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ABSTRACT Aiming at the problems of electrical connector defect detection, such as low automation, low
detection accuracy, slow detection speed, and poor robustness, an improved Yolo v3 algorithm was proposed
in this paper to detect electrical connector defects. First, the K-means clustering algorithm is used to perform
cluster analysis on the data set of this paper to obtain three kinds of candidate frames with aspect ratios,
aiming at improving the detection accuracy for the defective objects in this paper; the 8-fold downsampled
feature map outputted by the third residual block of the backbone network is upsampled 4 times, and the
obtained feature map is merged with the 2-fold downsampled feature map outputted by the second residual
block to obtain the fusion feature detection layer; the 6 DBL units passed by the target detection layer are
changed to 2 DBL unit plus 2 residual units to improve feature reuse and acquisition; In addition, single-scale
feature maps are chose for target detection in this paper instead of multi-scale prediction of the original
network, which not only saves the calculation amount, but also avoids false detection to a certain extent.;
A new detectionmethod is proposed for relative rotation defects between the inner ring area and the outer ring
area of the electrical connector. The qualitative and quantitative experimental results show that the improved
Yolo v3 algorithm in this paper has better performance and speed for defect detection of various types of
electrical connectors, with an accuracy rate of 93.5%, which is more accurate than Faster R-CNN. The
original Yolo v3 is faster and basically meets the requirements of the industrial field for electrical connector
testing.

INDEX TERMS Defect etection, electrical connector, machine vision, deep learning, Yolo v3.

I. INTRODUCTION
The electrical connector is a very important part in the overall
aerospace industry, which plays the role of power connection
and data connection [1], Because of its sealing strength, high
bending strength, good air tightness and other characteris-
tics, it plays a pivotal role in connection and packaging of
aerospace, household appliances and other fields [2]. Due to
various defects in the production of circular electrical con-
nectors, defect detection is essential. During the production
process, the solder points are easy to fall on the solder cup
(as shown in Figure 1), resulting in the appearance of solder
point on the surface of the solder cup, which leads to the
situation that the connection cannot be completely sealed or
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even cannot be connected. Therefore, it is necessary to detect
the presence of solder points so as to remove the solder.
On the other hand, in the process of welding the ground
wire, the ground wire will be wrongly welded caused by
errors in themachine or manual operation, which will directly
cause the pins of the electrical connector not grounded or
even short-circuit, leading to the collapse of the entire sys-
tem. Therefore, it is necessary to detect the location of the
ground wire to determine whether the ground wire is wrongly
soldered. The last defect is that the inner and outer rings
of the circular electrical connector rotate relatively, so the
plug and the socket cannot be connected together, resulting
in the connector cannot be used normally. Once the defective
electrical connector has a problem during the use, it will
cause the entire system to crash or even endanger the safety
of human life and property, the loss cannot be estimated.
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Therefore, the defect detection of electrical connectors is
extremely important [3].

At present, the main detection methods of electrical con-
nectors are as follows: 1) Human eye observation method,
which has low detection efficiency and the detection is greatly
affected by human subjective factors, so the accuracy cannot
be guaranteed. In addition, the inspector needs to pick up the
workpiece and place it under a magnifying glass for observa-
tion. The sweat stain on the hand and the knocking may cause
corrosion or damage of the metal workpiece; 2) Machine
vision inspection method. This method has a higher effi-
ciency, accuracy and repeatability and is non-contact method,
which is non-destructive to the workpiece. Machine vision
has more obvious advantages compared with human eye
detection, but currently most of the connector defect detec-
tion still uses human eye observation method which mainly
relies on the human eye during detection, so the accuracy
and results of the detection cannot be guaranteed and the
repeatability and traceability are not accessible [4].

At present, there are few researches on the visual
inspection of electrical connectors. Among them, the most
researched problem is the defect of the electrical connector
shell, and there is less research on the defect of the socket
part of the electrical connector. The Li Jiankang research
of Jiangsu University proposed a texture defect detection
method based on wavelet analysis to detect the surface rough-
ness of electrical connectors. He innovatively proposed the
extraction of roughness characteristic parameters and estab-
lished the roughness model. His main research area is the
appearance inspection of the shell, and the focus of this
article is the detection of functional defects of the electrical
connector to determine whether it can be used normally. Its
shell inspection can only detect offline and does not meet the
needs of modern automated production lines [33]. Lu Jiayu of
Harbin Institute of Technology proposed a template matching
algorithm based on gray features for pin recognition and
a gray-scale centroid algorithm for pin location. It mainly
realizes the identification and positioning of the pins, but the
next step of detection has not been performed, and the main
defect detection has not been completed. This method can
only identify one type of electrical connector and can only
be placed in a specific position, otherwise it cannot be iden-
tified [34]. Du Fuzhou of Beijing University of Aeronautics
and Astronautics proposed to use binocular vision based on
support vector machine (SVM) to classify and recognize var-
ious types of pins and identify the defects of the correspond-
ing pins, but the average recognition time of this method
is 1.1 seconds and needs to be improved [35]. the electri-
cal connector can not be identified in different positions.
In summary, there are few researches on defect detection
of multi-model electrical connectors, and traditional image
processing methods are often used for detection, which has
problems such as low accuracy, poor real-time performance,
and poor robustness. In order to solve these problems, this
paper proposes the use of deep learning to solve the three
common defect detection methods of electrical connectors.

