
Received August 11, 2020, accepted August 27, 2020, date of publication September 7, 2020, date of current version September 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022509

Dynamic Allocation/Reallocation of Dark Cores
in Many-Core Systems for Improved
System Performance
XINGXING HUANG1, XIAOHANG WANG 1, (Member, IEEE), YINGTAO JIANG2,
AMIT KUMAR SINGH 3, (Member, IEEE), AND MEI YANG 2
1School of Software Engineering, South China University of Technology, Guangzhou 510006, China
2Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
3School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, U.K.

Corresponding author: Xiaohang Wang (xiaohangwang@scut.edu.cn)

This work was supported in part by the Natural Science Foundation of Guangdong Province under Grant 2018A030313166, in part by the
Pearl River S&T Nova Program of Guangzhou under Grant 201806010038, in part by the Fundamental Research Funds for the Central
Universities under Grant 2019MS087, in part by the Open Research Grant of State Key Laboratory of Computer Architecture Institute of
Computing Technology, Chinese Academy of Sciences under Grant CARCH201916, in part by the Natural Science Foundation of China
under Grant 61971200, and in part by the Key Laboratory of Big Data and Intelligent Robot (South China University of Technology),
Ministry of Education.

ABSTRACT A significant number of processing cores in any many-core systems nowadays and likely in
the future have to be switched off or forced to be idle to become dark cores, in light of ever increasing
power density and chip temperature. Although these dark cores cannot make direct contributions to the chip’s
throughput, they can still be allocated to applications currently running in the system for the sole purpose of
heat dissipation enabled by the temperature gradient between the active and dark cores. However, allocating
dark cores to applications tends to add extra waiting time to applications yet to be launched, which in return
can have adverse implications on the overall system performance. Another big issue related to dark core
allocation stems from the fact that application characteristics are prone to undergo rapid changes at runtime,
making a fixed dark core allocation scheme less desirable. In this paper, a runtime dark core allocation
and dynamic adjustment scheme is thus proposed. Built upon a dynamic programming network (DPN)
framework, the proposed scheme attempts to optimize the performance of currently running applications and
simultaneously reduce waiting times of incoming applications by taking into account both thermal issues and
geometric shapes of regions formed by the active/dark cores. The experimental results show that the proposed
approach achieves an average of 61% higher throughput than the two state-of-the-art thermal-aware runtime
task mapping approaches, making it the runtime resource management of choice in many-core systems.

INDEX TERMS Dark core, many-core, dynamic resource allocation, throughput optimization.

I. INTRODUCTION
Technology scaling has ushered in the era of many-core
systems [1]. Along with the increase of number of cores in a
chip, it was reported in [2] that most computing systems have
low utilization rates, often lower than 50%, which is partially
attributed to the fact that the applications supposedly to be
running on these cores actually arrive at drastically varying
rates, and some or all of the cores need to be frequently
shut down to save energy. Moreover, since the power density

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

in many-core chips has skyrocketed, some cores have to be
power-gated to ensure, at any given time, the total power con-
sumption does not exceed the allowed chip power budget [3].
Although those inactive or powered-off cores, referred as
dark cores [4], impose challenges for performance tuning,
they actually offer some opportunities.

Since a dark core, for the duration when it remains dark,
does not consume any power itself, it tends to be cooler than
its neighboring active cores, which are continuously generat-
ing heat. In anticipation that ‘‘cold’’ dark cores can be used
for heat dissipation purposes, when an application is mapped
to run on active cores, a few dark cores can also be allocated

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 165693

https://orcid.org/0000-0002-2263-5643
https://orcid.org/0000-0003-2056-0569
https://orcid.org/0000-0002-9510-1079
https://orcid.org/0000-0002-0026-2284

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

to the same application. There have been a number of studies
onmapping applications to both active and dark cores [4]–[9].
They basically allocate dark cores to applications in the way
that the active cores are allowed to operate at higher frequency
levels, and thus, achieve higher performance at a cost of
higher power consumption. However, these approaches fail
to deliver optimized system performance due to the following
reasons.

FIGURE 1. The number of arrived jobs per hour (a) / per minute (b) [10].

First, as reported in [10], the application arrival rates
vary significantly at different times. Particularly, as shown
in Fig. 1(a), there is a vast gap between themaximum (highest
number of applications arriving at the system per hour) and
theminimumworkloads, by as much as 200× [10]. Even over
just one single minute, as shown in Fig. 1(b), the ratio of
the maximum number of applications to the minimum can
be as high as 6:1 [10], which implies that the number of
dark cores can also vary greatly over that short time span.
However, for the sake of simplicity, both schemes in [6], [7]
inaccurately assume that the number of dark cores remains
unchanged over a long time interval, undermining the quality
of the application mapping results.

FIGURE 2. An example illustrating two different schemes: how the free
cores are assigned to five applications that system needs to service.

Second, due to workload fluctuations, allocating dark cores
to applications necessitates the consideration of a number
of competing requirements, such as throughput and individ-
ual application’s waiting and completion times, as shown
in Fig. 2. Assume that at initial time t0, four applications
(A1-A4) occupy core regions each of which also includes
one or a few dark cores, as shown in Fig. 2(a). With appli-
cation A5 arriving at time t1, there are two possible allocation
schemes that can map A5 to the cores:

• In one scheme, the dark cores already bound to A1-A4
will be reallocated to A5 such that A5 can run imme-
diately at time t1, but A1-A4 have to slow down due to
fewer dark cores available to help their active cores’ heat
dissipation (shown in Fig. 2(b));

• Alternatively, A5 will be asked to wait until some appli-
cations (A1 through A4) finish their executions and
thus their cores are freed up for A5 to grab (shown
in Fig. 2(c)). In this case, A1-A4 can maintain their
desired performance, but A5 has to undergo a longer
waiting time before it starts its execution.

From Fig. 2, one can see that the mapping results gen-
erated from the two schemes differ significantly from each
other in terms of performance (completion time) of cur-
rently running applications and the performance of the newly
arrived or future applications.

FIGURE 3. (a) The computation demands of running Facesim and
Swaptions. (b) Reclaiming the dark cores held for Swaptions and
allocating them to Facesim.

Third, application’s computation demand, measured by
throughput in terms of instructions per cycle (IPC), varies
with time. For instance, the computation demands of simul-
taneously running Facesim and Swaptions in the system,
shown in Fig. 3(a), vary differently. As there are dark cores
already allocated to Swaptions and it has decreasing com-
putation demands as time passes by, the resource manager
can reclaim some of the dark cores occupied by Swaptions,
and instead allocate them to Facesim at time t5, as shown
in Fig. 3(b). If the dark cores can be genuinely adjusted at
runtime, both applications will be able to have their compu-
tation demands met.

In order to achieve optimized system performance by
addressing the aforementioned challenges, we propose a run-
timemapping scheme to dynamically allocate and adjust both
active and dark cores. Here are the highlights of the proposed
scheme.

• The proposed mapping algorithm takes the varying
workloads, the waiting times of newly arrived applica-
tions, and the computation demands of applications into
account, while the operating temperature is treated as a
thermal constraint for safe and reliable operation of the
chip. Instead of pushing each individual application’s
performance to its highest, our approach attempts to
optimize the performance of currently running applica-
tions and the ones that are about to run.

165694 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

• Based on a throughput model, a dynamic programming
network framework is proposed to determine both the
number of active and dark cores in the system for the
newly arrived applications, and the number of dark
cores that is allocated to executing applications, with the
objective of maximizing the system performance.

• The mapping algorithm also includes region determina-
tion and task-to-core mapping. In general, the dark cores
are placed near the cores that need to dissipate heat or run
at higher frequencies. Moreover, the locations and geo-
metric shapes of the core regions are regulated to min-
imize the communication latency and fragmentation of
the free core regions, which further improves the system
performance.

The remainder of the paper is organized as follows.
Section II reviews the related work, and Section III describes
the target system and provides the problem definition.
Section IV presents the overview of the proposed method.
Section V, VI, and VII describe the detail of three steps of
the proposed method. Extensive experiments are conducted
to compare the proposed scheme against the state-of-the-art
thermal-aware runtime mapping methods, and the results are
reported and analyzed in Section VIII. Finally, Section IX
concludes this paper.

