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ABSTRACT Unsupervised anomaly detection for spatio-temporal data has extensive use in a wide variety of
applications such as earth science, traffic monitoring, fraud and disease outbreak detection. Most real-world
time series data have a spatial dimension as an additional context which is often expressed in terms of
coordinates of the region of interest (such as latitude - longitude information). However, existing techniques
are limited to handle spatial and temporal contextual attributes in an integrated and meaningful way
considering both spatial and temporal dependency between observations. In this paper, a hybrid deep learning
framework is proposed to solve the unsupervised anomaly detection problem in multivariate spatio-temporal
data. The proposed framework works with unlabeled data and no prior knowledge about anomalies are
assumed. As a case study, we use the public COVID-19 data provided by the Italian Department of Civil
Protection. Northern Italy regions’ COVID-19 data are used to train the framework; and then any abnormal
trends or upswings in COVID-19 data of central and southern Italian regions are detected. The proposed
framework detects early signals of the COVID-19 outbreak in test regions based on the reconstruction
error. For performance comparison, we perform a detailed evaluation of 15 algorithms on the COVID-
19 Italy dataset including the state-of-the-art deep learning architectures. Experimental results show that
our framework shows significant improvement on unsupervised anomaly detection performance even in
data scarce and high contamination ratio scenarios (where the ratio of anomalies in the data set is more than
5%). It achieves the earliest detection of COVID-19 outbreak and shows better performance on tracking the
peaks of the COVID-19 pandemic in test regions. As the timeliness of detection is quite important in the
fight against any outbreak, our framework provides useful insight to suppress the resurgence of local novel
coronavirus outbreaks as early as possible.

INDEX TERMS Spatio-temporal anomaly detection, multivariate, unsupervised, deep learning, COVID-19,
outbreak detection, Italy.

I. INTRODUCTION
An anomaly is an observation whose properties are signifi-
cantly different from the majority of other observations under
consideration, which are called the normal data. Anomaly
detection refers to the problem of finding these observations
in data that do not conform to expected or normal behavior.
A spatial-temporal outlier (ST-Outlier) is an object whose
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behavioral (non-spatial and non-temporal) attributes are sig-
nificantly different from those of the other objects in its
spatial and temporal neighborhoods [1]. Spatio-temporal data
are extremely common in many problem settings where col-
lecting data from various spatial locations at different times
for the nature of the problem are important. In such settings,
detection of ST-Outliers can lead to the discovery of unex-
pected and interesting knowledge such as local instability and
deformations [2]. Some examples of such spatio-temporal
datasets are as follows: meteorological data, traffic data,
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earth science, and disease outbreak data. Events that generate
spatio-temporal data are evolving events, such as hurricanes
and disease outbreaks, and both spatial and temporal conti-
nuity are important in modelling such events [3].

For a problem domain, obtaining the labelled training
data for all types of anomalies is often too expensive if not
impossible [4]. This highlights the need for unsupervised
techniques to find spatio-temporal anomalies. Moreover,
spatio-temporal datasets are generally multivariate, and have
many contextual structures in them (spatial and temporal
regularities), which makes them particularly difficult for
labelling and well suited for unsupervised learning models.
In the unsupervised scenarios, the type of anomalies and
the ratio of anomalous events within the given dataset are
generally not known. In such scenarios, we need to model
the normal behavior of the underlying system in the presence
of noise and anomaly which pose extra difficulty.

In this study, we address these challenges by proposing a
hybrid deep learning framework. It is an autoencoder based
anomaly detection framework. The hybrid framework struc-
ture is based on the idea of combining various deep neural
network components. It has been successfully applied to mul-
tivariate time series forecasting [5], face detection [6], and
video classification [7]. However, it has not yet been applied
to unsupervised anomaly detection problem for non-image
multivariate spatio-temporal data. Our proposed framework
is composed of three stages: The first stage is the pre-
processing of the multivariate spatio-temporal data so that
the deep autoencoder network can exploit the spatial and
temporal contexts jointly. The second stage is the data recon-
struction stage, which is executed by a deep hybrid autoen-
coder network. The third stage is the anomaly detection stage,
which is performed based on the reconstruction error. The
hybrid autoencoder network is composed of a 3D convolu-
tional neural network (CNN) based spatio-temporal encoder
and a convolutional Long Short-TermMemory (ConvLSTM)
network-based spatio-temporal decoder. It is designed to be
trained in a truly unsupervised fashion for anomaly detection
in non-image spatio-temporal datasets. We know that in a
time series data set, data points with two adjacent timestamps
are likely to have a higher similarity than data points with
more distant timestamps. It is also true for spatio-temporal
datasets that neighboring regions may have some strongly
positively correlated patterns, such as traffic jam, climate
change, and human activity. The hybrid deep learning frame-
work is able to exploit contextual features of neighboring
regions for anomaly detection in the absence of labels for
normal or abnormal events.

The world has been fighting a pandemic caused by a
new type of coronavirus (SARS-CoV-2) since it was dis-
covered in China in December 2019. Almost all countries
have been affected by the novel coronavirus (COVID-19)
outbreak, and Italy is one of the hardest-hit European coun-
tries. As of May 15, the total number of positive cases
reached 223,885 and the number of deaths exceeded 31,000.
Following the identification of the first infections on the

second half of February 2020 in northern Italy, authorities
put an increasing number of restrictions in place [8]. Due
to the high contagiousness of the infection, this did not stop
further spreading of the epidemic by asymptomatic people.
The peaks of the epidemic were delayed in Central and
Southern Italian regions as expected compared to Lombardy
and other northern regions [9]. As it has been shown by
the COVID-19 outbreak, the biggest challenge is to detect
the outbreak during its early stages and mitigate its effects.
The lack of an early epidemic warning system eliminated the
opportunity to prohibit the epidemic spread at the initial stage.
We would like to apply the proposed hybrid framework to
tackle the problem of early disease outbreak detection in the
midst of this global health crisis.

