(nhc) =
Qpr(nhe) + Qpr (vp)
17: Cache vy on nje, update resources on njc
18: Qch(nhc) = Qch(nhc) - Qch(s)
19: else if n;. € N;. C N’ then
20: Prefetch the unmapped least popular VNFs on n;.
21 Viref (nie) = Vo — {Vinap N Vi)
22: Vp'r‘ef (nlc) — Njc
23: Update resources on LCF nodes for each VNF
EVpres(Tuc)
24: Cache vp on ny., and update resources on n;.
25: Qch(nlc) = Qch(nlc) - Qch(s)
26: for each vg € Vire(nuic) do
27: vy —(nye)
28: Qme(nic) = Qme(nie) — Qme (vp)
29: Qpr(n1c) = Qpr(Nic) — Qpr (vp)
30: Ver(nie) = Vinap — Vo
31: Nhe < Remove vy € Ver(nic)
32: Update resources on LCF for each removed VNF
Up € Ver (nlc)
33: Qme(nlc) = Qme(nlc) + Qme(vp)
34: Qpr(ruc) = Qpr(nuc) + Qpr(vp)
35: end for
36: end if
37: end for
38: end for

39: Start Running Mode: LSTM-based SFC Provisioning

FIGURE 6. Offline Prefetching() Function.

After the completion of Mode I, the hosting nodes now
have accommodated various VNFs, regardless of their popu-
larity class. Then the prefteching algorithm aims to gather the
popular VNFs only on the HCF node, meanwhile collecting
the unpopular VNFs on the LCF node. Namely, if the hosting
node n € Np. € N’ is a HCF node, n = ny,, then the
goal is to prefetch the remaining popular VNFs that have not
been mapped on this node during the learning mode. This
is performed by creating a VNF preteching list, Vper (1c),
i.e., Vprer(pe) = Vi — {Vingp N V). Then the node process-
ing and memory resources are updated for each v, € Vs,
Ome(Mne) = Ome(ntne) — Qme(Vp)v Qpr(nhc) = Qpr(nhc) -
Qpr (Vp)-

After preteching these VNFs, they are now cached for use
in the running mode. Namely, the cache resources at each
HCF is subtracted by the VNF instance cache requirements,

Och(pe) = Qcn(npe) — Qcn(s). Meanwhile, any previously

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

mapped VNF that is not part of V,,, is erased from the HCF
node. The erased VNFs are as V., (njc) = Vipgp — V). Here
for each erased VNF, the node resources are updated (i.e.,
releasing resources), Qme(ne) = Ome(Mne) + Ome (vﬁ) and
Opr(npe) = Qpr(ine) + Opr (Vﬁ)

This process is similarly applied for prefetching the
unmapped least popular VNFs vz on the LCF node n;.. Here
the prefetching list is as Vyper (i) = V5 — {(Viugp N V).
Then the processing and memory resources of the node are
updated as, Ope(ic) = Ome(ic) — Ome (Vﬁ), and Qpr(nlc) =
Opr(nic) — Qpr (vp), respectively, ¥vp € Viyer (myc). The LCF
node next erases any VNF ¢ V5 that have been previously
mapped in the learning mode. This is accomplished by creat-
ing the erasing list, V., (nc), i.e., Ver (i) = Vingp — V). Thus
releasing resources at the LCF node, Qe (1) = Ome(nic) +

Ome(vp)s Opr(nic) = Opr(nuc) + Opr(vp).

C. MODE IiI: RUNNING MODE
This mode is initiated after traffic popularity modeling, and
after which the deep learning model is now well-trained
after Phase II. Namely, LSTM-based provisioning is con-
ducted in this mode, presented and detailed in the pseudocode
in Figure 7. Consider the details.

LSTM-Based SFC Provisioning: Following the training
phase, the network now has established popularity classes and
the V), V5 lists, derived from the training mode. These lists
are periodically broadcasted by NC to all nodes in the clus-
ter, where its exchanged. Nodes now establish cache tables,
where each entry records a single VNF with its popularity
class. Therefore, when a request is received by the node, its
entire VNFs in V, are examined from the cache table, in order
to determine whether a VNF will be cached or mapped on that
node.

The network now iterates and processes all incoming
requests, r € R. If the first VNF in the SFC, v, € Dep, C V,
exists in V,, then this VNF is deemed as popular, i.e., v, = vy,
where it has already been offline prefetched on the HCF
nodes.

The network now prunes over all HCF nodes that pos-
sess sufficient cache capacity, i.e., removing ny. € N with
Och(mhe) < Qcn(s) and establishing N’ candidate nodes,
as well as removing e € E with B(e) < B, and building
E’. Then, the scheme routes the VNF to the closest least-
loaded HCF node, min(n' : (n')), "’ = Vny. € N'. Set this
node as the hosting node, (ny.) = n, prev < n, prev € k.
Cache resources at the HCF hosting node Q.;(n) are now
updated at 71, Qcp() = Qen(nine) + Qcn(vp). These resources
are reserved for the entire request lifetime, L,. This process
continues for the all popular VNFs in the request, v, € V),
while taking into account shortest path with least-loaded
HCF nodes.