II. RELATED WORK
Runtime allocation of available system resources to tasks has
been an active research area since the inception of the many-
core era [11]. Of the many resource allocation approaches
that have been proposed, they, based on whether remapping is
allowed at runtime, can be broadly classified into two classes:

• Dynamic mapping without task migration, where no
mapping change happens after the initial task-to-core
mapping; and

• Dynamic mapping with task migration, where tasks can
be mapped and remapped to different cores at runtime.

A. DYNAMIC MAPPING WITHOUT TASK MIGRATION
Dynamic mapping without task migration can be further
classified into three categories according to their optimization
goals: communication-oriented mapping, power-aware map-
ping, and thermal-aware mapping.

Communication-oriented approaches (e.g., [12], [13]) aim
at reducing network latency or minimizing traffic congestion,
and they are similar to the contiguous mapping method [7].
However, these mapping approaches might lead to thermal
hotspots in high power density chips since they do not con-
sider the power budget [4].

Power-aware algorithms (e.g., [14], [15]) try to perform
mapping under the thermal design power budget, which alone
is not enough to avoid thermal violations, as found in [5]. As a
fix, some thermal-aware approaches take the temperature of
the cores into account during mapping [16].

The thermal-aware mapping approaches in [16], [17] try
to minimize the power consumption and peak temperature.

As alluded before, the existence of dark cores presents
opportunities to optimize system temperature. Failing to take
advantage of the availability of dark cores might lead to sub-
optimal performance, as the cases of [16], [17]. To efficiently
exploit dark cores, many dark-core-aware approaches have
been considered [4]–[8]. The mapping approaches in [5], [6]
assume that the system has a fixed number of dark cores, but
in reality, the number of dark cores can vary significantly even
in a short period of time [10]. Approaches in [5], [7], [8]
do not consider the application arrival rate, and thus, their
mapping results tend to cause applications to wait too long
before they can start their execution. Although the work
in [4] considers the application arrival rate when allocating
dark cores to applications, a big drawback is that it cannot
guarantee that the cores can meet the changing computation
demands of applications.

In short, none of these dynamic mapping algorithms
described here deliver the optimal performance, as they do
not take full advantage of the dark cores in the system,
workload variation, and changing computation demands of
applications.

B. DYNAMIC MAPPING WITH TASK MIGRATION
Recognizing the deficiencies of the dynamic mapping
approach without task migration, dynamic mapping approa-
ches allowing task migration at runtime are proposed to
help improve the runtime application performance. The
dynamic mapping approaches can be classified into three
categories: fragmentation-aware migration, communication-
aware migration, and thermal-aware migration.
Fragmentation-aware migration schemes (e.g., [18], [19])
reallocate tasks with a hope of forming a contiguous region of
cores, while the communication-aware migration approaches
(e.g., [20], [21]) focus on adjusting core allocation to
minimize communication latency. Thermal-aware migration
approaches (e.g., [22], [23]) move tasks from overheated
cores to cooler ones to reduce hotspots. However, the above
mapping approaches still do not exploit dark cores for better
performance [8]. Although an early study in [9] presents
a dark-core-aware migration algorithm to produce better
computation performance, it does not address the changing
computation demands of applications.

In the next section, wewill present a runtime dark core allo-
cation and adjustment scheme that addresses the outstanding
issues of workload variations and applications’ computation
demands.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. THE TARGET MANY-CORE PLATFORM AND
APPLICATION MODEL
Fig. 4(a) shows the target many-core platform, which has a set
of homogeneous cores Q, connected by a 2D mesh network.
A core in Q is denoted as ci. One core will be designated as
the resource manager and it has the authority and capacity to
make any runtime core allocation and adjustment decisions.

VOLUME 8, 2020 165695

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

TABLE 1. Nomenclature. The many-core platform executes applications organized as
a set, A = {A1,A2, . . . ,AN }. When an application is ready
to execute at time t , it is placed in the system waiting queue
(denoted asH (t)). When an application inH (t) is allocated to
certain cores for execution, it is added into the running queue
(denoted as T (t)). When an application in T (t) finishes its
execution, it is deleted from this queue. The notations used
throughout the paper are summarized in Table 1.

To model the time-varying features of computation
demands, an application Ai is divided into mutiple phases,
and at a phase τ the application is represented as a task graph
AGi(τ) = (Vi(τ),Ei(τ)), as shown in Fig. 4(b). The task
graphs at different phases can be obtained by the heartbeat
framework [24]. Vi(τ) is the set of tasks associated with
application Ai, and Ei(τ) is the set of edges governing the
communications among tasks. vij is the jth task of application
Ai. eijk is the edge of connecting tasks vij and vik indicating the
communication between vij and vik . Each task vij ∈ Vi(τ) has
a weight a(vij, τ) which gives the execution time at phase τ .
An edge eijk = (vij, vik) ∈ Ei(τ) has a weight ofw(eijk , τ) that
defines the communication volume in terms of the number of
packets from tasks vij to vik at phase τ . Mapping a task to a
core is defined as a one-to-one mapping; that is, only one task
can run at a core, and no tasks can share a core at any given
time [13]. A mapping function M (vij) = ci, maps task vij to
core ci.

FIGURE 4. (a) The target many-core platform. (b) A task graph of
application Ai .

B. THROUGHPUT MODEL
Application Ai’s computation demand is measured by its
throughput, which is the lumped throughput (IPC) of the
cores running all the tasks of Ai. A throughput model is
set to compute the throughput of application Ai (denoted as
5i,|Bi(t)|), with |Bi(t)| dark cores assigned to Ai. In specific,

5i,|Bi(t)| = f (āi, w̄i,
|Bi(t)|
|Vi(τ)|

,$i(τ)) (1)

where Bi(t) is the set that associates with application Ai. āi
and w̄i are the average execution time and communication
volumes of the tasks, respectively, and$i(τ) is given below.

$i(τ) =

∑
∀vij∈Vi(τ) a(vij, τ)∑
∀eijk∈Ei(τ) w(eijk , τ)

(2)

165696 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

FIGURE 5. A near square shape. (a) Case 1: φ > α. (b) Case 2: φ ≤ α.

Eqn. (1) can be obtained empirically by applying polynomial
regression as below.

5i,|Bi(t)| =

z∑
j=1

βj(āi)j +
z∑
j=1

δj(w̄i)j

+

z∑
j=1

ϑj(
|Bi(t)|
|Vi(τ)|

)
j
+

z∑
j=1

θj($i(τ))j + ε (3)

The throughput model is used at runtime to estimate the
throughput, given the number of dark cores. To find the
regression coefficients βj, δj, ϑj, θj and ε, the maximum
likelihood method [25] can be used.

The throughput model can be trained offline by running
various applications. There are four steps.
Step 1 (Find a Near Square Shape): Since the throughput

of application Ai is associated with the core region, and a
square shape is ideal to address the communication latency
concerns [13], a core region close to a square shall be pursued
when mapping applications. Let Ri(t) be the core region of
application Ai, which includes the dark cores Bi(t) and active
cores. First, a basic square with length α = b

√
(|Ri(t)|)c is

found. If φ = |Ri(t)| − α2 = 0, this region is a square and
it shall be selected as the shape of core region for throughput
modeling. For a region with a non-square shape, this region
can take of the shapes made of a basic square combined with
one or two rectangles.
• Case 1: two rectangles. If φ > α, the near square shape
consists of the basic square and two rectangles, as shown
in Fig. 5(a). The two rectangles’ sizes are 1 × α and
1× (φ − α), respectively.

• Case 2: one rectangle. If φ ≤ α, the near square shape
consists of the basic shape and a rectangle of size 1×φ,
as shown in Fig. 5(b).