Deep learning originated from the research of neural
networks. It is the core algorithm of modern artificial intel-
ligence which bases on machine learning and has made sig-
nificant progress in the field of target detection. At present,
deep learning is developing rapidly, and the emerging new
algorithms provide many new ideas for defect detection [36].
Yu Jun propose an end-to-end place recognition model based
on a novel deep neural network. The SPE-VLAD layer and
the WT-loss layer are integrated with the VGG-16 network
or ResNet-18 network to form a novel end-to-end deep
neural network that can be easily trained via the standard
backpropagation method. They conduct experiments on three
benchmark data sets, and the results demonstrate that the
proposed model defeats the state-of-the-art deep learning
approaches applied to place recognition [37]. They success-
fully achieved a better recognition effect by improving the
network. Baoxian Li proposes a novel method using deep
CNN to automatically classify image patches cropped from
3D pavement images. In all, four supervised CNNs with
different sizes of receptive field are successfully trained.
The experimental results demonstrate that all the proposed
CNNs can perform the classification with a high accuracy.
Overall classification accuracy of each proposed CNN is
above 94% [38]. Compared with traditional image processing
methods, deep learning is more efficient, faster in calcu-
lation, and more accurate in recognition. It will also have
better results for the defects to be identified in this topic.
In the field of target detection, the current Faster RCNN
(faster region-based convolutional neural networks) model,
Yolo (you only look once) model [6] and SSD (single shot
multiBox detector) [7] models all have the advantages of high
accuracy and fast speed [8]. Unlike the Faster RCNN model,
which uses ‘‘two-step detection’’ approach, the Yolo model
uses a regression mechanism, so as long as the entire graph
is entered, the target can be detected. Therefore, the num-
ber of candidate frames selected of the Yolo model is less
than that of the Faster RCNN model. Although the SSD
model draws on the anchor frame mechanism of the Faster
RCNN model, it has not been fine-tuned at every position,
so the accuracy of the SSD is relatively low. For these rea-
sons, the Yolo model and the SSD model are superior to
the Faster RCNN model in terms of detection speed, while
slightly worse than the Faster RCNN model in detection
accuracy. Yolo v3, the third edition of Yolo’s iterative, adds
multi-scale prediction to improve the detection of small tar-
gets, and deepens the network to improve accuracy, making
Yolo v3 more accurate than Faster RCNN and the speed is
100 times faster than Faster RCNN. The requirements for
the speed and accuracy of electrical connector defect detec-
tion are very high in this paper, so the improved network
based on Yolo v3 network are used to meet the requirements
of industrial production, aiming at analyzing the charac-
teristics of the electrical connector defects of the research
object, and improving the network according to actual needs
to meet the requirements of modern industrial production
lines.
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FIGURE 1. Solder spot defect.

II. DEFECT CHARACTERISTICS ANALYSIS
OF ELECTRICAL CONNECTORS
A. ANALYSIS OF DEFECT CHARACTERISTICS
OF SOLDER POINT
One of the research objects in this paper is the scattered solder
spots on the solder cup of the electrical connector caused
by production process problems. The solder spot may be
scattered at any position on the solder cup, and the shape
and size are not fixed, as shown in Figure 1 is a solder spot
defect. The solder cup is the fixed base of the pin, which is the
connection part of the electrical connector. It may cause poor
contact or even no connection in the presence of the solder
points, so the workpiece must be tested to exclude this kind
of situation before leaving the factory. The size and shape of
the solder spot are not fixed. After grayscale preprocessing,
different grayscale values will be displayed under uneven
lighting conditions. It is difficult for traditional image pro-
cessing technology to detect solder spot, and the accuracy and
speed is difficult to meet the testing requirements of modern
production lines.