Meanwhile, if any VNF in the request v, € V5, then it is
deemed as unpopular v, = v. Then the network is pruned to
identify the LCF node with sufficient cache resources. There-
after, its routed to the the closest least-loaded LCF node with

VOLUME 8, 2020

1: Output: SFC provisioning for r € R

2: Iterate and process all requests

3: for (each r € R) do

4 Iterate and map all v,, € V;. in request

5: for (each v, € V,.) do

6 Check if the function is in function popularity list
7 if v, € V, then

8

: Vu = Up
9: Prune over HCF nodes and build G'(N’, E")

10: N’ < Remove npe € N with Qe (nhe) < Qen(s)
11: E’ + Remove e € E with B(e) < B,

12: Route the VNF to the closest pruned HCF

13: min(n’ : o(n’)),n’ = Ynp. € N’

14: Set (npe) = 7 /* hosting HCF node */

15: prev < n, src,prev € K

16: Reload v, from cache

17: Update cache resources on the hosting HCF node
18: Qen (1) = Qen () + Qen(s)

19: Iterate over next VNF in the request

20: else if v, € V then

21: Vy = Vp

22: Relay to LCF node

23: Prune over LCF nodes and build G'(N', E")

24: N’ < Remove n;. € N with Qo1 (n) < Qme(vyp)

25: E’ + Remove e € E with B(e) < B,

26: Route the VNF to the closest pruned LCF node

27: min(n’ : o(n’)),n =Vni € N’

28: Set (ni.) = 1 /* hosting LCF node */

29: Update cache resources on the LCF hosting node

30: Qch(nﬁ) = Qcache(ﬁ) + Qch ('U;T))

3L elseif v, ¢ V;,, Vi /* vy € Vi, is a new function */ then

32: Call Mapping Function()

33: end if

34: end for

35: Start giving services for Counter = L,

36: Update G'(N’, E’) node capacity and cache for mapped
nodes

37: Update G'(N’, E') link capacities along route k for r

38: end for

FIGURE 7. Mode III: Running mode.

the prev node, i.e., ¢ = min(D(prev, n') + W(n')(Qcn(n') +
W (e)(B(¢")). This yields the hosting node for vp. This process
continues for all vz in request r.

Finally, if the requested VNF does not exist in the popular
and unpopular lists, v, ¢ V), V5. Then this VNF is consid-
ered as entirely new (never mapped before). Therefore, it is
then mapped using the conventional scheme, by calling the
Mapping Function() used during the learning mode.

The hosting nodes here provide online caching for v,,. This
results in significant advantages to the network. Foremost,
reduced node loading, i.e., less processing and memory usage
at the nodes. It also achieves less latency, since responses
for cached VNFs are available immediately at close nodes
to terminals. This accelerates services provided to the ter-
minals. The caching process alleviates traffic bottleneck and
congestion, saves resources and thereby enhancing network
scalability and capacity without increased network cost.

VI. DEEP LEARNING SIMULATING RESULTS
The LSTM network is implemented on Python, i.e., attributed
to the availability of libraries and open source tools. The

167675

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

sround Truth

VNF type

0 p-] 50 » 100 125 150 175 200
Time period

FIGURE 8. Prediction output of the LSTM network.

running platform leverages the Sequential, Dense, LSTM,
and Dropout classes from the keras.models library, as well
as the MinMaxScaler classes and the feature,.ange parameter
from the sklear.preprocessing library.

The proposed deep learning network model is now simu-
lated using the dataset in [21] as part of the BigDataChallenge
recorded over the period of two weeks. This dataset reveals
terminals traffic volumes composed of 5 major activities
(VNF types), i.e., SMS-in, SMS-out, call-in, call-out, and
internet activities. Moreover, these VNFs are recorded over
time steps inside a square ID of 200 meters, i.e., geographical
grids that form a single cluster. The popularity class of each
VNF here is determined by the activities of terminals in each
cluster over a particular time step.

A. NETWORK TRAINING

As mentioned earliner, the LSTM network include four hid-
den layers, with 50 cells in each layer. The drop-out regular-
ization rate in each layer used as a regulatizer is set at 0.2. The
model is trained with 350 epoches over a duration that ranges
from 200 minutes to 2 weeks. A data structure with 60 time
steps, each of 10 minutes, and a single output is created, since
LSTM cells store long term memory state. Hence in each
training stage, there are 60 previous training set elements for
each taken sample. Consequently, in the testing stage, the first
60 samples are needed a correct guess about the rest of the
traffic distribution.

Overall, the training objective is to compute the embd func-
tion, weight matrices, and bias vectors that minimize the loss
function for all training time instances. Figure 7 shows the
prediction performance for the test set of the LSTM network.
High approximation is achieved here between the prediction
and the ground truth for the various VNF types over the train-
ing period (minutes). In particular after 75 minutes, where
a high match is realized. See Table 1 for the overall model
settings showing the hyper-parameters chosen for layers of
the LSTM network.

B. LOSS FUNCTION

The objective is to achieve reduced loss function by applying
the mean square error (MSE) between the prediction vector
of the proposed model F; and the actual ground truth F; in

167676

0.16 '\ === Training Loss
~“"\\ === Test Loss
0.14 1 ~.
o ",
012 \'AJMA\»‘ Y
. X \
\\l.,t‘ﬁ v,
g 0.10 \'A‘J\' \
= w o
2 0.08 L
= “p
0.06 4 y ‘\i,
Al
N}‘%‘ Y
0.04 ﬁq ,,m ﬁ
0.02 A
0 50 100 150 200 250 300 350
Epochs

FIGURE 9. Model loss for the proposed LSTM network.

the upcoming time step over I predictions generated from a
sample of / data points on all variables. Note that both F;
and F; features similar distribution over the same time period.
This loss function model at every time step ¢, is modeled as,

I
Loss(F;, F;) = ; ;(F,-, F2. (14)
Figure 9 shows the model loss (risk function) of the prediction
network for one cluster, where low model losses (MSE) are
achieved with the increased number of Epochs. The obser-
vations here can indicate a centralized data behavior (less
skewed), i.e., high dispersion towards central moment. For
instant, the model loss approaches 0.02 at 350 Epchoes for
the cluster. Overall, the low MSE achieved here concludes
that the proposed scheme/estimator can predict observations
of the VNFs parameters with high accuracy.