Step 2 (Determine the Task Positions): The mapping
method described in Section VII can be used to determine
the positions of tasks. The cores that are not occupied by tasks
in the core region of application Ai are powered-off as dark
cores.
Step 3 (Set Other Running Applications): In order to simu-

late the case that there are many other applications running
simultaneously in the system, which also consume power,
applications from PARSEC [26] are randomly picked and
mapped to cores adjacent to the application of interest.
Step 4 (Set Voltage/Frequency Levels of Cores): When

running applications, it is necessary to ensure that each core

ci is running safely with its power consumption below the
maximum power capacity Pm(ci), which is obtained from the
thermal power capacity model in [4]. The total power con-
sumption comes from the dynamic power Pd (ci) and leakage
power Pl(ci). Therefore,

Pd (ci)+ Pl(ci) ≤ Pm(ci) (4)

The leakage power Pl(ci) can be obtained as in [27]. The
dynamic power Pd (ci) is determined by:

Pd (ci) = 1/2 · µi · zi · `i2 · fi (5)

where µi is the switching activity, zi is the effective capac-
itance, fi is the frequency of core ci, and `i is the supply
voltage. The frequencies, power, and throughput of the dark
cores are 0. Once the positions of the tasks are determined in
the system, the method in [4] is used to set voltage/frequency
levels of the cores so that they can run at a high speed without
violating temperature constraint and the maximum power
capacity.

C. PROBLEM STATEMENT
The applications in set A arrive at the system at different
times, and the objective is to maximize 5A, the system
throughput of running the applications in set A.

max5A (6)

Eqn. (6) can be transformed to maximize the system
throughput of the application set A(t) which can be executed
at time t . A(t) contains the applications that are either in the
running queue T (t) or in the waiting queue H (t) at time t .
With the throughput model, the maximum throughput for the
application set A(t) can be computed by:

max5A(t) = max(
∑

∀|Bi(t)|≤|Q|,∀Ai∈A(t)

γ
if_run
i 5i,|Bi(t)|) (7)

subject to, ∑
∀Ai∈A(t)

γ
if_run
i (|Bi(t)| + |Vi(τ)|) ≤ |Q| (8)

where γ if_run
i is a binary value. If γ if_run

i is 1, application
Ai can start its execution immediately as there are sufficient
cores available in the system. If γ if_run

i is 0, it means appli-
cation Ai is put on hold and it waits for core(s). If Ai ∈ T (t),
γ
if_run
i = 1.
At each control time, decision needs to be made regarding

the number of dark cores to be allocated to each application,
together with the task-to-core mapping.

IV. OVERVIEW OF THE PROPOSED METHOD
The decision to map a new application to cores, or adjust the
core regions of running applications, could usher in a couple
of challenges.

First, fragmentation of free cores [18] might occur. Dark
cores released by other applications might not form a con-
tiguous region, which increases the communication latency
for newly arrived applications.

VOLUME 8, 2020 165697

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

Second, a near square shape of the core region is ideal for
communication latency concerns [13]. However, the shape
tends to be irregular after adding or removing dark cores,
which might lead to increased communication latency.

To address these challenges, a three-step algorithm is pro-
posed as follows:
Step 1 (Dark Core Budgeting (Section V)): A dynamic

programming framework is applied to decide the number of
dark cores for the running applications and newly arrived
ones.
Step 2 (Region Determination (Section VI)): Given the

number of dark cores from the previous budgeting step,
the shape and location of each application’s core region are
determined and reallocated to avoid fragmentation.
Step 3 (Task Mapping (Section VII)): A task mapping

algorithm maps the tasks within its core region, together with
the determination of the locations of the dark cores.

The proposed method will be triggered at each control
time.

V. DARK CORE BUDGETING
Dark core budgeting, which decides the numbers of dark
cores that shall be allocated for maximal throughput (defined
in Eqns. (7) and (8)), can be transformed into the longest path
problem in an acyclic network, where a dynamic program-
ming network (DPN) can be built.

FIGURE 6. A dynamic programming network.

A. DYNAMIC PROGRAMMING NETWORK DEFINITION
The dynamic programming network (DPN) is denoted as a
graph DPN (O,Y), as shown in Fig. 6, with O and Y rep-
resenting the vertex and edge sets, respectively. We assume
that dark cores should be allocated to applications in set
F(t) = {f1(t), f2(t), . . . }. Each application in set F(t) forms a
stage, and each stage has |B(t)| + 1 vertices, oi,0, oi,1, . . .,
oi,|B(t)|. Here |B(t)| is the maximum number of dark cores
in the system when applications in F(t) are running in the
system, and it is computed by:

|B(t)| = |Q| −
|F(t)|∑
i=1

|Vi(τ)| (9)

Two dummy vertices, source vertex s and destination ver-
tex d , are added to indicate the start and the end of the DPN,
respectively. The vertex oi,b ∈ O, 0 ≤ b ≤ |B(t)| has
a dynamic programming value U (oi,b, d) to represent the

optimal overall throughput after assigning a total of b dark
cores to applications fi(t), fi+1(t), . . ., f|F(t)|(t). An edge
connecting the vertices oi,b and oi+1,k is defined as
3(oi,b, oi+1,k), corresponding to the decision of assigning
b− k dark cores to application fi(t). Each vertex at stage i is
connected to at most |B(t)|+1 vertices in the next stage i+1.
The edge3(oi,b, oi+1,k) has a utility function C(oi,b, oi+1,k),
which is the throughput of assigning b − k dark cores to
application fi(t).

C(oi,b, oi+1,k) =

{
5i,b−k if b ≥ k
−∞ if b < k

(10)

An edge with utility5i,b−k (the throughput obtained from
the throughputmodel defined in Section III-B) exists between
two vertices oi,b and oi+1,k , if b ≥ k (i.e., there are b−k dark
cores assigning to application fi(t)). For the case of b < k ,
the utility of the edge 3(oi,b, oi+1,k) is set to be −∞. The
utilities of the edges 3(s, o1,b) are zero. The utilities of the
edges 3(o|F(t)|,b, d) connecting the vertices in the last stage
to the destination vertex d are 5|F(t)|,b.
Let �d

s be a feasible path from the source vertex (s) to the
destination vertex (d). The maximum throughput resulting
from the dark core allocations for the application set F(t)
can be computed by finding the longest path from vertex s
to vertex d . Such a longest path can be found recursively
in the form of Bellman equations [28]. That is, the dynamic
programming valueU (oi,b, d) of vertex oi,b can be computed
in a backward fashion, from vertex d back to stage i.

U (oi,b, d) = max
∀k,0≤k≤b≤|B(t)|

{C(oi,b, oi+1,k)+ U (oi+1,k , d)}

(11)

By expanding Eqn. (11) from vertex s to vertex d
(i.e., U (s, d)), the maximum throughput resulting from the
dark core allocations for the application set F(t) can be
computed by:

U (s, d) = max
∀�ds

|F(t)|∑
i=1

C(oi,b, oi+1,k) (12)

Let µ(oi,b) be the vertex in stage i + 1, which connects to
vertex oi,b; and vertex oi,b has dynamic programming value
after it connects to vertex µ(oi,b).

µ(oi,b) = arg max
∀k,0≤k≤b≤|B(t)|

{C(oi,b, oi+1,k)+ U (oi+1,k , d)}

(13)

Algorithm 1 shows the computation of the Bellman equa-
tions given in Eqns. (11)-(13). For each vertex oi,b in a stage,
U (oi,b, d) and µ(oi,b) are updated (Lines 4-9). The time
complexity of Algorithm 1 is O(|F(t)| · |B(t)|2).

B. FINDING THE RUNNING APPLICATION SET
To find the application set T ∗(t + 1) that is to be run at time
t + 1 (equivalent to determining γ if_run

i in Eqn. (7)), a three-
step dark core budgeting algorithm is applied, as shown
in Fig. 7.

165698 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

Algorithm 1 Find the Longest Path in DPN
Input:
F(t): The application set.
C(oi,b, oi+1,k): The utility of each edge.
Output:
U (oi,b, d): The dynamic programming value for oi,b.
µ(oi,b): The optimal vertex to oi,b.
Function:
Find the longest path in DPN.
1: Set each U (oi,b, d) to be zero;
2: for each stage i from |F(t)| to s do
3: for each vertex oi,b do
4: for each edge connecting oi,b and a vertex

oi+1,k at stage i+ 1 do
5: if C(oi,b, oi+1,k)+ U (oi+1,k , d)

≥ U (oi,b, d) then
6: µ(oi,b) = oi+1,k ;
7: U (oi,b, d) =

C(oi,b, oi+1,k)+U (oi+1,k , d);
8: end if
9: end for

10: end for
11: end for

FIGURE 7. The overview of the dark core budgeting algorithm.