B. DEFECT ANALYSIS OF GROUND WIRE WRONG
WELDING
Another research object of this paper is the ground wire
of the electrical connector. The ground wire may not be
welded to the specified pin, but welded to the left or right
sides of the pin due to the operation error of the operator
or the machine during the production process, as shown
in Figure 2 is a schematic diagram of ground wire wrong
welding. The green box indicates the correct welding position
of the ground wire, and the two red cross boxes indicates the
positions where the ground wire may be welded incorrectly.
The picture shows the correct welding position. In the case of
wrong welding or missing welding of the ground wire, it may
cause serious leakage accidents and even affect people’s lives
and property safety. The research content of this article is
based on the premise of online testing requirements of the
modern production line. During the testing, the position of
the electrical connector is not fixed, which makes it impos-
sible to determine the position of the ground wire relative to

FIGURE 2. Diagram of staggered welding of ground wire.

the entire electrical connector, and whether the ground wire
is correctly welded. Ground line detection can be achieved
by traditional image processing technology, but traditional
image processing technology focuses on the extraction of
features, For slightly complex scene with more diversified
features, it cannot extract the features very well so it can only
be used in a relatively simple background and scenarios with
low real-time requirements. Obviously, this method cannot
meet the needs of this topic, but the popular deep learning net-
work model in recent years can solve this problem very well.
Compared with traditional target detection algorithms, deep
learning uses a multi-layer convolutional network to extract
higher-level information and it can extract the underlying
information with higher accuracy and stronger generalization
ability at the same time. The Yolo v3 networkmodel has a fast
recognition speed while taking the accuracy into account, and
the optimization of small target recognition is added, which
is more suitable for this topic.

C. ANALYSIS OF RELATIVE ROTATION DEFECTS OF INNER
AND OUTER RINGS OF ELECTRICAL CONNECTORS
The difficult research point of this paper is the relative rota-
tion of the inner and outer rings of the circular electrical
connector. As shown in Figure 3, the light-colored circular
area inside the electrical connector is the inner ring, and
the outer dark ring area is the outer ring. The yellow line
represents the central axis of the outer ring, and the green
line represents the central axis of the inner ring. The central
axis of a normal electrical connector should be coincident.
In the production process of the electrical connector, due to
the worker’s error, the positions of the inner and outer rings
are not aligned, resulting in relative rotation of the central axis
of the inner and outer rings. Because the position of the inner
ring rotates, and the socket on the inner ring rotates at the
same time, the position of the socket cannot be aligned with
the correct pin. As a result, the outer ring cannot be inserted
further after the guide rail is connected during the connection
process, so it cannot be used normally. In order to avoid this
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FIGURE 3. Relative rotation defect of inner and outer ring.

situation, it is necessary to detect the unqualified workpiece,
that is, to detect the relative rotation angle of the center line
of the inner and outer rings. Traditional image processing
technology does not have relevant research on this kind of
defect detection. We can use template matching method to
detect the inner and outer ring templates separately, establish
a rectangular coordinate system on the two templates, and
calculate the corresponding angle. However, template match-
ing detection has problems such as slow detection, instability,
poor robustness and so on. In addition, the requirements for
real-time detection of industrial sites in this subject cannot
be achieved, and the detection effect of electrical connectors
placed in different positions is poor. This paper innovatively
proposes to use the improved Yolo v3 to identify and locate
the inner and outer ring areas, map the centerline directions
of the inner and outer ring areas to the image, calculate the
centerline angles of the inner and outer rings respectively, and
obtain the relative rotation angle difference to represent the
relative rotation degree. So as to complete the detection of
such defects. Turn Yolo v3 from the detection of the entire
object to the recognition of a certain part of the object, and
apply it to actual production operations. The use of deep
learning network for target detection will greatly improve the
recognition accuracy and enhance the robustness of recogni-
tion. For different scenarios, electrical connectors in different
locations have better detection results.

III. YOLO v3
The Yolo algorithm was proposed by Redmon et al. [6]
in 2016 which takes the entire image as input and trans-
forms the object detection problem into a simple regression
problem. In 2018, it has developed to the third generation,
Yolo V3 [9]. As the name implies, it can complete the tar-
get detection as long as it performs a forward operation.
Because of this feature, its operation speed is faster than
other target detection algorithms, but its accuracy is reduced.
While maintaining the speed of Yolo v2 [10], Yolo v3 has

greatly improved the detection accuracy, especially for the
recognition of small targets.

FIGURE 4. Yolo v3 network structure.

A. NETWORK STRUCTURE
A large part of the promotion of each generation of Yolo is
largely achieved by improving the existing backbone network
structure, and Yolo v3 is no exception. Yolo v3 has been
upgraded from Darknet-19 of Yolo v2 to Darknet-53 [5], and
the convolutional layer has been increased to 53 layers. Its
network framework is shown in Figure 4. Darknet-53 draws
on the idea of residual neural network (resnet) and adds
5 residual blocks (residual) to the network. Each residual
block contains a different number of residual units [11]
(res_unit). The residual unit is mainly composed of input and
two digital cumulative modeling (DBL) units [12]. Among
them, the DBL unit is the basic constituent unit of Yolo
v3which contains convolution, batch normalization (BN) and
Leaky relu activation function. It is because the residual unit
is added to the Darknet-53 network, the problem of gradient
disappearance is solved, and the reuse of features is improved
on the basis of deepening the network. In addition, there
is no pooling layer and fully connected layer in the entire
v3 network, so in the process of forward propagation, the size
change of the tensor is achieved by changing the step size of
the convolution kernel. When the step size is set to 2, the size
of the image will become half of the original image after each
pass through the convolutional layer, and the areawill become
a quarter of the original image.