C. VNF POPULARITY CLASS

A key characteristic of requests R is the high frequency
demands for certain VNFs as modeled from traffic statistics
in the dataset [21]. Thereby, VNFs popularity is present
among different requests. The VNFs popularity class here
accounts for the relative frequency of the VNFs and the
relative obscurity of other VNFs as members of the requests
(traffic population). It follows a power-law model distribu-
tion, ¥ ~ Zipf(u,Y). Here ¥ is the popularity random
variable, the variable u denotes the skewness popularity
parameter that models probability variation among VNFs
types. Note that large u represents a small amount of popular-
ity (high diversity among distribution of terminals requests),
i.e., highly right-skewed histogram distribution. Meanwhile,
small p (flat-skewed histogram) represents a high popularity.
The variable Y represents the total number of VNFs in the
traffic, Y = RU.

The popularity of a VNF v, € Y is defined as the number
of traffic requests generated by N,, terminals requesting this
VNF type, N,,, — v,. Overall, the set of all VNFs that traffic
generates is modeled as, Y = v, :3n, € Ny, Nyy — vy
Then, the popularity of a VNF v, is defined as the number

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

300

250

200

150

WNTI popularity

100

50

1 2 3 4 5
VNF type

FIGURE 10. Popularity classes for the various VNF types.

of terminals that generate trafunfic from, Py, (v,) = |0O(v,)I,
where O(v,) = ny € Ny, Ny — v,. Moreover, the proba-
bility distribution over different VNFs and their associated
popularities is defined by p,, (u). For each VNF v, € T,
the probability that its popularity Py,,(v,) is equal to w is
given by,

1
PG == > 1w €[0,7] (15)

vueY

Figure 10 shows the popularity classes for the 5 VNF types,
which corresponds to the VNFs with highest traffic densities.
It is shown that VNF Type 5 yields the highest popularity
class, i.e., 61.7% of the incoming traffic generates from termi-
nals. This is followed by VNF Types 1 and 2 with 18.08% and
12.76 % of the overall generated traffic, respectively. Finally,
VNF Types 3 and 4 feature low traffic density with 4.25% and
3.19%, respectively.

D. SUCCESS RATES

Finally, the prediction success rates are computed to eval-
uate the performance of the proposed LSTM scheme.
Figure 11 plots the successful prediction probability versus
extended time periods of increased dataset training sizes. It is
obvious that the success probability of the proposed scheme is
highly improved at increased time periods. This is attributed
to the increase in the dataset sizes, which relate informa-
tion on prior VNFs and their popularity rates. For example,
the LSTM scheme achieves 72% success rates when dataset
size is measured over 200 minutes. Then, the performance
is gradually increased, until it reaches 93 % success rate at
2000 minutes. This in turn increases the robustness of the
VNF prediction network.

VIl. PERFORMANCE EVALUATION

The experiments are based on simulation models using
Python programming language. Here a mesh network topol-
ogy model is used, that takes into account realistic network

VOLUME 8, 2020

90 T T T T T T T T

BRI

86%

840

82%

Success rale

B0%

TR

6%

a0k
A

800 1000 1200 1400 1600 1800 2000
Time period (minutes)

400 600
FIGURE 11. Success rates for the proposed LSTM network.

settings and parameters. The network is composed on 25 HCF
nodes and 58 LCF nodes, arranged in [5, 6] clusters, receiving
SFC demands from [1,150] terminals. These details and other
variable assignments are listed in Table 2.

The proposed heterogeneous fog (HF) architecture is now
evaluated using the conventional and LSTM-based SFC pro-
visioning schemes. Various key network performance metrics
are considered. In particular, the number of successful (satis-
fied) requests over which service has been provided, the total
network delay, and the energy consumption. Table 2 lists the
various network parameters assignment.

A. NUMBER OF SUCCESSFUL REQUESTS

The SFC provisioning of an incoming request from a termi-
nal is considered satisfied (successful), when all the request
VNFs are mapped successfully on the network nodes. This
includes satisfying the request delay bound B, and resources
requirements. When a request is successfully mapped, then
the transmission plane is initiated for the entire lifetime
period, L,. This applies for all incoming requests R that
are generated from terminals and received at the fog clus-
ters by the HCF and LCF nodes. Note that incoming
requests often yield in high traffic volumes of different
delay and resources requirements, such as delay-sensitive,
delay-tolerant, process-intensive. This in turn imposes high
demands on the available resources on the fog nodes. Conse-
quently, congested links and saturated nodes yield in denial
of service to aggregated incoming requests after exceeding
the network capacity. Therefore, these requests are dropped
from the network, when the processing time exceeds the
delay bound of the request, B,. Therefore, SFC provisioning
becomes more challenging for high traffic volumes of online
incoming requests. This problem is further aggravated in
conventional fog networks when mapping is solely conducted
on the fog nodes without relaying to the cloud domain. There-
fore, the proposed architecture here presents a potential for
increased number of satisfied requests without the need to
relay requests to the cloud domain. This is attributed to the

167677

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

3150 =@ Conventional provisioning on fog-cloud architecture [10]-[15]
==& Conventional provisioning on proposed architecture
L8TM-hased provisioning on proposed architecture 9,.-9'—‘3

2001

150

Number of satis fed requests

100 -

50

50 100 150 200 250 300 350 400
Number of requests

FIGURE 12. Number of satisfied requests for different architectures.

availability of the HCF nodes that possess abundant available
resources in proximity to the terminals, at the edge network.