Step 1: T ′(t) is denoted as the application set of all the
applications that have not completed their executions after
time t . From T ′(t), the maximum number of applications
that can be added into the running queue from the waiting
queue H (t), denoted as nwait, is computed by the order that
these applications join the waiting queue (assume none of
the applications including the applications in T ′(t) running
at time t + 1 have dark cores).

nwait=max{k|
T ′(t)∑
j=1

|Vj(τ)|+
k∑

i=1,hi(t)∈H (t)

|Vi(τ)|≤|Q|} (14)

Step 2: set Tl(t + 1) = T ′(t) ∪
⋃l

j=1 hj(t), l ∈
{0, . . . , nwait}, hj(t) ∈ H (t). Here Tl(t + 1) is the set of
currently running applications after time t and l applications
in the waiting queue. These l applications are selected from
the waiting queue H (t), according to the order when they
join the waiting queue. For each application set Tl(t + 1),
l ∈ {0, . . . , nwait}, the maximum throughput Ul(s, d) in Eqn.
(12) is computed by exploring the dynamic programming
network (Algorithm 1).
Step 3: T ∗(t + 1) = argmax∀Tl (t+1),l∈{0,...,nwait} Ul(s, d) is

found. In this case, T ∗(t + 1) is the application set with the
maximum throughput.

The worse-case time complexity of finding the running
application set and dark core budgeting scheme is O(nwait ·
(|T ′(t)| + nwait) · |B(t)|2).

VI. REGION DETERMINATION
Dark core budgeting algorithm computes the number of dark
cores that is allocated to applications running at time t + 1.
The currently running applications whose dark core number
is about to change, i.e., |Bi(t)| 6= |Bi(t + 1)|, and the newly
arrived ones need to find a new region, following a three-step
region determination algorithm, as shown in Fig. 8.

FIGURE 8. The overview of the region determination algorithm.

Step 1 (Find the Largest Contiguous Region): Starting with
the largest contiguous region Rlargest will help alleviate the
core fragmentation problem. All of the applications whose
core regions are not located in Rlargest need to be adjusted for
their core regions.
Step 2 (Determine the Relocation Order): The applications

that need to find a new region are prioritized.
Step 3 (Find the Core Region): For each application that

needs to be adjusted, a three-step algorithm is performed.
• First, find all the possible locations of the cores that an
application can be mapped to.

• Second, the candidate regions are formed, starting from
each possible core location of an application.

• Third, choose the new region out of the candidate
regions.

VOLUME 8, 2020 165699

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

A. FINDING THE LARGEST CONTIGUOUS REGION
Let ψ ⊂ T ∗(t + 1) be a set that includes two types of
applications: (1) the ones that are newly added into the run-
ning queue, and (2) the currently running ones which see
their number of affiliated dark cores is about to change. Let
RCi ∈ RC = {RC1,RC2, . . . ,RCm, . . . } be the ith contigu-
ous region occupied by the applications in set K no_adjust

=

T ∗(t + 1) − ψ , which is the set of the currently running
applications that will hold the same number of dark cores.

To find RC , the following steps are performed iteratively.
For each RCi ∈ RC , initially, a core that is occupied by an
application in set K no_adjust is found, and it is added to RCi.
For each core cj ∈ RCi, each of the neighboring cores cl is
checked. If core cl is already running a task of an application
in K no_adjust, it is added to RCi. If all of the cores in RCi are
checked and

∑
∀i,1≤i≤|RC| |RCi| is less than the total number

of cores that are running the tasks of applications in set
K no_adjust, the iteration can continue to find RCi+1; otherwise
the iteration terminates.

The largest contiguous region Rlargest is the one in RC that
has the maximum number of cores. All of the applications
running at time t + 1, whose core regions are not located in
Rlargest, are added to a setψ ′. The core regions of applications
in ψ ′ need to be adjusted.

B. DETERMINATION OF THE RELOCATION
ORDER OF APPLICATIONS
To determine the relocation order of the applications, appli-
cations in ψ ′ are sorted in ascending order by the Manhat-
tan distance between the geometric center of core region
Ri(t) and the geometric center of region Rlargest. Applications
showing shorter Manhattan distances between the two will
have higher priority to be relocated earlier. If two applica-
tions have identical Manhattan distances, the application with
more tasks will be relocated earlier, since it is more difficult
to find an appropriate core region for this application than
those applications with fewer tasks. The Manhattan distance
between the geometric center of a newly arrived application
and the geometric center of core region Rlargest is first set
to infinity, and this application is mapped after the currently
running application. Note that a core ci has a 2D coordinate
of < xi, yi >. The geometric center c(xl, yl) for core region
Ri(t) can be approximatively determined by:

xl = b

∑
∀c(xi,yi)∈Ri(t) xi
|Ri(t)|

c (15)

yl = b

∑
∀c(xi,yi)∈Ri(t) yi
|Ri(t)|

c (16)

C. FINDING THE APPLICATION’S CORE REGION
For each application Ai in ψ ′, a three-step algorithm is per-
form to find a core region.
Step 1 (Find All the Possible Core Locations That an

Application Can Be Mapped To): Two classes of cores are
first defined: periphery cores and internal cores. A periphery
core is the one that is physically located on the edge of the

network, while an internal core is the one that is at least
one core away from the edge of the network. A core ck that
falls into one of the two cases is a possible core location for
application Ai, and is added into a set 2i.

• Case 1: ck is a periphery core and only one neighboring
core is occupied.

• Case 2: ck is an internal core, and ck shares two occupied
neighboring cores with another core, cj, where cj is one
of the cores located at {c(xk + 1, yk + 1), c(xk − 1,
yk − 1), c(xk − 1, yk + 1), c(xk + 1, yk − 1)}.

Step 2 (Form the Candidate Regions): For each core ck
in 2i, cores are selected to form the candidate region Rik .
Rik ∈ Ri is defined as the k th candidate region for application
Ai, starting from the possible core location ck . To form the
candidate region Rik , |Ri(t)| − 1 cores with the minimal
Dj are added into Rik , where Dj is the summation of the
Manhattan distances between free core cj and all the cores
that are already in Rik . That is, Dj =

∑
∀cl∈Rik D(cj, cl),

where D(cj, cl) is the Manhattan distance between two cores,
cj and cl .
Step 3 (Choose the New Region Out of the Candidate

Regions): From candidate region set Ri, the region with the
minimal migration cost is selected as the new core region
for application Ai. The migration cost of a candidate region
is approximated as the Manhattan distance between the geo-
metric center of application Ai’s current core region and the
geometric center of its candidate region. For the newly arrived
application, select a core region randomly from the candidate
regions as the new region.

Since the time complexity of determining the new region
for an application is O(|2i| · |Ri(t + 1)| · |B(t)|) and there
are |ψ ′| applications that need to be mapped or mapped
remapped, the time complexity of region determination at
each control time is O(|ψ ′| · |2i| · |Ri(t + 1)| · |B(t)|).

VII. TASK MAPPING
The task mapping algorithm maps the tasks of an application
in ψ ′ to its core region while minimizing the communication
latency and improving the computation performance. Specif-
ically, there are two major steps in this algorithm, as shown
in Fig. 9: for each application inψ ′, (1) extend the task graph,
and (2) perform the task-to-core mapping.

A. EXTENDING TASK GRAPH
The number of dark cores |Bi(t)| allocated to application Ai
was obtained from running the dark core budgeting algorithm
presented in Section V. Since application Ai can be descried
by its task graph, |Bi(t)| dummy tasks (nodes), all with node
weight of zero, are created, and each of these |Bi(t)| dummy
nodes is connected to a task that has the maximal execution
time in the task graph of application Ai. If the execution
times of two tasks happen to be identical, the one with fewer
neighboring tasks will be selected first to connect with a
dummy task. The k th dummy task, associated with task vij,
is denoted as h̄vij,k ∈ Hvij . Binding dummy task h̄vij,k to

165700 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

FIGURE 9. The overview of the task mapping algorithm.

task vij does not change the characteristics of the task graph,
as h̄vij,k has only one neighbor, task vij, and the node weight
of h̄vij,k and the communication volume of edge (vij, h̄vij,k) are
both set to be zero.

FIGURE 10. (a) The task graph before task extension. (b) The extended
task graph.