B. MULTI-SCALE DETECTION
Yolo v3 draws on the idea of FPN [13] (feature pyramid
networks) in the detection of small-size targets, and the
detection of different sizes targets are realized by multi-scale
prediction. The final output of the Yolo v3 network is 1/32,
1/16, and 1/8 feature map of the original image. The main
implementation process is to obtain a 1/32 (13× 13) feature
map after several convolution processes behind the 79th layer,
which has a large receptive field and is suitable for large-scale
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target detection. Then the result is upsampled and concate-
nated with the result of the 61th layers (tensor stitching),
and then convolved to obtain a 1/16 (26 × 26) feature map
which is good for medium-scale target detection. Then the
above results are up-sampled and concatenated with the 36th
layer results, and then convolved to obtain a 1/8 (52 × 52)
feature map, which has a small receptive field and is better
for the detection of small targets. As shown in Figure 5, Yolo
v3 outputs three feature maps of different sizes when the
input image size is 416 × 416 × 3, and the output feature
maps are y1, y2, and y3, which represent feature maps of
13 × 13, 26 × 26, and 52 × 52 grids, respectively. In Yolo
v3, 3 boxes are predicted for each grid, and each box requires
(x, y, w, h, confidence) 5 parameters. In the COCO category,
each box needs to recognize80 classes, so the depth of the
feature map is 255. The shallow feature maps are superim-
posed to the adjacent channels by Yolo v3 network, which
enables the network to learn deep and shallow features at the
same time, and the model has more fine-grained features,
thereby improving the model’s detection ability of small
targets.

FIGURE 5. Multi-scale prediction.

C. TARGET BOUNDING BOX PREDICTION
Like Yolo v2, Yolo v3 uses K-means [14] (mean clustering
method) to obtain the size of the priors anchor of the target
in the image. Because Yolo v3 outputs a total of three scale
feature maps, and there are three priori frame corresponding
to large, medium and small size, so there are nine sizes
of priori boxes. For the COCO dataset, the priors anchor
obtained from 9 clusters are shown in Table 1, and the feature
maps of different scales correspond to the priors anchor of
different sizes.

Before predicting the bounding box, Yolo v3 uses Logistic
regression [15] to perform an objective score on the area
around the prior anchor point to determine whether the area
is the target area. For the target area that is not the best,
the model will not predict it, only the region with the high-
est probability of target existence will be predicted. With
this step, the unnecessary prior anchor can be removed and
calculation amount can be reduced, and the model will run
faster. After screening, Yolo v3 uses the same direct predic-
tion method as Yolo v2 instead of the anchor mechanism in

TABLE 1. COCO data set 9 kinds of prior boxes.

FIGURE 6. Bounding box prediction mechanism [6].

the RPN (regional candidate network), as shown in Figure 6
among which (tx, ty) represents the distance between the
upper left corner of the box where the point is located and
the target center point. The sigmoid function is used for nor-
malization instead of the original softmax regression method,
because the softmax method will increase the probability of
the most possible category and suppress the value of other
categories, which is not suitable for the multi-label classifica-
tion. Sigmoid function is more accurate than other methods.
(Cx, Cy) represents the difference of lattice number between
the grid where the point is located and the grid at the upper left
corner.(Pw, Ph) represents the width and height of the prior
anchor.

It can be seen from formula (1) that the width, height and
confidence of the Bounding-box can be directly calculated by
(tx, ty, tw, th, to).

bx = σ (tx)+ cx
by = σ (ty)+ cy
bw = pwetw

bh = pheth

Pr (object) ∗ IOU (b, object) = σ (t0) (1)
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D. LOSS FUNCTION
The loss function in Yolo v3 has three main parts, the target
confidence loss function Lconf(o,c), the target classification
loss function Lcla(O,C) and the target positioning loss func-
tion Lloc(l,g), As shown in the formula (2) As shown.

L(O, o,C, c, l, g) = k1Lconf (o, c)+ k2Lcla(O,C)

+ k3Lloc(l, g) (2)

The target positioning loss includes the prediction frame
width and height (w, h) loss function and the center point
(x, y) loss function. The former uses the error square sum
method to calculate the loss function, the latter uses the binary
cross entropy method to calculate the loss function. The
purpose of calculation is to be able to copewithmore complex
situations, such as the same target may be classified into
multiple categories. The target confidence loss function and
the target classification loss function also use this method.

IV. IMPROVED YOLO v3
The small defects existing on the circular electrical connector
is the research object of this paper, and the detection of small
targets is the main inspection task. The 9 size prior anchors
in Yolo v3 are obtained by K-means clustering analysis based
on the COCO data set, but it is obviously not suitable for the
research object of this subject. On the other hand, although
the multi-scale prediction method is added to the Yolo v3 net-
work to optimize the detection of small targets, the effect
is not as good as expected. Therefore, the improvement of
Yolo v3 is mainly in the clustering method and the network
Structural modification in this article.