There have been many studies that model the epidemiolog-
ical dynamics of COVID-19 [10]–[16]. They use either SEIR
or other statistical models to predict the spreading and peaks
of the epidemic, duration of the epidemic, and an overall
number of potentially infected individuals at a national or
regional level. However, none of those studies have focused
on building an anomaly detection system for early epidemic
detection. We believe that the proposed deep learning-based
anomaly detection framework will prove useful in detect-
ing COVID-19 epidemic waves. According to an analysis
by disease experts, cases may come in waves of different
heights by the end of 2021 depending on control measures
and other factors [17]. This makes it quite necessary to build a
monitoring tool for the timely detection of COVID-19 waves
in different regions.

For any anomaly detection algorithm to be successful
in early detection of disease outbreaks, it must incorpo-
rate both spatial and temporal aspects of a disease [18].
On the other hand, accurate monitoring of the evolution of
the COVID-19 epidemic becomes extremely meaningful for
the decision-making authorities to take appropriate actions
against any public health crisis. As the extreme timeliness of
detection is the new requirement of public health [19], this
data-driven approach may help us build an anomaly detection
tool for a more timely detection of the COVID-19 outbreak.

We use public COVID-19 data provided by the Italian
Department of Civil Protection [20] as a case study in this
research. We test the proposed model with the dataset at a
resolution of the region level. We train one unified model
with the data from northern regions, and using that model,
we track the progression of the COVID-19 epidemic in test
regions, which are central and southern regions of Italy. The
framework can detect anomalous trends in test regions, which
may signal the possibility of an outbreak. The main assump-
tion here is that the data generated by northern regions’ expe-
rience going through the epidemic can be used to derive an
anomaly detectionmodel.We evaluate the performance of the
proposed framework against various univariate andmultivari-
ate methods including state-of-the art deep learning-based
approaches proposed in recent years. Our framework has
outperformed the state-of-the-art anomaly detection models
in all test cases.
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The main contributions of this study are the following:
1) To the best of our knowledge, the proposed approach,

which is composed of a novel data crafting and a hybrid
deep learning model, is the first attempt in solving
unsupervised anomaly detection problem in non-image
multivariate spatio-temporal data.

2) It achieves good generalization capabilities in scenarios
where the training data are scarce and contaminated
with anomalies. In the case study, only 82 daily data
entries (data points) are available for each region. Even
these contaminated outbreak data are sufficient to build
a robust anomaly detection model due to its effective
architecture to exploit spatial neighborhood data.

3) The biggest challenge in anomaly detection for
spatio-temporal data is to combine the contextual
attributes in a meaningful way. In the proposed hybrid
approach, spatial and temporal contexts are handled by
different deep learning components as these contextual
variables refer to different types of dependencies.

4) The proposed hybrid framework is designed to be
trained in a truly unsupervised fashion without any
labels indicating normal or abnormal data. The archi-
tecture is robust enough to learn the underlying dynam-
ics even if the training dataset contains noise and
anomalies.

The rest of the paper is organized as follows. Section II pro-
vides an overview of existing methods for anomaly detection.
Traditional anomaly detection methods are discussed in part
A of Section II, whereas the state-of-the-art deep learning-
based anomaly detection methods are mentioned and sum-
marized in part B of Section II. Section III provides the
related background information on traditional autoencoders
and autoencoder based anomaly detection. The methodol-
ogy including the problem formulation and the design of
the proposed hybrid deep learning framework is presented
in Section IV. Experiments and results are presented in
Section V. Finally, Section VI concludes the paper and gives
the directions for possible future work.

II. RELATED WORK
A. TRADITIONAL APPROACHES
The task of detecting outliers or anomalous events in data
has been studied extensively in the context of time series and
spatial data separately. Time-series outlier detection studies
find outliers considering only temporal context [21], [22].
For data with spatial context, several context-based anomaly
detection techniques have been proposed [23]–[26]. In geo-
science and environmental research, some statistical and
simulation-based methods have been proposed for spatial
anomaly detection [27], [28]. For spatio-temporal outlier
detection, both spatial and temporal continuity should be con-
sidered for modeling. Hence, spatio-temporal outlier detec-
tion methods are significantly more challenging because of
the additional difficulty of modeling the temporal and spatial
components jointly [2], [3].

Distance and density-based outlier detection algorithms
have also been applied to anomaly detection problems in spa-
tial datasets, such as Local Outlier Factor (LOF) [29], [30],
and DBSCAN [31]. LDBSCAN algorithm [32], created
by the merge of DBSCAN and LOF, is a density-based
algorithm for unsupervised anomaly detection problems in
spatial databases with noise. Another popular proximity-
based outlier detection approach is based on cluster analysis.
The non-membership of a data point to any of the clusters
can be used as a sign of being outlier [33]. Cluster-Based
Local Outlier Factor (CBLOF) [34] is a clustering-based
anomaly detection algorithm, in which the anomaly score of
an instance is the distance to the next large cluster. Choosing
the right number of clusters is very important since all
clustering methods tend to be very sensitive to this choice.

In [35], Birant and Kut propose a neighborhood-based
ST-Outlier detection algorithm. They use a modified ver-
sion of DBSCAN algorithm to identify the spatial neigh-
borhoods within the dataset. They define spatial outliers
based on these neighborhoods. Then, they check the tem-
poral context of spatial outlier objects by comparing them
to temporal neighbor objects. However, their algorithm does
not generate a score for data points. In [2], Cheng and
Li propose a four-step approach to identify spatio-temporal
outliers: classification (clustering), aggregation, comparison
and verification. In [36], Gupta et al. introduce the notion
of context-aware anomaly detection in distributed systems
by integrating the information from system logs and time
seriesmeasurement data. They propose a two-stage clustering
methodology to extract context and metric patterns using a
PCA-based method and a modified K-Means algorithm.

The aforementioned spatio-temporal anomaly detection
methods have something in common: They first apply spatial
(or non-temporal) context to find spatial outliers using a
distance-based technique. Then, spatial outliers are compared
with other spatial objects using temporal neighborhoods to
identify if they are temporal outliers too. They do not com-
bine the contextual (spatial and temporal) attributes in a
meaningful way as these attributes refer to different types
of dependencies. Despite the inherent unsupervised settings
of distance and cluster-based algorithms, they may still not
detect anomalies effectively due to the following reasons:

1) In multivariate time series data, strong temporal
dependency exists between time steps. Hence, distance-/
cluster-based methods, may not perform well since they can-
not capture temporal dependencies properly across different
time steps.