Fig. 10(a) illustrates a task graph with three dark cores.
To add three dummy tasks into it, it is found that tasks v12, v14
and v17 have the longest execution times, thus each of these
three tasks is connected with a dummy task. The extended
task graph is shown in Fig. 10(b).
The dummy task h̄vij,k cannot be mapped until its neigh-

boring task vij has been mapped, and h̄vij,k is mapped to a
core that is adjacent to the one running task vij. The positions
of all the dummy tasks in Hvij , associated with task vij, are
determined by the function L(Hvij ,Ri(t)) with the following
steps (Algorithm 2).
For each dummy task h̄vij,k in Hvij , run the following steps

to find set Cvij,k including the possible cores that can be
allocated to h̄vij,k . A core is randomly selected from Cvij,k to
run h̄vij,k .
Step 1: build setC1 which contains the free core(s) selected

from core region Ri(t) such that the Manhattan distance
between each cl in C1 and the core M (vij) (occupied by task
vij) is the shortest.

C1 = {cl |cl = arg min
∀ck∈Ri(t)

{D(M (vij), ck)}} (17)

The cores in C1 are next added into Cvij,k (Lines 3-4). If there
is only one core in C1, jump to Step 4.

Algorithm 2 Locating the Cores for the Dummy Tasks inHvij
Input:
Ri(t): The core region.
Hvij : The dummy task set associated with task vij.
Output:
The positions of the dummy tasks in Hvij .
Function:
Finding the positions for the dummy tasks in Hvij .
1: for each dummy task h̄vij,k in Hvij do
2: Initialize the set Cvij,k = ∅;

// Step 1
3: C1 = {cl |cl = argmin∀ck∈Ri(t){D(M (vij), ck)}};
4: Cvij,k = C1;

// Step 2
5: if |C1| > 1 then
6: Cvij,k = ∅;
7: C2 = {cl |cl =

argmax∀ck∈C1

∑
∀bi∈Bi(t) D(bi, ck)};

8: Cvij,k = C2;
// Step 3

9: if |C2| > 1 then
10: Cvij,k = ∅;
11: C3 = {cl |cl = argmin∀ck∈C2 ℵck };
12: Cvij,k = C3;
13: end if
14: end if

// Step 4
15: Randomly select a core c∗ from Cvij,k ;
16: M (h̄vij,k) = c∗;
17: end for

Step 2: if there are more than one core in C1, clear set Cvij,k
and find set C2 from C1 such that,

C2 = {cl |cl = arg max
∀ck∈C1

∑
∀bi∈Bi(t)

D(bi, ck)} (18)

where cl in C2 is the farthest-away core from all the currently
mapped dummy tasks of application Ai. The cores in C2 are
next added intoCvij,k (Lines 5-8). This step helps to distribute
the dark cores across the chip. If there is only one core in C2,
jump to Step 4.
Step 3: if there are more than one core in C2, clear set Cvij,k

and find set C3 from C2 such that,

C3 = {cl |cl = arg min
∀ck∈C2

ℵck } (19)

where each core in C3 has the minimal number of available
free neighboring cores (denoted as ℵck), and all the cores in
C3 are added into Cvij,k (Lines 9-13). This step can reduce
the impact of dark cores on communication latency, since a
dummy task h̄vij,k does not incur any communication with
other tasks.
Step 4: from setCvij,k , a core is selected randomly, andmap

dummy task h̄vij,k to the selected core (Lines 15-16). The core
occupied by a dummy task is turned-off as dark core.

The time complexity of Algorithm 2 is O(|Hvij | · |Ri(t)|).

VOLUME 8, 2020 165701

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

Algorithm 3 Task-to-Core Mapping
Input:
AGi(τ) = (Vi(τ),Ei(τ)): Application Ai’s task graph.
Ri(t): The application core region of Ai.
I : Sorted task set.
Output:
The mapping result.
Function:
Finding positions for tasks and dark cores.

// Step 1
1: M (vm) = ccenter ;
2: L(Hvm ,Ri(t)); // Call Algorithm 2
// Step 2

3: for each task vij in I do
4: Initialize the set Zvij = ∅;

// find the set Zvij
5: if vij has already mapped neighboring tasks then

// Case 1
6: Z1 = {cl |cl =

argmin∀ck∈Ri(t){
∑
∀vn∈Vij D(M (vn), ck)}};

7: Zvij = Z1;
8: if |Z1| > 1 then
9: Zvij = ∅;

10: Z2 = {cl |cl =
argmin∀ck∈Z1{|ℵck − βvij |}};

11: end if
12: else

// Case 2
13: Z1 = {cl |cl = argmin∀ck∈Ri(t){|ℵck − βvij |}};
14: Zvij = Z1;
15: if |Z1| > 1 then
16: Zvij = ∅;
17: Z2 = {cl |cl =

argmax∀ck∈Z1
∑
∀v′ij∈V

′
i
D(M (v′ij), ck)};

18: Zvij = Z2;
19: end if
20: end if

// Map the task vij
21: Randomly select a core c∗ from Zvij ;
22: M (vij) = c∗;
23: L(Hvij ,Ri(t)); // Call Algorithm 2
24: end for

B. TASK-TO-CORE MAPPING
Algorithm 3 shows the two-step task-to-core mapping to map
the tasks of an application to its core region:
Step 1: vm, the task with the highest total communication

volume, is mapped to the geometric center (ccenter) of applica-
tionAi’s core regionRi(t). If task vm is connectedwith dummy
tasks, their respective positions are determined by function
L(·, ·) (Algorithm 2) (Lines 1-2).
Step 2: let I be the set of tasks in Vi(τ) sorted by their

communication volumes in descending order, and those con-
nected with the dummy tasks are mapped first. For each task

vij in I , find set Zvij which includes the possible positions
that can map vij. A core c∗ is randomly selected from Zvij
to run task vij. There are two cases to consider to find set Zvij
(Lines 3-24).
• Case 1: (Lines 5-11) if at least one neighbor of task vij
has been mapped, build set Z1 such that,

Z1 = {cl |cl = arg min
∀ck∈Ri(t)

{

∑
∀vn∈Vij

D(M (vn), ck)}} (20)

where a core in Z1 is closest to all the tasks in Vij, and
Vij is the set of the already mapped neighboring tasks of
vij. The cores in Z1 are next added into Zvij (Lines 5-7).
If there are more than one core in Z1, clear set Zvij and
find set Z2 from Z1 such that,

Z2 = {cl |cl = arg min
∀ck∈Z1

{|ℵck − βvij |}} (21)

where the number of available neighboring cores of each
core cl in Z2 is closest to the number of unmapped
neighboring tasks of task vij (i.e., βvij). The cores in Z2
are added into Zvij (Lines 8-11).

• Case 2: (Lines 12-20) if none of vij’s neighboring tasks
are mapped yet, build set Z1 such that,

Z1 = {cl |cl = arg min
∀ck∈Ri(t)

{|ℵck − βvij |}} (22)

where the number of available neighboring cores of each
core cl in Z1 is closest to βvij (the number of unmapped
neighboring tasks of task vij). The cores in Z1 are added
into Zvij (Lines 13-14). If Z1 has more than one core,
clear set Zvij and find set Z2 from Z1 such that,

Z2 = {cl |cl = arg max
∀ck∈Z1

∑
∀v′ij∈V

′
i

D(M (v′ij), ck)} (23)

where each core in Z2 is a farthest-away core from the
positions of all of the tasks in V ′i , and V

′
i is the set of the

already mapped tasks of application Ai. The cores in Z2
are added into Zvij (Lines 15-19).

After building set Zvij , a core is randomly selected from Zvij ,
and task vij is mapped to this selected core (Lines 21-22).
After mapping task vij, check and find positions for its
dummy tasks, using function L(·, ·) described in Algorithm 2
(Line 23).

The time complexity of Algorithm 3 is O(|Vi(τ)| · |Hvij | ·
|Ri(t)|).

Once the positions of the tasks for all of the applications
in set ψ ′ are determined, the method in [4] is used to set
voltage/frequency levels of the cores so that they can run at a
high speed without violating temperature constraint and the
maximum power capacity.

Fig. 11 shows a mapping example for the task graph with
three dark cores in Fig. 10.
First, map the task with the highest communication volume.