A. ANCHOR BOXES CLUSTER ANALYSIS
Yolo v3 uses the anchor box [16] mechanism in Faseter
R-CNN. The anchor box is a set of a priori candidate boxes
with fixed width and height, whose size and proportion will
directly affect the accuracy and speed of network model in
target detection. In Yolo v3, K-means clustering is used to
determine size and proportion. For the COCO data set, 9 sizes
of Anchor boxes are clustered, as shown in Table 1. However,
these nine sizes are not suitable for the research object of
this subject. The size of the Anchor boxes clustered by this
data set cannot meet the defect size requirements of circular
electrical connectors. Therefore, K-means clustering analysis
is required for the data set of this subject. Avg IOU is used as
the criterion of the clustering result when clustering the data
set. The higher the Avg IOU value is, the better the clustering
effect is. Formula (3) shows the calculation method of Avg
IOU.

f = argmax

k∑
i=1

nk∑
j=1

IIOU (T ,P)

n
(3)

where T represents the real target box, which is the sample;
P represents the center of the cluster, which is the cluster
box. IIOU(T,P) [17] represents the IOU (intersection ratio)

FIGURE 7. Cluster analysis results.

between the target center box and the cluster box; k represents
the total number of clusters; n represents the total number
of samples; nk represents the number of samples at the kth
cluster center; i represents the sample number; j represents the
sample number of the cluster center. K represents the number
of clusters in the K-means clustering, which is the number of
clusters you want to obtain finally, and you can freely choose
the number. In this experiment, k= 1∼ 20 was selected, and
a total of 20 clusters were used for cluster analysis on the
image data set. The clustering results are shown in Figure 7.
It can be seen from the clustering result graph, as the number
of clusters increases, the judgment indicator Avg IOU [18]
becomes higher and higher, and the growth rate also decreases
continuously, and the change becomes slow, so the point
after the maximum slope of the curve can be regarded as
the optimal point. On the one hand, fewer points can reduce
the amount of calculation and speed up the convergence of
the loss function. On the other hand, it can also remove the
error caused by the candidate box can be removed, and anchor
boxes that with number and size which are more in line with
this topic can be selected. It can be seen from Fig. 6 that
the optimal point is when the number of clusters is 3 and
the dimensions of the three cluster centers obtained on this
dataset are (13, 20) (18, 19) (23, 12), respectively.

B. IMPROVED YOLO v3 NETWORK STRUCTURE
With the deepening of the network level in Yolo v3, the details
and location information of the image will continue to
decrease, but the semantic information will continue to
strengthen [16]– [19]. For the positioning of the target, more
detailed information is needed, so more characteristics of
the underlying network are needed. For category detection,
more high-level semantic information is required. For target
detection, both the target location and the category must
be determined. Therefore, the multi-scale fusion prediction
method is used to detect the target in the original network
structure of Yolo v3. The upsampling is used to fuse the
high-level network with the bottom-level network, so as to
obtain more feature information for positioning and classi-
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fication. Yolo v3 uses the 8-fold downsampled feature map
for the prediction of small targets, but when the detection
target is less than 8 × 8 pixels, there will be disadvantages,
and the defects to be detected in this article are very small,
which leads to the detection difficulty. In order to solve this
problem, this paper proposes to use the network information
of the upper layer, that is, the 2-fold downsampled feature
map in the original network for detection, which contains
more details and location information, and it is more accurate
for the identification of small targets in this article. In order to
obtain more high-level features and improve the accuracy of
target classification, the 8-fold downsampled map outputted
from the Yolo v3 network is upsampled 4 times to obtain a
2-fold downsampled feature map, and then the feature map
and the 2-folddownsampled maps outputted from the sec-
ond residual block in the network are stitched together, thus
the target detection feature map of 2-fold downsampled are
obtained, as shown in FIGURE 8 [20].

FIGURE 8. Improved Yolo v3 network structure.

In order to better identify the small defects r in this sub-
ject, two residual units are added to the original residual
block output. As shown in Figure 9, 6 DBL units and 1
1 × 1 convolution kernel convolution unit are required to
pass through [22] before the output layer of Yolo v3 [21].
In this paper, it is changed to 2 DBL [23] units and 2 residual
units to enhance the use of features to a certain extent and
avoid the disappearance of gradients. This is similar to the
use of the residual structure in the main network, so that more
bottom-level details and location information are obtained.