2) The definition of distance between data points in mul-
tivariate spatio-temporal data with mixed attributes is often
challenging. This difficulty may have an adverse effect on
outlier detection performance of distance-based clustering
algorithms.

3) Another problem with distance-based methods is that
they are well known to be computationally expensive and not
suitable for large datasets.

VOLUME 8, 2020 164157



Y. Karadayi et al.: Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data

IsolationForest [37], [38] is a powerful approach for
anomaly detection in multivariate data without relying on any
distance or density measure. In particular, it is an unsuper-
vised, tree-based ensemblemethod that applies the novel con-
cept of isolation to anomaly detection. It detects anomalies
based on a fundamentally different model-based approach:
an anomalous point is isolated via recursive partitioning by
randomly selecting a feature, and then randomly selecting
a split value for the selected feature. The output is the
anomaly score for each data point. Although it establishes
a powerful multivariate non-parametric approach, it works
on continuous-valued data only. Numenta HTM [39], [40]
is an unsupervised anomaly detection method for univari-
ate streaming data based on Hierarchical Temporal Memory
(HTM). It works based on the multiple predictions for the
next time step which is done by a layer of HTM neurons.
Anomaly score is generated based on the likelihood of the
prediction error, which is a probabilistic metric defining
how anomalous the current state is, based on prediction his-
tory. One-class SVM (OCSVM), which is a semi-supervised
anomaly detection technique, has been applied extensively
to anomaly detection problems in time series data [41]–[43].
However, OCSVM is sensitive to the outliers especially when
used in an unsupervised fashion when there are no labels.

Several algorithms proposed in the statistics literature
have been used widely for time series prediction and
anomaly detection such as autoregressive integrated moving
average (ARIMA) and Exponentially Weighted Moving
Average (EWMA) [44]–[47]. Most detection algorithms in
bio-surveillance which operate on univariate time series data
have been taken from the field of quality control [48].
The common techniques include control charts [49] and
CUmulative SUM Statistics (CUSUM) [47], [50]. What’s
Strange About Recent Events (WSARE) [48] algorithm was
developed for syndromic surveillance to the hospital setting,
such as symptoms exhibited by patients at an Emergency
Department (ED). WSARE is a rule-based algorithm specifi-
cally designed for patients’ pre-clinical data. It combines two
approaches: association rule mining and Bayesian networks.
Although the WSARE algorithm works on multidimensional
data, it can only be used on categorical data sets. The Spatial
Scan Statistic [51] can be considered the real-valued analog
of WSARE. However, it is computationally expensive for
large data sets. Neill and Cooper [52] proposed the multi-
variate Bayesian scan statistic (MBSS) for event detection in
multivariate spatial time series data. However, their approach
requires the prior probability of each event occurring in each
space-time region. They need either an expert knowledge or
labeled data to obtain the prevalence of each event type.

B. DEEP LEARNING BASED APPROACHES
Besides traditional anomaly detection methods, deep
learning-based anomaly detection approaches have recently
gained a lot of attention. In the literature, artificial neural
networks have been widely applied to anomaly detection
tasks for various types of datasets [53]. Reconstruction based

and prediction based deep learning models are among the
most widely used architectures for anomaly detection in
videos and time-series data [54], [55].

Malhotra et al. [56] proposes a deep Long Short-Term
Memory (LSTM) network to detect anomalies in univariate
time series. They use LSTM network architecture to predict
next l steps of the input. Then, the prediction error is used
to detect anomalies. The model is trained using normal
data to learn the Gaussian distribution of error vectors.
Malhotra et al. [57] propose an LSTM network-based
encoder-decoder scheme for anomaly detection in univari-
ate time series datasets. Their model learns to reconstruct
‘normal’ time series data and uses reconstruction error to
detect anomalies. Hasan et al. [58] propose a deep fully
convolutional autoencoder to reconstruct the input sequence
of video frames to detect anomalies. The network is trained
in semi-supervised fashion with regular videos. It learns the
signature of each frame in regular motion videos. An anomaly
score of each frame in the test set is then calculated based on
reconstruction error.

Various deep learning-based feature extraction methods
have been proposed in the literature. The proposed architec-
tures are used to extract useful (discriminative) features for
anomaly detection, novelty detection or classification prob-
lems. Yang et al. [59] present a CNN-LSTM based recurrent
autoencoder network for unsupervised extraction of high-
lights in video data, whereas in [60] a pre-trained 3D convolu-
tional network is used to extract features from video segments
for anomaly detection process. Munawar et al. [61] build an
encoder composed of deep convolutional neural network and
Restricted BoltzmanMachine to extract features from videos.
The extracted features are fed into an LSTM based prediction
system to predict the next video frame in the learned feature
space. Then, the difference between the prediction and actual
observation in the feature space is used to detect anomalies.
In a recent study, Perera and Patel [62] propose a one-class
transfer learning schema for feature extraction based on Con-
volutional Neural Network (CNN). Estiri and Murphy [63]
use a semi-supervised deep autoencoder for outlier detec-
tion in multivariate clinical observation data from Electronic
Health Records (EHR).