Figure 12 shows the number of satisfied requests per
incoming requests mapped on the proposed heteroge-
neous fog (HF) architecture using conventional and LSTM-
based provisioning schemes. The proposed LSTM-based
scheme eliminates mapping redundant VNFs of the incom-
ing requests over the network training period. This saves
processing and memory resources at the fog nodes, which
is now used more efficiently to accommodate new VNFs
of new requests instead. This also increases the node-hit
rate by serving requests directly from the cache on the fog
node, while reducing the fetching from the cloud domain.
Also, the abundant available resources at the HCF allows the
network capacity to be further enhanced, by accommodat-
ing additional requests. This is opposed to the conventional
scheme that continues to map the VNFs regardless of their
popularity class, or whether they have already been mapped
for a prior request.

For example, the LSTM-based provisioning scheme fea-
tures approximately 90-97% success rates for the first
150 incoming requests, when implemented on the proposed
HF architecture. Meanwhile, the conventional SFC provision-
ing scheme accommodates 85 and 95 requests out of the first
150 incoming requests, when mapping VNFs on the proposed
heterogeneous fog and hybrid fog-cloud architectures in
[10]-[15], respectively, i.e., approximately 56% and 65%
success rates. It is observed here that the conventional
scheme starts to saturate the network after 150 incoming suc-
cess, which results in dropping subsequent incoming traffic
from terminals. Note that the proposed architecture features
reduced delay bounds B, for the requests due to proximity of
both HCF and LCF nodes to the terminals, as opposed to the
upper level cloud nodes in the multi-tier hybrid architecture,
which results in higher link propagation times, thus exceeding
the delay bounds, thereby dropping the request.

Overall, the LSTM-based scheme features very low fail-
ure rate in the network for the first 300-330 requests.
Then network congestion starts to have an impact on the

167678

admission ratio, i.e., since nodes are resources-constrained
(realistic/practical setting). Saturation in the network for
the proposed LSTM-based scheme occurs at approximately
400 requests, at which 350-360 requests are satisfied. Mean-
while, conventional provisioning schemes on hybrid fog-
cloud architectures, as in [10]-[15] shows good admission
ratio for the first 100 requests, Then the architecture starts to
saturate at 200 requests, after which the network reaches its
maximum nodes capacities, i.e., at approximately 300 incom-
ing requests (160 requests are only satisfied).

Furthermore, the conventional scheme is also implemented
on the proposed HF architecture, in order to demonstrate the
efficiency of the proposed architecture. Here an increased
admission ratio is achieved using the same conventional
scheme as compared to mapping on hybrid fog-cloud archi-
tectures. This shows that the proposed HF architecture can
accommodate more requests at reduced, delays, energy and
cost (shown later). For example, for the proposed architec-
ture can accommodate approx. 190 satisfied requests from
250 incoming requests, versus 150 requests for the hybrid
architecture for the 250 incoming requests.

B. OVERALL NETWORK DELAY
For each request, packets encounter multiple types of network
delay along their paths, as they transverse from the source
node to the subsequent nodes along the path, unit reaching the
destination node. In this work, the network delay is composed
from the processing, transmission and propagation delays as
presented next (queuing delay is not considered here).

Given a delay bound, p,, the network delay along the
designated path for request r, D(k), must satisfy the delay
constraint. This path delay is modeled as,

D)=) Dpr () + D Diyan(@) + Y Dprop(n) < 1.
n'ep e'ep e'ep

(16)

Vr € R, where D, ('), Dyan(e’) and Dpep(€') represent
the node processing delay, link transmission and propagation
delays, respectively.

1) PROCESSING DELAY

This value measures the total time required by the node to
process a mapped VNF, v, in the SFC of the request, r. The
total processing time for R requests is formulated as,

DprR) =" " > A,1/8,,().¥n' € N' — {ny},

reR vy €V, s€Sy,

a7

where 8,,(n’) denotes the processing rate of VNF type u in
the request on a fog node, which is the request traffic unit per
time (ms).

2) TRANSMISSION DELAY
It relates to the transmission rate of the link, i.e., amount
of traffic units that are forwarded/transmitted from one node

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

to another. Note that work here adopts first-come-first-serve
transmission scheme. The transmission delay for all requests,
Dyran(R) is gauged as,

Diran(®) =))~ Ar1/8(), (18)

reR ¢'eE’

where A, is the traffic load per request, and §(¢’) is the link
transmission rate, which is also the elapsed forwarding time
per traffic unit for the request.

3) PROPAGATION DELAY

It represents the delay for data to propagate on link e between
any two nodes, i.e., separation distance between the nodes
divided by the propagation speed of the medium (e.g., wire-
less, fiber). The overall propagation delay for request r
accounts for all interconnecting links between the source
node, nodes hosting the VNFs to the destination node (prop-
agation delay over all links joining the nodes at which VNFs
are mapped). This delay is modeled as,

Dprop(R) =Y " Y~ Ar1/5(r). (19)
r€R ¢'eE’

The overall network delay here is defined as the time
required by the VNFs to process incoming packets of vari-
ous applications (requests under service), e.g., firewall, load
balancer, and VPN function. This value is gauged by the pro-
cessing time of the overall number of software-implemented
VNFs at each fog node (listed in Table 2). Figure 13 shows
the overall request delay using the proposed HF architecture,
when mapping using the conventional and LSTM-based pro-
visioning schemes, for the same number of satisfied requests.