As mentioned above, the multi-scale prediction method
used in the Yolo v3 network is used to detect large, medium
and small targets [24]. The three scales of large, medium
and small correspond to three different Anchor boxes sizes,
as shown in Table 1. However, the defect target of this subject
belongs to small target, so it does not need three scales, and
only the 2-fold downsampled fusion featuremap is used as the
target detection layer, in which the fusion feature map selects
to fuse the feature map outputted by the next two residual
blocks, and does not add the 4-fold downsampled feature
map. On the one hand, it simplifies the network, reduces the

FIGURE 9. Residual structure.

calculation, and improves the detection speed. On the other
hand, this part is redundant for the recognition of small targets
and has little practical effect. In this paper, the single-scale
prediction method improves the model’s recall rate for small
targets on the one hand, and improves the detection accuracy
of the model on the other hand, which is more suitable for the
defect detection of electrical connectors. This method is also
suitable for defect detection of the determined target size.

V. DEFECT DETECTION EXPERIMENT OF CIRCULAR
ELECTRICAL CONNECTORS BASED ON
IMPROVED YOLO v3 MODEL
A. EXPERIMENTAL DATA SET AND EXPERIMENTAL
CONDITIONS
Unlike traditional target detection, the data set in deep learn-
ing plays a crucial role, and even largely determines the
quality of the model. Since there is no public data set that
can be used for the defects of circular electrical connectors,
a data set of 50,000 pictures was made in this paper. The
experimental device is shown in Figure 10, through which the
original image is obtained. In order to enhance the robustness
of the networkmodel, it is necessary to obtain asmany electri-
cal connector images as possible in different situations. First
ensure that the workpieces are placed in the same position,
and only by changing the light intensity to obtain a part of
the image. Secondly, rotate the workpiece to obtain images
of different angles of the workpiece, and then a part of the
images are obtained by changing the light intensity at each
different angle. Then move the workpiece horizontally to
obtain images of the workpiece at different positions of the
lens, and then the lighting is repeatedly changed and the
workpiece is rotated to obtain more different images.

The 50000 data sets are mainly divided into three cate-
gories, including 20,000 images of individual ground wire
labels, 20,000 images of individual solder point labels, and
10,000 mixed labels of ground wires and solder points. In this
article, labelImg is the tool to labele the data set. In the
use of labeling, you only need to frame the target point and
customize its category. An xml file that can be recognized by
the network will be automatically generated, which contains
some location information and category information. The
labelImg operation interface is shown in Figure 11.
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FIGURE 10. Experimental device.

FIGURE 11. Labelimg interface.

The conditions of the target detection experiment in this
paper: operating system Windows10, CPU i5-8300H, GPU
1050ti, memory 16GB, deep learning framework tensorflow.

B. IMPROVED YOLO v3 NETWORK TRAINING
When the improvedYolo v3 network is trained, the ratio of the
training set to the validation set is 9:1, and the main parame-
ters of the network are initialized. The learning rate (learning
rate) is set to 0.0005, the number of iterations (epoch) is set
to 110, the batch size is set to 2, and the weight decay is set to
0.0005. The loss (loss) value obtained by the improved Yolo
v3 in network training is shown in Figure 12. It can be seen
that the loss has approached 0.09 after 100 iterations of all
samples. From the convergence of loss value, it can be seen
that the results of the network training are relatively ideal and
can be used as a qualified network model for testing.

FIGURE 12. Improved Yolo v3 loss value curve.

VI. TEST OF DEFECT DETECTION NETWORK FOR
CIRCULAR ELECTRICAL CONNECTORS
A. SINGLE DEFECT DETECTION EXPERIMENT
Recall rate R and precision rate P [25] are the most basic
indicators to judge the quality of network model detection
in the field of target detection network. Recall rate R and
precision rate P can be calculated by formulas (4) and (5).

R =
NTP

NTP + NFN
(4)

P =
NTP

NTP + NFP
(5)

where NTP represents the number of targets detected cor-
rectly by the network; NFN represents the number of targets
not detected by the network; NFP represents the number of
targets detected by the network incorrectly.

A total of 5,000 images were tested, including a total
of 6,000 solder spot defects and 6,000 defects including
ground wires. The trained network model was used to test
the data set to obtain the recall rate R and accuracy rate
P [25]. The results are shown in Table 2. It can be seen
from Table 2 that the improved Yolo v3 has a corresponding
improvement in the identification of two types defects. The
defect recall rate of solder point defects increased from 85.7%
to 92.8%, and the recall rate of ground wire increased from
88.6 % to 94.8%, the target recall rate of the inner and
outer rings increased from 91.1% to 99.5%, the accuracy rate
of solder spot defects increased from 85.3% to 92.2%, and
the accuracy rate of ground defects increased from 88.3%
to 93.8%. The target accuracy rate of the inner and outer
loops increased from 90.1% to 98.5%, which shows that the
improved algorithm in this paper has significantly improved
the recall rate and accuracy rate for the three defects.