D’Avino et al. [64] propose an LSTM-based autoen-
coder framework to detect forgeries in video frames. They
train their model with pristine frames without any forgeries.
They use reconstruction errors to detect any abnormali-
ties in the frames with spliced areas. Chong and Tay [65]
propose a spatiotemporal architecture for anomaly detec-
tion in videos. Their autoencoder based anomaly detection
framework contains a spatial feature extractor and tempo-
ral encoder-decoder component. The spatial encoder compo-
nent comprises two convolutional and two de-convolutional
layers. They use a three-layer convolutional long short-term
memory (LSTM) network as temporal encoder-decoder
component. Munir et al. [66] present DeepAnT, a deep
learning based unsupervised anomaly detection approach for
time series data. DeepAnT architecture is based on 1D deep
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convolutional neural network to predict univariate time series
data. They use the prediction-based approach where a win-
dow of time series is used as a context and the next time
stamp is predicted. The anomaly detector module uses the
prediction error and a pre-defined threshold value to tag each
data point as normal or abnormal. Nogas et al. [67] use
a deep spatio-temporal convolutional autoencoder schema,
DeepFall, to detect falls in videos. They formulate the
fall detection problem as one class classification problem.
Their classification framework consists of a 3D convolu-
tional autoencoder for learning spatio-temporal features from
video frames. They use semi-supervised learning approach
that their model is trained only on the videos with normal
activities of daily living without fall frames in them. Then,
they use annotated video data to detect fall frames which are
considered abnormal.

Despite the effectiveness of those abovementioned deep
learning approaches, they are either supervised or semi-
supervised models. In the supervised approaches, models
need labels for all targeted anomaly classes for training. In the
semi-supervised approaches, models use only normal data
to model the majority class (normal class) to further detect
future anomalies. The proposed framework is designed to be
trained in a truly unsupervised fashion without any labels
indicating normal or abnormal data. The architecture is robust
enough to learn the underlying dynamics even if the training
dataset contains noise and anomalies. The main distinction
between other deep learning based methods and the proposed
hybrid approach is that they perform on either multivariate
time series data or video data, and none of them is actually
designed for non-image spatio-temporal multivariate datasets
with both spatial and temporal contextual attributes.

III. BACKGROUND
A. AUTOENCODERS
Autoencoders are commonly used for dimensionality
reduction of multidimensional data as a powerful non-linear
alternative to PCA or matrix factorization [68]–[70]. If a
linear activation function is used, the autoencoder becomes
virtually identical to a simple linear regression model or
PCA/matrix factorizationmodel.When a nonlinear activation
function is used, such as rectified linear unit (ReLU) or a
sigmoid function, the autoencoder goes beyond the PCA, cap-
turingmulti-modal aspects of the input distribution [71], [72].
It is shown that carefully designed autoencoders with tuned
hyperparameters outperform PCA or K-Means methods
in dimension reduction and characterizing data distribu-
tion [73], [74]. They are alsomore efficient in detecting subtle
anomalies and in computation cost than linear PCAs and
kernel PCAs respectively [75].

A traditional autoencoder is a feed-forward multi-layer
neural network which is trained to copy its input into
the output. To prevent identity mapping, deep autoen-
coders are built with low dimensional hidden layers
by creating non-linear representation of input data [68].

Usually, an autoencoder with more than one hidden layer
is called a deep autoencoder [76]. Deep autoencoders have
been successfully applied to dimensionality reduction, image
denoising, and information retrieval tasks [77], [78].

An autoencoder is trained to encode the input x into some
latent representation z so that the input can be reconstructed
from that lower dimensional representation. An autoencoder
is usually trained using back-propagation in an unsupervised
manner, to learn how to build its original input by minimizing
the reconstruction error of the decoding results. Fig. 1 depicts
a typical autoencoder network structure with one hidden
layer. They are composed of two parts: an encoder and a
decoder. Deep autoencoders learn a non-linear mapping from
the input to the output through multiple encoding and decod-
ing steps. An autoencoder takes an input vector x ∈ Rd ,
and first maps it to a latent representation z ∈ Rd

′

through
a mapping:

z = fθ (x) = Wx + b (1)

where the function fθ represents encoding steps and param-
eterized by θ = {W , b}. W is a d ′ × d weight matrix and b
is a bias vector. The lower dimensional latent representation
of the input is then mapped back to a reconstructed vector
x ′ ∈ Rd in the input space:

x ′ = gθ ′ (z) = W ′z+ b′ (2)

where the function gθ ′ represents decoding steps and param-
eterized by θ ′ =

{
W ′, b′

}
. The autoencoders training pro-

cedure consists of finding a set of parameters
{
W , b,W ′, b′

}
that make the reconstructed vector x ′ as close as possible to
the original input x. The parameters of autoencoder are opti-
mized byminimizing a loss function that measures the quality
of the reconstructions. The loss function of an autoencoder is
sum-of-squared differences between the input and the output:

∑
x∈∅

d∑
i=1

||x i − x ′i||
2

(3)

where ∅ is the training dataset.

FIGURE 1. Illustration of an autoencoder.
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B. ANOMALY DETECTION WITH AUTOENCODERS
The main idea behind autoencoder based anomaly detection
is to measure how much the reconstructed data deviates
from the original data. An autoencoder has an unsupervised
learning objective whose primary task is to copy the input
to the output [77]. Therefore, an autoencoder is trained to
reconstruct data byminimizing this objective function, or loss
function. For anomaly detection, reconstruction error is used
as the anomaly score. Data points which generate high recon-
struction errors can be categorized as anomalous data points
based on a threshold value. When autoencoders are used for
anomaly detection, they are trained using only normal data
instances as we have abundance of normal data. The training
dataset should be cleaned from anomalous data points and
outliers as much as possible for a successful model genera-
tion. After the training process, the autoencoder will gener-
ally reconstruct normal data with very small reconstruction
error. As the autoencoder has not encountered the abnormal
data during the training, it will fail to reconstruct them and
generate high reconstruction errors which can be used as
anomaly score [71], [75].

There are some practical issues in using autoencoders with
contaminated training data (dataset with normal and anoma-
lous data points). Since anomalies are treated as normal data
points during the training phase, there will be inevitably more
errors in the model compared to training with only normal
data points. If we try to overcome these errors by tuning the
network with more layers and neurons, we may face the prob-
lem of overfitting which is a significant problem in the case
of deep neural networks. A sufficiently complex deep autoen-
coder may even learn how to represent each anomaly with
sufficient training by generating low reconstruction errors
which would be a problem in anomaly detection [71].

IV. METHODOLOGY
A. PROBLEM FORMULATION
A univariate time series is a sequence of real valued data
points with timestamps. A multivariate time series is a set
of univariate time series with the same timestamps. In this
paper, we focus on multivariate time series that are measured
at successive points in time, spaced at uniform time intervals.