The proposed LSTM-based scheme studies the VNFs pop-
ularity patterns, then it creates the popular and unpopular
VNEF lists. Then it performs offline pre-fetching for the pop-
ular VNFs on the HCF nodes and the unpopular VNFs on the
LCF nodes. This pre-fetching enables the nodes to provide
a cached copy of the VNF instance, instead of re-mapping
it again for a different request. Consequently, this reduces

T T T T T

45 [|==6— Conventional scheme on fog-cloud arch [10]-[15] »)
~—8-— Conventionalscheme on proposed arch

40 L8TM-based scheme on proposed architecture i

Average request delay (ms)

50 100 150 200 250 300 350 400
Number of requests

FIGURE 13. Average request delay for different architectures.

VOLUME 8, 2020

the number of used nodes, which in turn minimizes the
processing times at the nodes. This is opposed to the con-
ventional scheme that maps the same VNF repeatedly on
different nodes, which yields in additional processing time
at the hosting node. Along these times, the proposed LSTM-
based scheme achieves reduced network delay at high number
of requests versus conventional schemes.

For example, Figure 13 depicts that the average delay
approaches 23 ms for 75 incoming requests when using the
conventional scheme on hybrid fog-cloud architectures in
[10]-[15]. This delay is further aggregated for higher incom-
ing traffic, e.g., 31 ms for 150 requests. In contrast, the pro-
posed HF architecture achieves reduced delays using the
same SFC conventional scheme. Namely, the average request
delay is reduced to 15 and 22 ms for the 75 and 150 incoming
requests. This is due to the short propagation link delays
between the terminals and nodes in the proposed HF archi-
tecture. Furthermore, when implementing the LSTM-based
SFC provisioning scheme on the HF architecture, the average
request delay is significantly reduced, i.e., 5 and 7 ms are
achieved here for the 75 and 150 incoming requests. There-
fore, the work here achieves approximately 77-80% reduction
in average request delays as compared to mapping on multi-
tier fog architecture. This is attributed to the short processing
times at the HCF of popular VNFs, which have already been
mapped in-advance. Also, the dense HCF can be used to
support other requests that are in proximity to the terminals,
at reduced propagation delays. Meanwhile, the conventional
scheme saturates the close nodes much faster, hence suffer-
ing from relaying and handoffs to other clusters to host the
VNFs. Consequently, packets traverse over long propagation
distances over nodes separated by large geographical areas.

Note that network saturation occurs here as well, where
satisfied requests yield the maximum delay when network is
saturated. The network cannot admit any additional incoming
requests and the delay at saturation is only for the same
number of satisfied requests. For example, the conventional
scheme satisfies 160 requests from 260 incoming requests,
i.e., saturation point. Any additional incoming requests will
yield in the same number of satisfied requests. Hence at
300 incoming requests, the same delay is encountered for the
satisfied requests.

C. ENERGY CONSUMPTION

The energy consumption, &, for the proposed architecture is
defined as the total power consumption, W, during the entire
network delay D(r). It accounts for the power consumption
levels at the candidate node w(n’), i.e., at the HCF, w(n),
the LCF, w(n;.), and the NC, w(n,,), in each cluster. In addi-
tion, it accounts for the power consumption for switch x, wy,
for X number of switches between the nodes. See Table 2 for
parameters settings [22], [23]. In notations,

E = D(r).W = D(r)(Z n w(n')).Xwy, (20)

n’'eN’

167679

IEEE Access

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

35 T T T T T T T
—O-— Conventional schemes on hybrid fog-cloud architecture [10]-[15]

=8 Conventional schemes on proposed architecture ’B/Q
3 LSTM-hased scheme on proposed architecture

Energy consumpltion (KJoules)

50 100 150 200 250 300 350 400
Number of requests

FIGURE 14. Energy consumption levels for different architectures.

where w(n') is gauged by the power consumption rate in idle
mode €(n'), the maximum power consumption for the candi-
date node w(n’)]max, and the saturation (utilization) factor at
any node &(n') may» Used during the SFC provisioning. This
is expressed as,

w(n') = e(n).w(n)| + (1 —e@)+ () (21)

max max °

The energy consumption levels are depicted in Figure 14
for the conventional and LSTM-based provisioning schemes
for the same number of satisfied requests. Results show that
the proposed LSTM-based scheme consumes low energy
levels compared to the conventional schemes at low and high
number of satisfied requests. Here the hybrid fog-cloud archi-
tecture consumes 1.3 KJoules to map 150 requests. Mean-
while, the proposed architecture yields in 1 and 0.55 KJoules
to map the same number of requests, using conventional
and LSTM-based provisioning schemes, respectively. Note
that energy consumption continues even after saturation. This
is the energy requirements for providing service for the
requests for their entire service lifetime. Figure 14 also shows
that the LCF nodes reach saturation (100 utilization) after
350 requests, & (nlC)|max = 1, whereas the HCF reaches it
at 500 quests, i.e., & (nhc)|max = 1. This demonstrates the
advantages of the proposed HF architecture using the LSTM-
based deep learning method, where a smaller number of
nodes are used versus the conventional mode to accommodate
the same number of satosfied requests. Thereby, less power
and energy consumption levels are achieved.

D. OVERALL NETWORK COST

The overall realization cost of the SFC provisioning in dif-
ferent (i.e., mutlti-tier and heterogeneous) fog architectures
comprises the deployment, processing, and communication
costs. Consider the details.