The concept of average accuracy (AP) is introduced in
the target detection field in order to better characterize the
accuracy of the model. The average accuracy rate evaluates
the accuracy of the network in terms of recall rate and accu-
racy rate, which is suitable for a single type of detection
evaluation and its quantification method is to calculate the
area under the Precision-recall curve. Generally, the higher
the AP value, the better the classification effect of the model
is. The calculation method of AP [26] is called 11piont
method. First, the maximum 11 precision rate values in the
data set are sorted from high to low and the corresponding
recall rate and precision rate are calculated, and then the recall
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TABLE 2. Comparison of single defect detection results between Yolo v3 and improved Yolo v3.

rate R = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} a
total of 11 points are selected to draw a PR curve. The AP
is calculated by formula (6), where x represents one of the
11 maximum predicted values at the current recall rate.

AP11point
1
11
∗ (

∑
x)(x ∈ Maxprecision) (6)

After putting the single-type defect data set in the data set
into the Yolo v3 network and the improved Yolo v3 network,
the results after calculating the corresponding average accu-
racy are shown in Table 3. It can be seen that compared with
the original Yolo v3 network, the improved Yolo v3 network
improved the average accuracy by different degree in detect-
ing defects 1 and 2, and the AP value of solder point defect
detection increased from 85.6% to 92.5%. The ground defect
detection AP value increased from 88.4% to 94.5%. Themore
intuitive detection effect improvement can be seen through
the different network detection results in Figure 13.

Among them, Fig. 12 (a) is the identification result
of the original Yolo v3 network, and Fig. 12 (b) is the
improved network identification result of this paper. Compar-
ison figures (a) and (b) shows that the original Yolo v3 net-
work has errors and missed detection in solder point defects
detection. The red box represents the location detected by the
network, the yellow box represents the location of incorrect
detection or missed detection, and the green box represents
the location of the correct frame. In summary, the improved
algorithm of this paper reduces the situation of false detection
and missed detection to a certain extent.

The detection of inner and outer ring rotation defects
is different from the other two kinds of defect detection.
An innovative detection method of relative rotation inside
the workpiece is proposed in this paper. The detection model
of the inner and outer rings of the electrical connector is
created respectively. After the inner and outer ring templates
are detected, the central axis angles of the two parts are
calculated, and the angle difference is calculated based on
the angles of the two central axis, so as to complete the
detection of the relative rotation of the inner and outer rings.
Not only the accuracy of target detection is required, but
also the accuracy of the detected angle difference and the

FIGURE 13. Comparison of Yolo v3 network and the improved Yolo
v3 network defect detection results.

actual angle difference Figure 14 (a) is the original network
detection result of Yolo v3, and Figure 14 (b) is the improved
Yolo v3 detection result. It can be seen that the area in the red
box in the detection result of the original network detection
result map is the inner ring area, and the direction of the
central axis should be the same as the digital direction in
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FIGURE 14. Comparison of the detection results of the inner and outer
loops of the Yolo v3 network and the improved Yolo v3 network.

FIGURE 15. Human-computer interaction interface for inner and outer
loop detection.

the inner ring area, but the central axis direction detected
by the Yolo v3 network is opposite to the central axis of the
inner ring. The inner ring area detected by the improved Yolo
v3 in this paper is shown in the blue box in Figure 14(b), and
the direction is the same as the actual central axis, and the
central axis of the outer ring area is shown in the purple box
in Figure (b), which is consistent with the actual situation.
The actual detection process is shown in Figure 15. The
human-computer interaction interface written by QT5 can

accurately identify the current electrical connector model
and the relative rotation angle of the inner and outer rings,
and judge whether the product is qualified according to the
rotation angle.

In order to test the accuracy of this method for detecting
the inner and outer ring defects of different types of electri-
cal connectors, 8 types of electrical connectors are selected.
There are 16 categories of qualified products and unqualified
products, and 100workpieces of each category are tested. The
test results are shown in Table 3. It can be seen that compared
with the original network, the improved Yolo v3 detection
error in this paper is maintained at about 0.2◦, and the max-
imum detection error is only 0.4◦, the detection effect is
betterwhich is close to the actual deviation angle. Through
the electrical connector socket and plug test, the electrical
connector can still be used normallywhen the relative rotation
angle of the inner and outer rings of the electrical connector
is less than 4◦. Therefore, the detection method in this paper
can meet the detection accuracy of the electrical connector in
the industrial field.