Let X = {x(n)}
N
n=1 denote a multivariate time series dataset

composed of N data points. Let each data point x(n) has T time
steps, and each observation at time step t, is a d dimen-
sional vector. The dataset X has dimensions of (d, T ), where
x(n) ∈ Rd×T . Each data point x(n) is a two-dimensional data
matrix and can be represented as:

x(n) =

 xn11 · · · xn1T
...

. . .
...

xnd1 · · · xndT

 (4)

The superscript n represents the ordered number of each data
point within the dataset X . x(n) is a multivariate time series
data point with a contextual time attribute. Each x(n) in the
dataset X is ordered based on the timestamp. As the number

n increases, the time context changes, and time dimension,
or timestamps, moves ahead.

In a spatio-temporal dataset, each multivariate data point
x(n) comes from a different spatial location, or region, which
has different spatial attributes (such as latitude and longitude).
We denote the multivariate spatio-temporal dataset as DST =

{(X (i), S(i))}
m
i=1 which contains multivariate time series data

points fromm different spatial regions. Each spatial region Si,
where Si ε S, has a set of multivariate time series data rep-
resented by the dataset X (i). N (i) represents the number of
data points (or observations) in each spatial region Si. In other
words, it is the size of X (i), which may be different for each
region in real-world scenarios.
XST , which is the multivariate spatio-temporal data matrix,

can be represented as a 3-dimensional tensor as shown in
Fig. 2. It is built using multivariate time series data from m
different spatial regions or Sis, where i = 1 . . .m. The sliding
window technique which is used to build the 3-dimensional
data matrix XST , is given in Algorithm 1. It is composed of m
multivariate time series data points from m different spatial
regions and representing observations from the same time
window with the same timestamps. T , which is called the
‘‘input window-size’’, represents the number of timestamps
in the multivariate data point, and d represents the number
of univariate time series. m represents the number of nearest
spatial neighborhood to include in the anomaly detection pro-
cess. The best m can be found empirically for each problem
domain. The m number of nearest neighboring regions are
selected from S different regions based on the pairwise spatial
distance between regions.

FIGURE 2. 3-dimensional multivariate spatio-temporal data matrix
structure used in anomaly detection procedure.

We formulate the spatio-temporal anomaly detection
problem as detecting anomalous multivariate observations
(sample of x(i) data points) in the dataset DST which differen-
tiate significantly from their spatial and temporal neighbors.
Given the spatio-temporal 3-dimensional data matrix XST ,
the goal is to reconstruct the multivariate-time series data
from the region Si, where Si ∈ S. Si represents the target
region or the region of interest in which spatio-temporal
anomalies are investigated. Anomalous data points have large
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Algorithm 1 Sliding Window Algorithm Used in Subsequence Generation
# dataset: region dataset
# T : Number of timesteps, window size (T)
# region_list: region id list
# s : sliding step size
# depth: the number of spatial neighbors
# distance_matrix: distance matrix of regions
# output: multivariate spatio-temporal tensor data
process_dataset (dataset,

T,
region_list,
s,
depth,
distance_matrix)

1: output = list()
2: for each region in region_list:

# get region data from dataset
3: data ← dataset[region]
4: start_indx = 0
5: end_indx = start_indx + T

# step through the region data
6: while (end_indx < length(data)):

# get start and end timestamps of data slice of size T
7: start_date = getStartTimestamp (data, start_indx)
8: end_date = getEndTimestamp(data, end_indx)

# get subsequence from region data:
# seqs : 3D spatio-temporal data

9: seqs[n, 0] = data[start_indx..end_indx]
# get subsequences from depth-1 nearest neighbours:

10: seqs[n, 1:depth] = getDataFromNeighbours(dataset, T,
start_date_time, end_date_time, region_code, depth-1)

output.append(seqs)
10. start_indx = start_indx + s
11. end_indx = start_indx + T
12. n = n + 1 # end-while
13. return output

reconstruction errors because they do not conform to the sub-
space patterns in the data. Therefore, the aggregated recon-
struction errors over the time dimension T can be used as
the anomaly score for the autoencoder based proposed frame-
work. All x(n)i multivariate data points, or sub sequences, with
high reconstruction errors from the region Si are considered
to be anomalies.

B. PROPOSED HYBRID FRAMEWORK
The proposed approach consists of three main stages: The
first stage is the data pre-processing stage. At this stage,
the multivariate spatio-temporal dataset is processed in such a
way that the deep autoencoder network can exploit the spatial
and temporal contexts jointly. Multivariate data from m near-
est spatial neighbors are used to represent spatial dependency
between different spatial regions. The sliding window tech-
nique given in Algorithm 1 is applied to build the multivariate
spatial-temporal input data for the framework. By using the

multistep overlapping subsequences from m nearest spatial
neighborhood of each data point, we build a 3-dimensional
data matrix as shown in Fig. 2, which can represent the spatial
and temporal dependency within the dataset.

The important parameters of this algorithm are window
size T and step size s. They should be chosen carefully based
on the underlying dynamics of each dataset and the goal of
anomaly detection problem at hand. The length of each sub-
sequence is equal to the window size. Using sliding window
technique, for a long sequence with length L, the number of
extracted subsequences can be given as:

num.of subseq. = d(L − T + 1) /se (5)

which gives the maximum number of subsequences we can
possibly extract for a given T and s.

The second stage is the data reconstruction stage which
is executed by the deep hybrid autoencoder network. The
proposed hybrid autoencoder network consists of two main
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components: a spatio-temporal encoder component which
has a 3D convolutional neural network (CNN), and a
spatio-temporal decoder component which has a Convolu-
tional Long Short-term Memory (ConvLSTM) network.