167680

1) DEPLOYMENT COST
The total license cost of deploying VNF software instances,
modeled as,

CapR) =Y Y > W, .cu),¥n' € N' = {nn}, (22)

reR vy eV, ses,,

where c(v,) is the license cost of VNF type u.

2) PROCESSING COST
The cost of resources assigned and reserved for the overall
number of mapped VNFs in the SFC requests, expressed as,

CorR®) =D D" > cpr(mQpr () + Cime()Ome(vu),

reR v eV, ses,,

(23)

vn' € N' — {ny}, where ¢, (n') and c,.(n') are the node
processing and memory costs per resource unit, respectively.

3) COMMUNICATION COST

The total cost of edges assigned and used for all the mapped
VNF edges in the requests. This includes communication cost
between terminals and their affiliated VNFs on fog and/or
cloud nodes. This is modeled as,

Coom(R) =) > 21 .c(e).Br, (24)

reR ¢'cE’

where c(¢’) accounts for the transmission cost per traffic unit
between links in different layers. See Table 2 for different
edge costs.

Figure 15 shows the overall network cost for different
incoming requests onto the different architectures, while tak-
ing into consideration the resources saturation. Here the pro-
posed LSTM-based provisioning scheme yields minimized
cost for the proposed HF architecture, e.g., 38 units are
requires to accommodate 150 requests. Also, the HF archi-
tecture still yields less cost (55 units) when using conven-
tional scheme as opposed to the hybrid fog-cloud architecture
(70 units). The LSTM-based scheme adopts caching policy
based on the popularity class for the incoming VNFs. This
results in less processing and memory resources require-
ments. Therefore, less number of nodes are used to accom-
modate the same number of satisfied requests. Consequently,
reducing the overall network cost.

When the network starts to saturate, then the number of
satisfied requests stops at a certain level. Then the architec-
ture cannot accommodate any additional incoming requests.
Therefore, it is obvious that the cost becomes stable at
saturation. Note that the straight lines at saturation indi-
cate the cost for the satisfied requests, regardless of the
incoming requests. For example, the conventional scheme is
already saturated at 300 incoming requests with 160 satisfied
requests. These 160 requests have a service cost of 78. Simi-
larly at 400 incoming requests, where again only 160 requests
can be accommodated, which they have the same cost of 78.

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

80

70

60

50

Average request cost

d ~—G— Conventional provisioning on fog-cloud architecture [10]-[15]
! ~=8-— Conventional provisioning on proposed architecture
‘ LSTM-based provisioning on proposed architecture
20 :
50 100 150 200 250 300 350 400

Number of requests

FIGURE 15. Average request cost for different architectures.

100%,

o0%

0%

0%

60%

50%

Usage rate (%)

0%

40% 1 —&— Hybrid fog-cloud arch [10]-[15]

=& LCN node: Conventional scheme
HCN node: Conventional scheme

A =€ HCN node: LSTM scheme

—&— LCN node: LSTM scheme

20%

10%

So——
% %
aY

50 100 150 200 250 300 350 400
Number of requests

FIGURE 16. Average nodes usage rates in the proposed architecture.

The same analysis applies for the LSTM-based provision-
ing scheme. It can be noted that the proposed LSTM-based
scheme significantly reduces the service cost as compared
to conventional scheme, i.e., approximately 51-57% reduced
cost at 200-400 requests.

E. NODE USAGE

Figure 16 shows the usage rate (%) of the HCF and LCF
nodes under different provisioning schemes and architecture
models. Note that work here adopts a resources-constrained
network in order to demonstrate realistic operating setting,
i. e.,, nodes and links have limited capacities. Therefore,
saturation occurs when the nodes are full in-capacity. First,
the hybrid fog-cloud architecture in [10]-[15] reaches 100%
usage rate (all cloud and fog nodes become full) around
150-160 requests. Meanwhile, when performing the con-
ventional provisioning scheme on the proposed architecture,
the 100% usage rate is at 175 and 220 requests for the
LCF and HCF nodes, respectively. Note that the LCF nodes
here reach 100% usage earlier than the HCF nodes, as the
number of the LCF nodes is higher than the number of the

VOLUME 8, 2020

HCEF node in each cluster. Therefore, the terminals can be at
closer proximity to the LCF nodes, i.e., minimum path delays.
Also, the mapping on the LCF and HCF nodes achieves load
balancing between the nodes, which makes the LCF saturate
earlier due to the low processing and storage capacities.
Meanwhile, the usage rate for the proposed LSTM-based
scheme is at 290 requests and 360 requests for the HCF and
LCF nodes, respectively. Here the HCF node reaches 100%
usage rate earlier than the LCF nodes, as approx. 85% of the
incoming VNF types are popular, i.e., mapped on the HCF
nodes, based on the traffic patterns (VNF Types 1 and 5).
The LCF node reaches full usage rate later, as it is used to
host the unpopular (least frequent) VNF types (e.g., VNF
Types 2, 3 and 4). When the HCF reaches 100% usage rate,
then the LCF node is used to map the new satisfied request.
It is important to observe the impact of the training process
and the incoming traffic highly impact the nodes saturation,
i.e., based on the popularity classes and the number of the
VNFs in the incoming requests.