The task v14 is first mapped to core c5 in Fig. 11(a), the geo-
metric center of core region. A core is selected randomly
from {c2, c4, c6} for dummy task h̄v14,1, since c2, c4 and

165702 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

FIGURE 11. A mapping example that involves three dark cores. (a) The
core region (a total of 11 cores). (b) The mapping result after v14 and
dummy task h̄v14,1

are mapped. (c) The mapping result after v17 and
dummy task h̄v17,1

are mapped. (d) The mapping result after all of the
tasks connected with dummy tasks are mapped. (e) The final mapping
result.

c6 have fewer neighboring cores than that of c8, as shown
in Fig. 11(b).
Second, map the tasks connected with dummy tasks. Task

v17 is mapped to c7, since task v17 has nomapped neighboring
tasks and has four unmapped neighboring tasks, which is
closest to ℵc7 = 3, the number of available neighboring
cores of c7. The dummy task h̄v17,1 is mapped to core c10,
as the Manhattan distance of c10 to core M (h̄v14,1), occupied
by dummy task h̄v14,1, is larger than that of c4 and c8 to
M (h̄v14,1), as shown in Fig. 11(c). In a similar fashion, task v12
and its dummy task h̄v12,1 are subsequently mapped, as shown
in Fig. 11(d).
Third, map the tasks whose dummy task set Hvij is empty.

Task v15 is mapped to core c8, as task v15 is a neighbor of
tasks v14 and v17. Similarly, tasks v13, v16, v11, and v18 are
mapped onto the core region, as shown in Fig. 11(e).

VIII. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
Tomodel the task graph and application execution, we imple-
ment an event-driven C++ network simulator with its con-
figuration summarized in Table 2. This simulator is able to
model packet delay and energy consumption in communi-
cations in a cycle accurate manner. Hotspot [29] is used for
temperature simulation and McPat [30] is used as the power
model. The power needed to turn on a dark core is set to the
same as that in [31]. The floorplan of the underline many-core
system is adopted from [32].

We evaluate the proposed method on random and real
workloads, as tabulated in Table 2. The task degree of the
random applications ranges from 1 to 14, and the number of
tasks per application varies from 4 to 15. The task graphs
of the real applications are generated from the traces of
PARSEC [26] and SPLASH-2 [33] benchmark suites. These
traces are collected by executing them in an NoC-based
cycle accurate many-core simulator [34], whose configura-
tion is also reported in Table 2. The applications in PARSEC

TABLE 2. Simulation configurations.

and SPLASH-2 benchmarks are running with thread number
of 16 and 64 in two network sizes, 4×4 and 8×8, respectively.
We compare our proposed method with the follow-

ing methods: (1) Fixed_dark_core_allocation, which cannot
adjust the number of dark cores after the initial task-to-core
mapping and uses only the mapping method described in
Section VII-B; (2) Bubble_budgeting [4], which uses virtual
mapping to determine the number and the positions of dark
cores; and (3) Adboost [6] where a core region including dark
cores is found for an application. These two schemes [4], [6]
are the state-of-the-art thermal-aware runtime task mapping
approaches, which also consider the dark core allocation.
Herein after our proposed scheme (including the adjustment)
is termed as the Proposed.

In the following experiments, we compare the the four
methods in terms of throughput, communication latency, and
waiting time under different network sizes and application
arrival rates. The waiting time occurs when there are insuf-
ficient cores to run the newly arrived applications.

B. EVALUATING THE ERROR OF THE
THROUGHPUT MODEL
Fig. 12(a) compares the error of linear regression and poly-
nomial regression models for throughput estimation. Appli-
cations are executed under different numbers of dark cores
|Bi(t)|. The error of a single experiment is defined as:

ι =
|5i,|Bi(t)| −5

′

i,|Bi(t)|
|

5′i,|Bi(t)|
(24)

where 5′i,|Bi(t)| and 5i,|Bi(t)| are the throughputs obtained
from the simulator and the throughput model, respectively.

VOLUME 8, 2020 165703

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

FIGURE 12. (a) Errors of different regression models for throughput
estimation. (b) Comparison of the online and offline throughputs.

From Fig. 12(a), one can see that the seventh order poly-
nomial regression has the lowest error (7.61%) among all.
Therefore, in the following experiments, the seventh order
polynomial regressionmodel is used as the throughputmodel.

C. THE COMPARISON OF OFFLINE AND
ONLINE THROUGHPUTS
It is possible that the core region used for training of the
throughput model (see Section III-B) is different from the
one selected at runtime. In addition, the thermal profile of
the runtime system might also be different from that for the
throughput model training. Thus, the estimated throughput
(denoted as5A) used in the dark core budgeting algorithm for
application set Amay be different from the online throughput
(denoted as 5′A) obtained from application execution at run-
time, and the difference is defined as:

ξ =
|5A −5

′
A|

5′A
(25)

Among the many different application sets executed,
the difference is within 6%, as shown in Fig. 12(b). Moreover,
the experimental results show that the average aspect ratio of
application core regions determined at online is 1.22, which
is close to the average aspect ratio (close to 1) of the core
regions used for training the throughput model. These results
indicate that the throughput model can give fairly accurate
prediction of the throughput, which is so much needed in the
dark core budgeting algorithm.

FIGURE 13. Throughputs under different interval lengths of control time.

D. FINDING THE INTERVAL LENGTH OF CONTROL TIME
Our approach is triggered at each control time to process the
workload variation and applications’ computation demands.
Fig. 13 shows how the throughput varies with various lengths

of interval between two control times (in million cycles).
Applications with different execution times and communi-
cation volumes are executed under different system settings
in terms of network size and application arrival rate. From
Fig. 13, one can see that the interval length of control time
of 75M cycles generates the best performance. Therefore,
in the following experiments, we set the interval length of
control time to be 75M cycles.

FIGURE 14. Comparisons of throughput, waiting time, and
communication latency with different network sizes when running the
random benchmarks.

E. PERFORMANCE EVALUATION ON
RANDOM BENCHMARKS
Fig. 14 compares the throughput, waiting time, and com-
munication latency of the four methods when they are per-
formed in the system with different network sizes, running
the random benchmarks where applications arrive at the sys-
tem randomly. These results are normalized to that of the
proposed method. It can be seen from Fig. 14(a) that the
proposed method improves the throughput by 23.9%, 26.3%,
and 29.2% compared with Fixed_dark_core_allocation as
the network sizes vary from 5 × 5, 8 × 8, to 12 × 12,
respectively. The proposed algorithm can adjust the dark
cores of each application at runtime to optimize both cur-
rently running applications and newly arrived ones. There-
fore, the proposed approach considers all of the applications
to make a sound global decision that redistributes the dark
cores among the running applications and newly arrived ones.
The Fixed_dark_core_allocation only takes the next arrived
application into account and cannot change the dark core
allocation in response to the changing computation demands,
which leads to sub-optimal performance.

It can also be seen from Fig. 14(a) that, on average, the
throughput of the proposed method is 1.45× and 1.82×
over Bubble_budgeting and Adboost, respectively. The rea-
son is that Bubble_budgeting only optimizes an individual
application, without considering all the currently running
applications. Therefore, it might allocate excessive number
of dark cores to certain applications. Adboost, on the other
hand, assumes the system has fixed number of dark cores,
and it cannot allocate cores to applications according to their
computation demands.

As shown in Fig. 14(b), on average, the proposed approach
reduces the waiting time by 33.0%, 44.7%, and 71.0%
over Fixed_dark_core_allocation, Bubble_budgeting, and
Adboost, respectively. The reason is that, the proposed

165704 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

approach makes a global decision to balance the execution
time of currently running applications and the waiting time
of newly arrived ones on the fly. The communication latency
of the proposed approach is also lower than those of the other
three methods, as shown in Fig. 14(c). The reason is that the
proposed approach adjusts the mapping scheme according
to the changing computation demands. Moreover, with the
proposed method, the dark cores are placed in the way that
they have little impact on the communication latency. With
large network sizes, the proposed approach achieves better
performance in terms of waiting time and communication
latency. The reason is that there are more dark cores for appli-
cations that can be adjusted at runtime to meet the workload
variations.

FIGURE 15. Comparisons of throughput, waiting time, and
communication latency with different arrival rates when running the
random benchmarks.