The third stage is the anomaly detection stage. The
anomaly detection is performed by calculating the recon-
struction error as anomaly score. Let x = {x(1),
x(2), . . . , x(T )} be a univariate time series data representing
one of the reconstructed features and T is the length of the
input window. Each data point x(i) represents a data read-
ing for that feature at time instance ti. The mean absolute
error (MAE) is used to calculate the reconstruction error for
the given time period (input window) for each feature as:

eMAE (x) =
1
T

∑
T

∣∣xi − x̂i∣∣ (6)

where xi is the real value and x̂i is the reconstructed value at
time instance ti. The reconstruction error for each feature and
for all data points in the test set is calculated. Each data point
in the test set represents a window of size T as the rolling
window. As each data point in the dataset is generated using
sliding window algorithm with step size set to s, we generate
rolling window estimation, and hence the rolling window
errors.

For an anomaly detection problem, we are only interested
with the reconstruction of a subset of original spatio-temporal
multivariate dataset and not the fully reconstructed version
of it. The overall framework is trained to produce the target
multivariate time series X = {x1, . . . , xT ′} of length T ′ which
is the size of the reconstruction window. The length of T ′

can be equal to or smaller than the input window size T and
should be tuned for each problem. Each sequence xi ∈ Rd ′ is
an d ′-dimensional vector where d ′ ≤ d .

C. SPATIO-TEMPORAL ENCODING
The encoder component uses 3D convolutions to capture
complex spatial dependencies in each spatial neighborhood.
By convolving a 3D kernel over the cube formed data,
the encoder can extract better representative features. The
cuboid data is formed by stacking the data from the nearest
spatial neighbors of each data point as explained in
Algorithm 1. This allows information across these spatially
close neighbors to be connected to form featuremaps, thereby
capturing spatio-temporal information encoded in the close
neighborhood.

In most typical CNNs for image recognition, the input
data is a single image with three channels for color images
(R, G and B color channels) or one channel for grayscale
images. In anomaly detection networks, the input data is
generally a video clip consisting of multiple frames. In con-
volutional autoencoder based applications, T frames in the
channel dimension are stuck, and then fed into the autoen-
coder where T is the length of the sliding window. In the case
of 2D convolutional autoencoders, the temporal features are
rarely preserved as 2D convolution operations are performed
only spatially [58].

In this study, 3D convolutional operations are applied on
multivariate spatio-temporal data to better preserve the tem-
poral features along with the spatial features. The input data
are re-constructed as a 3-dimensional cuboid by stacking
multivariate data frames as illustrated in Fig. 2. By applying
this idea, we can accomplish dimensionality reduction both
in spatial and temporal context for a given input window
during the encoding phase. The main component of the
spatio-temporal encoder is the 3D convolutional layer, which
is defined as follows: the value v at position (x, y, z) of the j
th feature map in the ith 3D convolutional layer, with bias bij,
can be written by the following equation [79]:

vxyzij = f

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Si−1∑
s=0

wpqsijm v
(x+p)(y+q)(z+s)
(i−1)m + bij

 (7)

where Pi, Qi, and Si represent the vertical (temporal depth,
or window size, T ), horizontal (temporal width, or number of
features, d), and spatial depth (number of spatial neighbors,
m) dimensions of the kernel cube wi in the ith layer. The set
of feature maps from the (i− 1)th layer is indexed by m,
and wpqsijm is the value of the kernel cube at the position pqs
connected to the mth feature map in the previous layer. The
number of feature maps is defined by the number of kernel
cubes at each convolution layer.

D. SPATIO-TEMPORAL DECODING
For the decoding part of the framework, we use convolutional
LSTM (ConvLSTM) network, which is a variant of LSTM
network. It has been introduced by Shi et al. [80]. It has been
recently utilized by Chong and Tay in [65] for abnormal event
detection in videos and by Patraucean et al. in [81] for motion
estimation in videos.

The major drawback of regular Long Short-Term Memory
(LSTM) networks is that they are not capable of preserv-
ing the spatial information during the state transitions [80].
To overcome this problem, ConvLSTM units have convo-
lutions operations in place of matrix operations in all gates
and cell outputs. As they use convolution for both input-
to-hidden and hidden-to-hidden connections, they require
fewer weights and yield better spatio-temporal feature
encoding and decoding performance. The formulation of a
ConvLSTM unit can be given by the following equations
from (8) through (13):

ft = σ (Wf ∗ [X t ,Ht−1,Ct−1]+ bf ) (8)

it = σ (Wi ∗ [X t ,Ht−1,Ct−1]+ bi) (9)

Ĉt = tanh(WC ∗ [X t ,Ht−1]+ bC ) (10)

Ct = ft ⊗ Ct−1 + it ⊗ Ĉt (11)

ot = σ (Wo ∗ [X t ,Ht−1,Ct−1]+ bo) (12)

ht = ot ⊗ tanh(Ct ) (13)

where ’∗’ denotes the convolution operator and ‘⊗’ denotes
the Hadamard product. Equation (8) represents the forget
gate, (9) and (10) are the gates where new information
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(input Xt ) is added, (11) combines the new and old informa-
tion factored by the forget gate, whereas (12) and (13) give
the output of the ConvLSTM unit for the next time step. The
variable Xt denotes the input vector, ht denotes the hidden
state, and Ct denotes the cell state for the time step t .W ′s are
the trainable weight matrices and b′s are the bias vectors.

V. EXPERIMENT
A. DATASET
We use the public Italian COVID-19 time series dataset pro-
vided by the Italian Department of Civil Protection. It can
be downloaded from the website [82], which is constructed
as a national response effort for coronavirus emergency. For
this study, we use the regional dataset which shows the daily
progress of new coronavirus epidemic in regions of Italy. The
regional dataset provides detailed epidemiological figures for
all 21 regions (19 regions and 2 autonomous provinces)
starting from February 24 and updated daily.

The regions dataset has 20 features as follows (trans-
lated into English): Date, country, region code, region name,
latitude, longitude, hospitalized with symptoms, intensive
care patients, total hospitalized patients, home isolation, total
positives (current positives), change in total positive, new
positives, recovered (discharged), deceased, total cases, tests
performed, total number of people tested, notes in Italian,
notes in English.