It is obvious now that the aforementioned provisioning
schemes in this work are implemented on the proposed HF
architecture, which is composed of multiple LCF nodes and
a single HCF node in each cluster. It is also interesting to
study the proposed SFC provisioning scheme on the hetero-
geneous fog (HF) architecture when composed of a single
LCF node and multiple HCF nodes (as opposed to the current
model). When the number of HCF nodes is higher here,
then the network capacity can significantly increase, more
requests can be satisfied at reduced network delays. This
also applies for different VNFs popularity/unpopularity dis-
tributions. However, the increased network capacity occurs
at the detriment of increased cost and energy consumption,
since a single HCF node consumes more energy and cost
as compared to a single LCF node. Overall, the implemen-
tation of the nodes in the network can take different forms
based on the operators strategies, taking into account also the
CAPEX and OPEX.

Moreover, when the HCF node are unavailable (due to sat-
uration, failure or extended delay), then the scheme switches
to the LCF nodes in the cluster. It selects the LCF node that
achieves the least network delay and possesses the highest
available resources. The LCF nodes act as a back-up to host
the incoming requests. The same procedure applies when the
LCF nodes are unavailable due to cluster failure or saturation
(based on the traffic pattern). Note that additional HCF nodes
can be added to the architecture based on the scalability of
the network demands and the infrastructure of the operators
and coverage areas.

VIIl. CONCLUSION

This paper presents a comprehensive study on deep learning
for service function chain provisioning for network function
virtualization in fog computing. The provisioning scheme
is implemented on a novel heterogeneous fog architecture,
composed of high- and low- capacity fog nodes of differ-
ent resources capacities. The scheme performs conventional

167681

IEEE Access

N. Siasi et al.:

Deep Learning for Service Function Chain Provisioning in Fog Computing

mapping, during which the network is well trained to predict
the upcoming VNF in the next time step. Namely, a long
short-term network is leveraged to predict incoming VNFs
popularity classes and volumes. This creates dataset for
prefetching and caching future requests, as an alternative
to conventional provisioning. The proposed work achieves
reduced network delays, reduced power and energy consump-
tion and less costs, as well as increased capacity by accommo-
dating additional new requests. Moreover, the deep learning
network yields high success rates at reduced loss model.
Future efforts will investigate the deep learning network for
failure restoration, towards self-heeling networks, where the
proposed architecture can be scaled to include back-up nodes
and protection links.

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Armbrust, “A view of cloud computing,” Commun. ACM, vol. 53, no. 4,
pp. 50-58, 2010.

N. Siasi and A. Jaesim, ““Priority-aware SFC provisioning in fog comput-
ing,” in Proc. IEEE 17th Annu. Consum. Commun. Netw. Conf. (CCNC),
Las Vegas, NV, USA, Jan. 2020, pp. 1-6.

A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and future
directions,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359-2391,
Jun. 2017.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, Aug. 2017.

R. Chaudhary, N. Kumar, and S. Zeadally, “Network service chaining in
fog and cloud computing for the 5G environment: Data management and
security challenges,” IEEE Commun. Mag., vol. 55, no. 11, pp. 114-122,
Nov. 2017.

N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined
networking-based vehicular adhoc network with fog computing,” in Proc.
IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), Ottawa, ON, Canada,
May 2015, pp. 1202-1207.

M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Funda-
mental, network applications, and research challenges,” IEEE Commun.
Surveys Tuts., vol. 20, no. 3, pp. 1826—1857, 3rd Quart., 2018.

Y. Qiu, H. Zhang, K. Long, H. Sun, X. Li, and V. C. M. Leung, “Improving
handover of 5G networks by network function virtualization and fog com-
puting,” in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Qingdao,
China, Oct. 2017, pp. 1-5.

J. Liu, S. Zhou, J. Gong, Z. Niu, and S. Xu, “Graph-based frame-
work for flexible baseband function splitting and placement in C-RAN,”
in Proc. IEEE Int. Conf. Commun. (ICC), London, U.K., Jun. 2015,
pp. 1958-1963.

S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. Ben Hadj-Alouane,
M. J. Morrow, and P. A. Polakos, “A platform as-a-service for hybrid
cloud/fog environments,” in Proc. IEEE Int. Symp. Local Metrop. Area
Netw. (LANMAN), Rome, Italy, Jun. 2016, pp. 1-7.

O. Bibani, C. Mouradian, S. Yangui, R. H. Glitho, W. Gaaloul,
N. B. Hadj-Alouane, M. Morrow, and P. Polakos, “A demo of IoT health-
care application provisioning in hybrid cloud/fog environment,” in Proc.
IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Luxembourg
City, Luxembourg, Dec. 2016, pp. 472-475.

R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,” in
Proc. IEEE Int. Conf. Commun. (ICC), London, UK., Jun. 2015,
pp. 3909-3914.

D. Rosdrio, M. Schimuneck, J. Camargo, J. Nobre, C. Both, J. Rochol,
and M. Gerla, “Service migration from cloud to multi-tier fog nodes for
multimedia dissemination with QoE support,” Sensors, vol. 18, no. 2,
p. 329, Jan. 2018.

C. Mouradian, S. Kianpisheh, and R. H. Glitho, “Application compo-
nent placement in nfv-based hybrid cloud/fog systems,” in Proc. IEEE
Int. Symp. Local Metrop. Area Netw. (LANMAN), Washington DC, USA,
Jun. 2018, pp. 25-30.

167682

[15]

[16]

[17]

(18]

(19]

[20]

[21]

(22]

(23]

E. S. Gama, R. Immich, and L. F. Bittencourt, “Towards a multi-tier
fog/cloud architecture for video streaming,” in Proc. IEEE/ACM Int.
Conf. Utility Cloud Comput. Companion, Zurich, Switzerland, Dec. 2018,
pp. 13-14.