Fig. 15 compares the throughput, waiting time, and
communication latency of the four methods when they
are adopted in a system running the random benchmarks
with different application arrival rates. The results in
Fig. 15(a) (b) and (c) are normalized to that of the proposed
method. The respective throughput in Fig. 15(d) is nor-
malized to that of Adboost when application arrival rate
is 1. The application arrival rate is defined as the num-
ber of applications arrived at the system per 105 cycles,
which measures the workloads of the system. It can be
seen from Fig. 15(a) that, when the arrival rate is high,
e.g., 2.78 applications arrive at the system per 105 cycles,
the throughput of the proposed approach is 1.20×, 1.42×,
and 1.96× over Fixed_dark_core_allocation, Bubble_
budgeting, and Adboost, respectively. On average, the pro-
posed approach reduces waiting time by 83%, 96%, and
99% over Fixed_dark_core_allocation, Bubble_budgeting,
and Adboost, respectively. The proposed approach achieves
better performance since it can adjust the dark cores to
reduce the waiting time of newly arrived applications when
application arrival rates are high.

It can also be seen from Fig. 15(d) that, Adboost and
Fixed_dark_core_allocation reach their throughput saturation
points at the arrival rates of 1.25 and 1.85 applications per

105 cycles, respectively, while those of the proposed approach
and Bubble_budgeting are both arriving at 2.50 applications
per 105 cycles. The reason for this is that the proposed
approach and Bubble_budgeting both take application arrival
rate into their consideration. Moreover, the throughput of the
proposed approach increases rapidly compared with that of
Bubble_budgeting, as it considers all of the applications to
make a global optimization.

F. PERFORMANCE EVALUATION ON REAL BENCHMARKS
Fig. 16 compares the throughput, waiting time, and com-
munication latency of the four approaches when they are
adopted in a system with different network sizes, running the
real benchmarks where applications arrive at the system ran-
domly. These results are normalized to that of the proposed
method. The throughputs of the proposed method are 1.15×,
1.40×, and 1.73× over Fixed_dark_core_allocation, Bub-
ble_budgeting, and Adboost on average, respectively. The
proposed approach also shows substantially reduced waiting
time and communication latency, as shown in Fig. 16. The
reason is the proposed method can make decision of dark
core allocation and adjustment at runtime, which helps to
optimize the performance of currently running applications
and the newly arrived ones.

FIGURE 16. Comparisons of throughput, waiting time, and
communication latency of the four methods with different network sizes
when running the real benchmarks.

FIGURE 17. Comparisons of throughput, waiting time, and
communication latency of the four methods with different arrival rates
when running the real benchmarks.

Fig. 17 shows the throughput, waiting time, and com-
munication cost of the four methods when running the real
benchmarks with different arrival rates. These results are
normalized to that of the proposed method. When the arrival

VOLUME 8, 2020 165705

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

rate is high, the throughput achieved by our approach is about
1.16×, 1.35×, and 1.48× over Fixed_dark_core_allocation,
Bubble_budgeting, and Adboost, respectively. On aver-
age, the proposed approach reduces waiting time by
43%, 79%, and 86% over the Fixed_dark_core_allocation,
Bubble_budgeting, and Adboost, respectively. The reason for
this case is similar to that seen in the case of the random
benchmarks. In a simple term, adjusting dark core can achieve
higher system performance.

G. TEMPERATURE ANALYSIS
Fig. 18 evaluates the average peak temperatures of the four
methods by running applications in a system with differ-
ent configurations for one hundred times. One can see that
the peak temperatures of all the four algorithms are below
the temperature threshold 80◦C, but the proposed method
achieves the lowest temperature, i.e., the proposed approach
reduces the average peak temperature by 1◦C, 2◦C, and
3◦C over Fixed_dark_core_allocation, Bubble_budgeting,
and Adboost, respectively. The reason is that the proposed
mapping algorithm spreads the dark cores across the chip
and redistributes them when needed at runtime. Doing so
has a positive impact on heat dissipation to bring down chip
temperature.

FIGURE 18. Comparisons of the average peak temperatures of the chip by
running the four algorithms.

H. COST ANALYSIS OF THE PROPOSED ALGORITHM
The time penalties of running the three-step proposed
approach, Bubble_budgeting, and Adboost are all in the order
of 0.25M cycles. This is averaged out by running the algo-
rithms one hundred times with different system parameters,
such as network size, arrival rate, and communication volume
of applications. In practice, most of applications run for as
long as more than 108 cycles. Therefore, from the perspective
of the application execution time, the time penalty of running
the proposed algorithm is quite low. The power consumption
of running the proposed algorithm is also considered in the
experiments, which is 17.01W. The global average migration
overhead at a control interval of 75M cycles is in the order
of 0.2M cycles, which is also acceptably low.

IX. CONCLUSION
In this paper, built upon a dynamic programming framework,
a runtime dark core allocation and dynamic adjustment
scheme was proposed, taking into account the application
arrival rate as well as the variation of the application’s

computation demands. An efficient task mapping algorithm
was also proposed to reduce the negative impact of dark cores
on communication latency and fragmentation. The experi-
ments confirmed that, compared with two existing runtime
thermal-aware resource management approaches, the pro-
posed approach improves the system throughput by as much
as 61% on average. The time penalty of running the proposed
algorithm is very low, making it a suitable method for runtime
resource management in many-core systems.

REFERENCES
[1] V. Rathore, V. Chaturvedi, A. K. Singh, T. Srikanthan, R. Rohith,

S.-K. Lam, and M. Shaflque, ‘‘HiMap: A hierarchical mapping approach
for enhancing lifetime reliability of dark silicon manycore systems,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhib., Mar. 2018, pp. 991–996.

[2] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, ‘‘Workload analysis
and demand prediction of enterprise data center applications,’’ in Proc.
IEEE 10th Int. Symp. Workload Characterization, Sep. 2007, pp. 171–180.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, ‘‘Dark silicon and the end of multicore scaling,’’ in Proc. 38th
Annu. Int. Symp. Comput. Archit. (ISCA), 2012, vol. 32, no. 3, pp. 122–134.

[4] X. Wang, A. K. Singh, B. Li, Y. Yang, H. Li, and T. Mak, ‘‘Bubble
budgeting: Throughput optimization for dynamic workloads by exploiting
dark cores in many core systems,’’ IEEE Trans. Comput., vol. 67, no. 2,
pp. 178–192, Feb. 2018.

[5] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, ‘‘Thermal constrained
resource management for mixed ILP-TLP workloads in dark silicon
chips,’’ in Proc. 52nd Annu. Design Autom. Conf., 2015, pp. 1–6.

[6] A. Kanduri, M.-H. Haghbayan, A. M. Rahmani, M. Shafique, A. Jantsch,
and P. Liljeberg, ‘‘AdBoost: Thermal aware performance boosting
through dark silicon patterning,’’ IEEE Trans. Comput., vol. 67, no. 8,
pp. 1062–1077, Aug. 2018.

[7] F. Aghaaliakbari, M. Hoveida, M. Arjomand, M. Jalili, and
H. Sarbazi-Azad, ‘‘Efficient processor allocation in a reconfigurable
CMP architecture for dark silicon era,’’ in Proc. IEEE 34th Int. Conf.
Comput. Design, Oct. 2016, pp. 336–343.

[8] W. Liu, L. Yang, W. Jiang, L. Feng, N. Guan, W. Zhang, and N. Dutt,
‘‘Thermal-aware task mapping on dynamically reconfigurable network-
on-chip based multiprocessor System-on-Chip,’’ IEEE Trans. Comput.,
vol. 67, no. 12, pp. 1818–1834, Dec. 2018.

[9] X.Wang, A. K. Singh, and S.Wen, ‘‘Exploiting dark cores for performance
optimization via patterning for many-core chips in the dark silicon era,’’ in
Proc. 12th IEEE/ACM Int. Symp. Netw.-Chip, Oct. 2018, pp. 1–8.

[10] SWIM. Accessed: May 19, 2020. [Online]. Available: https://github.
com/SWIMProjectUCB/SWIM

[11] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak, ‘‘A sur-
vey and comparative study of hard and soft real-time dynamic resource
allocation strategies for multi-/many-core systems,’’ ACM Comput. Surv.,
vol. 50, no. 2, pp. 1–40, Jun. 2017.

[12] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris, ‘‘Dis-
tributed run-time resource management for malleable applications on
many-core platforms,’’ in Proc. 50th Annu. Design Autom. Conf., 2013,
pp. 1–6.