Features ‘‘date, country, region code, region name,
latitude, longitude’’ are contextual attributes whereas the rest
are regarded as behavioral attributes. The feature ‘‘tests per-
formed’’ is part of the government intervention measures and
shows significant differences between regions depending on
the policies taken by each regional government in Italy [83].
As proactive testing and mobility can affect the epidemiolog-
ical dynamics of the COVID-19 epidemic [84], it is regarded
as contextual variable for the modelling, and is not included
in the reconstruction space as a behavioral attribute.

All these features have been used during the modeling
except the redundant and mostly empty attributes. The ‘‘total
number of people tested’’ field is empty for most of the
regions, so it is dropped for the modelling. Features ‘‘notes
in Italian, notes in English, total number of people tested’’
are also discarded for this study as they are mostly empty.
As the only country in the dataset is Italy, ‘country’ column
is also dropped. On the website, the data format is explained
as follows:

- total positives: Total amount of current positive cases
(hospitalized patients + home confinement)
- change in total positive: New amount of current positive

cases (total positives current day – total positives previous
day)

- new positives: New amount of current positive cases (total
cases current day – total cases previous day)

- total cases: Total amount of positive cases
Based on those detailed descriptions of dataset, we rename

the feature ‘‘total positives’’ as ‘‘current positive cases’’ in our
study to make the feature name more representative. We also

regard the feature ‘‘new positives’’ as ‘‘daily confirmed new
positive cases,’’ and renamed it as ‘‘new positive cases’’ for
clarity. In addition to the regional epidemic data, we have also
used population data of each region from ISTATwebsite [85].
By using population information, we have calculated three
additional features: ‘‘total positive cases, new positive cases
and deaths’’ on each 10,000 inhabitants. Using these engi-
neered features, we have incorporated the case density infor-
mation on each region to enrich spatial data.

Latitude and longitude are also provided for each region
making this regional dataset a spatiotemporal dataset.
Daily epidemic data entry for each region has two con-
textual attributes: a date attribute (temporal context) and
latitude-longitude attributes (spatial context), which is static
for each region. Besides these contextual attributes, the rest of
the attributes including the engineered features are regarded
as behavioral attributes. We use the min-max normalization
method to scale all behavioral attributes in the dataset into the
range of [0, 1] to accelerate the learning process and to avoid
large weights which cause neural networks to overfit.

B. DATA PREPARATION
We use the regional data entries between February 24 and
May 15, inclusively. The model is trained with the data
from northern regions which provides a complete epidemi-
ological data in the sense that they have gone through all
the peaks of COVID-19 outbreak showing a complete per-
spective for anomaly detection. The training dataset contains
data from following northern regions: P.A. Bolzano, Emilia-
Romagna, Liguria, Lombardia, Piemonte, P.A. Trento, Valle
d’Aosta, Veneto, and Friuli Venezia Giulia. We use data
from one central region (Marche) as validation set; data from
one central region (Lazio), one region from southern Italy
(Campania), and one island region (Sicilia) as test set. The
total data entry for each region is 82, which means 82 days of
COVID-19 epidemiological data are entered for each region.

The spatial attributes of all regions used in this study is
given in Table 1. Using the latitude and longitude informa-
tion, we calculate the distance matrix showing the pairwise
distance of all regions used in this study.We use the haversine
formula to calculate the shortest distance between regions,
which is used to measure distances on a sphere [86].

We calculate the correlation coefficients for the feature
‘‘current positive cases’’ between every pair of districts in
the training data using Pearson correlation. The correlation
heatmap matrix in Fig. 3 shows that all the neighboring
regions have strong spatial correlations. Remote regions in
the dataset, such as Valle d’Aosta and Marche, show weaker
correlations between other regions. These results reflect that
the spatial correlation of COVID-19 epidemic progression
occurring in certain geographic regions at a certain spatial
resolution is quite strong.

By using the spatial neighborhood of each region, we cre-
ate a spatio-temporal multivariate input for the model.
The sliding window technique given in Algorithm 1 is
applied to training, validation, and test datasets to build
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FIGURE 3. Correlation matrix visualized as heatmap. It shows the strong spatial correlation between
regions for the feature ‘‘Current Positive Cases’’.

TABLE 1. Region Information.

spatio-temporal multivariate subsequences. We apply the
algorithm with parameters representing the number of spatial
neighbors (which is called depth in the algorithm) set to 10,
the window size set to 7 representing 7-day worth of data
point, and step size to 1. According to the formula given

in (5) in which T is set to 7, s is set to 1 and L is set to 82,
we have 76 multivariate subsequences for each region. As the
total number of behavioral attributes is 13, excluding spatial
features ‘‘region code, region name, latitude, and longitude’’,
and with the depth of spatial neighborhood is set to 10,
we create 76 × 7 × 13 × 10 dimensional spatio-temporal
multivariate dataset from each region. By using this sliding
window algorithm, we perform data augmentation by moving
the start of the T-day data entry by step size resulting in a
nearly six-fold expansion of the training data.

The parameter ‘‘number of spatial neighbors’’ represents
the number of nearest neighbors to use while building
spatio-temporal multivariate subsequences. It also corre-
sponds to the spatial dimension of the 3DCNN encoder. After
data preprocessing step is completed, training, validation and
test sets are created. They are 4-dimensional data matrices
with the following sizes: The dimension of the training set
is 684 × 7 × 13 × 10, the dimension of the validation set is
76× 7× 13× 10, and the dimension of the test set is 228×
7× 13× 10. Numbers 684, 76 and 228 represent the number
of data points or observations in training, validation, and
test sets, respectively. The proposed framework is trained to
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reconstruct the following behavioral attributes: Hospitalized
patients, intensive care patients, total hospitalized patients,
home confinement, current positive cases, new positive cases,
total positive cases, recovered, and deaths. The size of the
reconstruction space for the test set is 228× 7×9.