H. R. Khezri, P. A. Moghadam, M. K. Farshbafan, V. Shah-Mansouri,
H. Kebriaei, and D. Niyato, “Deep reinforcement learning for dynamic
reliability aware NFV-based service provisioning,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Puako, HI, USA, Dec. 2019,
pp. 1-6.

H. Rahmani Khezri, P. Azadi Moghadam, M. Karimzadeh Farshbafan,
V. Shah-Mansouri, H. Kebriaei, and D. Niyato, “Deep Q-Learning
for dynamic reliability aware NFV-based service provisioning,” 2018,
arXiv:1812.00737. [Online]. Available: http://arxiv.org/abs/1812.00737

J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement via
deep reinforcement learning in SDN/NFV-enabled networks,” IEEE J. Sel.
Areas Commun., vol. 38, no. 2, pp. 263-278, Feb. 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

S. Hochreiter and J. A. Schmidhuber, “Lstm can solve hard long time
lag problems,” in Proc. 9th Int. Conf. Neural Inf. Process. Syst. (NIPS),
Cambridge, MA, USA, Dec. 1996, pp. 4793-4796.

G. Barlacchi “A multi-source dataset of urban life in the city of
Milan and the province of Trentino,” Sci. Data, vol. 2, no. 1, pp. 1-5,
Feb. 2015.

O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “Energy efficient
algorithm for VNF placement and chaining,” in Proc. 17th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput. (CCGRID), Madrid, Spain, May 2017,
pp. 98-106.

D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya,
“Energy-efficient data replication in cloud computing datacenters,”
in Proc. IEEE Globecom Workshops (GC Wkshps), Shenzhen, China,
Dec. 2013, pp. 385-402.

NAZLI SIASI (Member, IEEE) received the B.S.
degree in information technology and computer
engineering from Tehran Polytechnic University,
the M.S. degree in information technology and
computer engineering from Tabriz State Univer-
sity, and the M.S. and Ph.D. degrees in electrical
engineering from the University of South Florida,
Tampa, FL, USA. She is currently an Assistant
Professor of cybersecurity with Christopher New-
port University, Newport News, VA, USA. Her

research interests include networking, virtualization, and fog and cloud
computing.

MOHAMMED JASIM (Member, IEEE) received
the bachelor’s degree in electrical engineering
from Applied Science University, Jordan, the mas-
ter’s degree in electrical engineering from Brunel
University London, U.K., and the Ph.D. degree in
electrical engineering from the University of South
Florida, USA. He was with Valparaiso University,
Valparaiso, IN, USA. He is currently an Assistant
Professor of electrical engineering with the Uni-
versity of Mount Union, Alliance, OH, USA. His

research interests include millimeter wave communications, beamforming,
and fog and cloud computing.

VOLUME 8, 2020

N. Siasi et al.: Deep Learning for Service Function Chain Provisioning in Fog Computing

IEEE Access

ADEL ALDALBAHI (Member, IEEE) received the
B.S. degree in electrical engineering from Virginia
Commonwealth University, Richmond, VA, USA,
in 2011, and the M.S. and Ph.D. degrees in elec-
trical engineering from the New Jersey Institute of
Technology, Newark, NJ, USA, in 2013 and 2017,
respectively. He joined with the Electrical Engi-
neering Department, King Faisal University, as an
Assistant Professor, in 2018. His research projects
are funded by King Faisal University and Ministry
of Higher Education (MOHE). His current research interests include visible
light communication, wireless networks, modeling, analysis, and millimeter
wave for 5G and beyond. He served as a TPC for ICWMC 2019 and 2020,
as a Reviewer for IEEE Access, the IEEE Protonics, and the IEEE ISSPIT
2018. He served as a Session Chair for WIMOB 2018 and 2019, ICCAIS’
2019. He served as a Publicity Chair for WIMOB 2020.

VOLUME 8, 2020

NASIR GHANI (Senior Member, IEEE) received
the bachelor’s degree in computer engineering
from the University of Waterloo, the master’s
degree in electrical engineering from McMaster
University (supervisor Dr. Simon Haykin, Life
Fellow, IEEE), and the Ph.D. degree in com-
puter engineering from the University of Waterloo
(supervisor Dr. Jon. W. Mark, Life Fellow, IEEE).
He was an Associate Chair with the ECE Depart-
ment, University of New Mexico. He was a Faculty
Member with Tennessee Tech University. He is currently a Professor with the
Electrical Engineering Department, University of South Florida. He is also
a Research Liaison with Cyber Florida. He also spent several years working
with large Blue Chip organizations (IBM, Motorola, Nokia) and several
hi-tech startups. His research has been supported by the National Science
Foundation, Defense Threat Reduction Agency, Department of Energy, Qatar
Foundation, and Sprint-Nextel. He has published over 200 peer-reviewed
publications. His research interests include cyberinfrastructure networks,
cybersecurity, cloud computing, disaster recovery, and cyber-physical sys-
tems. He received the NSF CAREER Award, in 2005, and the Best Paper
Awards at IEEE PIMRC 2017 and IEEE ANTS 2010. He has chaired
symposia for the IEEE GLOBECOM, the IEEE ICC, the IEEE ICCCN,
and workshops for the IEEE INFOCOM. From 2007 to 2010, he was also
the Chair of the IEEE Technical Committee on High Speed Networking
(TCHSN). He has served as an Associate Editor for the IEEE/OSA JourRNAL
oF OpTICAL AND COMMUNICATIONS AND NETWORKING, the IEEE SysTeEMmS, and the
IEEE Communications LETTERS. He has also edited special issues of the IEEE
Network and the IEEE Communications Magazine.

167683