[13] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, ‘‘Smart hill climb-
ing for agile dynamic mapping in many-core systems,’’ in Proc. 50th Annu.
Design Autom. Conf., 2013, pp. 1–6.

[14] J. Chen, Y. Tang, Y. Dong, J. Xue, Z. Wang, and W. Zhou, ‘‘Reducing
static energy in supercomputer interconnection networks using topology-
aware partitioning,’’ IEEE Trans. Comput., vol. 65, no. 8, pp. 2588–2602,
Aug. 2016.

[15] S. Chen, Z. Li, B. Yang, and G. Rudolph, ‘‘Quantum-inspired hyper-
heuristics for energy-aware scheduling on heterogeneous computing sys-
tems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 6, pp. 1796–1810,
Jun. 2016.

[16] A. Das, A. Kumar, and B. Veeravalli, ‘‘Reliability and energy-aware
mapping and scheduling of multimedia applications on multiprocessor
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3, pp. 869–884,
Mar. 2016.

[17] K. Manna, P. Mukherjee, S. Chattopadhyay, and I. Sengupta, ‘‘Thermal-
aware application mapping strategy for network-on-chip based system
design,’’ IEEE Trans. Comput., vol. 67, no. 4, pp. 528–542, Apr. 2018.

165706 VOLUME 8, 2020

X. Huang et al.: Dynamic Allocation/Reallocation of Dark Cores in Many-Core Systems for Improved System Performance

[18] X. Wang, T. Fei, B. Zhang, and T. Mak, ‘‘On runtime adaptive tile defrag-
mentation for resource management in many-core systems,’’Microproces-
sors Microsyst., vol. 46, pp. 161–174, Oct. 2016.

[19] A. Pathania, V. Venkataramani, M. Shafique, T. Mitra, and J. Henkel,
‘‘Defragmentation of tasks in many-core architecture,’’ACMTrans. Archit.
Code Optim., vol. 14, no. 1, pp. 1–21, Apr. 2017.

[20] A. Das, A. Kumar, and B. Veeravalli, ‘‘Communication and migration
energy aware task mapping for reliable multiprocessor systems,’’ Future
Gener. Comput. Syst., vol. 30, pp. 216–228, Jan. 2014.

[21] M. Modarressi, M. Asadinia, and H. Sarbazi-Azad, ‘‘Using task migration
to improve non-contiguous processor allocation in NoC-based CMPs,’’
J. Syst. Archit., vol. 59, no. 7, pp. 468–481, Aug. 2013.

[22] M. V. Beigi and G. Memik, ‘‘Therma: Thermal-aware run-time thread
migration for nanophotonic interconnects,’’ in Proc. Int. Symp. Low Power
Electron. Design, 2016, pp. 230–235.

[23] Y. G. Kim, M. Kim, J. M. Kim, and S. W. Chung, ‘‘M-DTM: Migration-
based dynamic thermal management for heterogeneous mobile multi-core
processors,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2015,
pp. 1533–1538.

[24] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal,
‘‘Application heartbeats: A generic interface for specifying program per-
formance and goals in autonomous computing environments,’’ in Proc. 7th
Int. Conf. Autonomic Comput., 2010, pp. 79–88.

[25] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and
R. Tibshirani, The Elements of Statistical Learning. Berlin, Germany:
Springer, 2009.

[26] R. Bagrodia, R. Meyer, M. Takai, Y.-A. Chen, X. Zeng, J. Martin, and
H. Y. Song, ‘‘Parsec: A parallel simulation environment for complex sys-
tems,’’ Computer, vol. 31, no. 10, pp. 77–85, 1998.

[27] X.-H. Wang, P. Liu, M. Yang, M. Palesi, Y.-T. Jiang, and M. C. Huang,
‘‘Energy efficient run-time incremental mapping for 3-D networks-on-
chip,’’ J. Comput. Sci. Technol., vol. 28, no. 1, pp. 54–71, Jan. 2013.

[28] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ.
Press, 1957.

[29] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, ‘‘Temperature-aware microarchitecture: Modeling and
implementation,’’ ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 94–125, Mar. 2004.

[30] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, ‘‘McPAT: An integrated power, area, and timing modeling
framework for multicore andmanycore architectures,’’ inProc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2009, pp. 469–480.

[31] V. Saseendran and D. Siaudinis, ‘‘Power gating of the FlexCore pro-
cessor,’’ M.S. thesis, Dept. Comput. Sci. Eng., Chalmers Univ. Tech-
nol., Göteborg, Sweden, 2010. [Online]. Available: http://publications.lib.
chalmers.se/records/fulltext/125818.pdf

[32] A. Y. Yamamoto and C. Ababei, ‘‘Unified reliability estimation and man-
agement of NoC based chip multiprocessors,’’Microprocessors Microsys-
tems, vol. 38, no. 1, pp. 53–63, Feb. 2014.

[33] S. C.Woo,M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, ‘‘The SPLASH-2
programs: Characterization and methodological considerations,’’ in Proc.
22th Annu. Int. Symp. Comput. Architect. (ISCA), 1995, pp. 24–36.

[34] X. Wang, M. Yang, Y. Jiang, P. Liu, M. Daneshtalab, M. Palesi, and
T. Mak, ‘‘On self-tuning networks-on-chip for dynamic network-flow
dominance adaptation,’’ ACM Trans. Embedded Comput. Syst., vol. 13,
no. 2s, pp. 1–21, Jan. 2014.

[35] Y. S. Yang, J. H. Bahn, S. E. Lee, and N. Bagherzadeh, ‘‘Parallel and
pipeline processing for block cipher algorithms on a network-on-chip,’’
in Proc. 6th Int. Conf. Inf. Technol., New Generat., 2009, pp. 849–854.

XINGXING HUANG received the bachelor’s
degree in information management and informa-
tion system from Guangxi University, Guangxi,
China. She is currently pursuing the master’s
degree with the Department of Software Engi-
neering, South China University of Technology,
Guangzhou, China. Her research interest includes
task mapping for NoC-based systems.

XIAOHANG WANG (Member, IEEE) received
the B.Eng. and Ph.D. degrees in communication
and electronic engineering from Zhejiang Univer-
sity, in 2006 and 2011, respectively. He is cur-
rently an Associate Professor with the South China
University of Technology. His research interests
include many-core architecture, power efficient
architectures, optimal control, and NoC-based sys-
tems. Hewas a receipt of PDP 2015 andVLSI-SoC
2014 best paper awards.

YINGTAO JIANG received the Ph.D. degree in
computer science from The University of Texas at
Dallas. He joined the Department of Electrical and
Computer Engineering, University of Nevada, Las
Vegas, in August 2001, He has been a Full Profes-
sor with The University of Texas at Dallas since
July 2013. He is currently an Associate Dean of
the College of Engineering. His research interests
include algorithms, computer architectures, VLSI,
networking, nano-technologies, and so on.

AMIT KUMAR SINGH (Member, IEEE) received
the B.Tech. degree in electronics engineering from
the Indian Institute of Technology (Indian School
of Mines), Dhanbad, India, in 2006, and the Ph.D.
degree from the School of Computer Engineer-
ing, Nanyang Technological University (NTU),
Singapore, in 2013. He was with HCL Technolo-
gies, India, for a year and half until 2008. He has
a Postdoctoral Research Experience for over five
years at several reputed universities. He is cur-

rently a Lecturer (Assistant Professor) with the University of Essex, U.K.
He has published over 90 articles in reputed journals/conferences. His
current research interests include design and optimisation of multi-core
based computing systems with focus on performance, energy, temperature,
reliability, and security. He received several best paper awards, e.g., IEEE
TC February 2018 Featured Paper, ICCES 2017, ISORC 2016, PDP 2015,
HiPEAC 2013, and GLSVLSI 2014 runner up. He has served on the TPC of
IEEE/ACM conferences, such as DAC, DATE, CASES, and CODES+ISSS.

MEI YANG received the Ph.D. degree in computer
science from The University of Texas at Dallas,
in August 2003. She has been a Full Professor
with the Department of Electrical and Computer
Engineering, University of Nevada, Las Vegas,
since 2016. Her research interests include com-
puter architectures, machine learning, networking,
and embedded systems.

VOLUME 8, 2020 165707