B. MIXED DEFECT DETECTION EXPERIMENT
To judge the quality of a target detection model is not only
to judge the detection effect of a single type of target. Using
the original Yolo v3 network respectively, the improved Yolo
v3 network in this paper detects the mixed defect 1, 2 targets.
Due to the particularity of the rotation angle detection of the
inner and outer rings, the defect 3 detection is not added to
the experiment. The self-made data set are adopted in this
paper, and the evaluation standard is characterized by the
mean accuracy rate (mAP). The higher the value of mAP,
the better the detection effect and the stronger the comprehen-
sive performance of the network for the detection of different
types of targets. The mAP calculation formula is shown in
formula (7)

mAP =
1
N

∑
i∈N

AP(i) (7)

In the formula, AP [26] represents the average accuracy
rate, N represents the number of detected target types, and
mAP [27] is the mean value of different types of APs. The
test results are shown in Table 4. It can be seen that the
improved Yolo v3 network increases mAP from 86.9% to
93.5%, the false detection rate is reduced from 8.3% to 3.9%,
and the missed detection rate is reduced from 4.8% to 2.6%.
The network improved in this paper has better performance
in the data level. The actual defects in this paper are chose
to detect and compare in order to better check the effect of
defect detection.

From Figure 16, we can see the results of the two networks
in the actual detection process. Figure 16 (a) is the detection
result of the original Yolo v3 network, and Figure 16 (b) is
the result graph obtained by the improved algorithm in this
paper.

Compared Figure 16 (a) with (b), we can see that the
original Yolo v3 network has made some wrong detections,
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TABLE 3. Comparison of Yolo v3 and improved Yolo v3 relative rotation detection effect.

TABLE 4. Comparison of Yolo v3 and improved Yolo v3 network mAP.

FIGURE 16. Comparison of Yolo v3 network and the improved Yolo v3 network defect detection results.

and some light spots are mistakenly identified as solder
joints [28], while the improved Yolo v3 network can accu-
rately identify solder joints and reduce the occurrence of false
detection to a certain extent. In addition, it can be seen that
the Yolo v3 network has not identified all the ground wires,
which leads to missed detection. The improved algorithm of
this paper accurately identified all the defects which indicates
that the improved algorithm in this paper is more accurate
than the original Yolo v3 network in detecting single-type
defects or multi-type defects.

C. COMPARISON OF DIFFERENT TARGET DETECTION
MODELS
Because the defect of the circular electrical connector is the
identification target of this paper, the accuracy and real-time
performance of the network model is the most important for

the identification task of this paper. The accuracy rate can
be characterized by mAP, and the real-time performance can
be judged by detection time. The same data set is used in
this paper, and Faster R-CNN, SSD, Yolo v3 [29], and the
improvedYolo v3 network in this paper are used for detection.
The results are shown in Table 5.

As can be seen from Table 5, the mAP score of Yolo
v3 in this paper is the highest, reaching 93.5%, followed
by Faster R-CNN [30], reaching 91.2%, indicating that the
improved network in this paper has better detection per-
formance, is faster than other networks. From the perspec-
tive of mAP and inspection time, the improved algorithm
performance in this paper is more balanced, it can accel-
erates the inspection speed and better serve the inspec-
tion task of electrical connector defects, while ensuring the
accuracy.
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TABLE 5. Defect detection results table of different algorithms.

VII. CONCLUSION
The improved algorithm in this paper is mainly based on the
Yolo v3 network whose main improvement points are the
selection of anchor boxes, the cluster analysis of self-made
data sets, and the calculation of the suitable number and size
of candidate boxes for this paper. Candidate boxes are very
important for different detection tasks; In addition, the back-
bone network structure is reconstructed, and the 2-fold down-
sampled feature map in the network and the output feature
map of the deep network are stitched and merged to obtain
the 2-fold downsampled fusion feature map; in order to better
identify small defect targets, 2 residual units are added to the
final residual block output, which has a better effect on the
detection of small defects. Because the detection target of
this paper is defect detection of circular electrical connectors,
which is small, single-scale prediction is used instead of three
scales of large, medium and small scale prediction used in
the original network, and 6 DBL [31] units before the target
detection layer are changed to 2 DBL units and 2 residual
units in order to meet the real-time requirements of the net-
work model and better support for small defect recognition;
In addition, an innovative method for detecting defects in the
relative rotation of the inner and outer rings of the electrical
connector is proposed, which can accurately identify multiple
types of electrical connectors, and has a good detection effect
for the three types of defects described in this article. Through
experiments, we can see that the improvedYolo v3 network in
this article has a more balanced performance compared with
different target detection algorithms The recall rate, accuracy
rate andmAP of the defects in this article have been improved
to a certain extent compared with the original Yolo v3 net-
work, The recognition speed also has been increased in the
case of ensuring accuracy, basically meeting the requirements
of industrial field for the accuracy and real-time detection
of circular electrical connectors. All these show that the
algorithm in this paper has certain practical significance,
and can be used for reference in the identification of small
target defects in industrial field. The improved network in this
paper will obtain a more ideal detection results by performing
cluster analysis on different data sets. The improved Yolo
v3 in this paper obtains a higher mAP than Faster R-CNN,
and its detection speed isless than 1% of Faster R-CNN [32].
Yolo V3 has a great progress compared to other models,
but there is still a lot of room for improvement of network

detection performance, and the next main research direction
is to continue to improve accuracy and speed.
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