C. FRAMEWORK ARCHITECTURE AND TUNING
Extensive experiments through grid search are executed to
finalize the architecture of the framework and its hyperpa-
rameters. Specifically, we use 2 CNN blocks in the encoder
component, each of which has a 3D convolutional layer,
followed by a 3Dmax-pooling layer. Number of feature maps
is set to 64 in the first block and set to 32 in the second block
with padding and no striding (or with strides 1 × 1 × 1).
We set the kernel size to 3 × 3 × 5, where Pi = Qi = 3
and Si = 5 in (7), for all convolutional layers for the exper-
iment, as these values are found to produce the best result
for the dataset. The max-pooling layers have pool size of
2 × 2 × 2 and strides of 1 × 2 × 2 with padding. This
means that the pooling operation is performed over all three
dimensions: (temporaldepth×temporalwidth×spatialdepth).
In addition, temporal width and spatial depth dimensions are
reduced by a factor of 2 with every max-pooling layer. The
activation function f in (7) in all hidden convolutional layers
in the encoder component are set to Rectified Linear Unit
(ReLU) non-linearity, ReLU (x) = max(x, 0), which allows
the deep neural networks converge faster [87].

The decoder component is composed of two ConvLSTM
layers with the number of feature maps set to 32 and 64,
respectively to preserve the symmetry of the autoencoder
framework. We apply 2D convolution operation over spatial
and temporal dimensions using the kernel size of 3 × 2
and the stride of 1 × 1 with padding. Batch normalization
(BN) [88] is applied to each of the ConvLSTM layers, which
accelerates the training of deep neural networks. In the final
layer, a fully connected neural network (FCNN) is used to
reconstruct the target output. Thus, we add a layer to reshape
the 4D output of final ConvLSTM layer before passing the
output to the FCNN. The FCNN layer is a time distributed
dense layer which applies the same fully connected operation
to every time step. The number of units in the dense layer is
set to d ′ = 9 and it is equal to the number of univariate time
series (features) that we want to reconstruct. The number of
hidden units in the FCNN layer can be adjusted according to
the problem context at hand.

Activation functions of ConvLSTM units are set to hyper-
bolic tangent and the activation functions in the final dense
layer are set to ReLU. Layer weights are initialized with the
Glorot uniform initializer [89]. The deep learning framework
is optimized using the Adam optimizer with learning rate
set to 0.0001. It ran for 100 epochs with batch size 16.
The training is regularized by weight decay (the L2 penalty
multiplier set to 1× 10−4) and dropout regularization for the
two ConvLSTM layers (the dropout ratio set to 0.25). The
model is trained to minimize the following mean absolute

error (MAE) loss function:

MAE =
1
n

n∑
i=1

∣∣xi − x̂i∣∣ (14)

where xi and x̂i represent the true value and the reconstructed
value, respectively, and n is the total number of data points
in each batch. The detailed architecture of the final deep
learning framework is illustrated in Fig. 4. The final frame-
work has 299,241 trainable parameters. The data structure of
each component in the trained framework is given in Table 2,
where N represents number of data points.

FIGURE 4. The proposed hybrid spatio-temporal autoencoder network
architecture.

D. PERFORMANCE COMPARISON
We have compared the proposed framework with 15 different
anomaly detection models which include several state-of-
the-art deep learning-based approaches. Tested models fall
under the following categories:
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TABLE 2. Framework Data Structure.

1) STATISTICAL MODELS
The following univariate statistical models are used:
CUmulative SUM Statistics (CUSUM) [47] and Shewhart
control chart [49].

2) PREDICTION BASED MODELS
Models under this category use the temporal dependencies of
training data to build a model and predict the value of the test
data. We employ three univariate time series regression mod-
els: Autoregressive Integrated Moving Average (ARIMA),
ExponentiallyWeightedMoving Average (EWMA), and Fast
Fourier Transform (FFT) extrapolation [90].

3) ONE-CLASS CLASSIFICATION MODELS
Models under this category learn a decision function during
training to identify normal samples. Then, the trained clas-
sifier is applied to test data and generates an anomaly score
based on being similar or dissimilar to the training set. The
unsupervised variant of the OCSVM algorithm is used for
this experiment. This unsupervised variant does not require its
training set to be labeled to determine a decision surface [91].

4) DISTANCE BASED MODELS
These models use a distance metric to score data points in
the test set. They have intrinsically unsupervised settings
and don’t need training. Under this category, we employ
the LOF algorithm [29], which is a locality-based outlier
detection algorithm, and LDBSCAN algorithm [32], which
is a local-density based spatial clustering algorithm.

5) ISOLATION BASED MODEL
This model detects anomalies based on the concept of
isolation without employing any distance or density measure:
Isolation Forest (i Forest) [37], [38].

6) DEEP LEARNING MODELS
Various state of the art deep learning models which have been
proven to be successful on anomaly detection problems are
tested.

1) Prediction based models: LSTM and CNN based deep
learning predictor models are used under this category.
A deep stacked LSTM predictor model based on the

architecture proposed by Malhotra et al. in [56] and
a 1D CNN based predictor model (namely DeepAnT)
proposed by Munir et al. in [66] have been employed
as multivariate time series prediction based models for
anomaly detection.

2) Reconstruction based models: Four different recon-
struction based deep autoencoder architectures are
tested. These architectures include a deep LSTM
autoencoder architecture [57], a deep 2D CNN based
autoencoder schema proposed by Hasan et al. in [58],
a deep spatio-temporal autoencoder model for anomaly
detection in videos proposed by Chong and Tay in [65],
and a deep 3DCNNbased spatio-temporal autoencoder
model (namely DeepFall) proposed by Nogas et al.
in [67].

All models are implemented using Python 3.6.8 program-
ming language. Deep learning models including the pro-
posed framework are implemented using the TensorFlow
library [92]. For LOF, IsolationForest, and One-Class SVM
methods, we use implementations available in the scikit-
learn [93], which is a free machine learning library for Python
programming language. To build the ARIMA model, we use
the statsmodels library [94], which is a free Python mod-
ule providing implementations of many different statistical
models. Euclidean distance is used for all proximity-based
algorithms since it has generated better results compared to
other distance metrics.

E. MODELS TUNING
Shewhart control chart comes from the quality control and
originated in 1931. It uses previous data to estimate a reason-
able upper limit or threshold value [49]. If future measure-
ments stay under the threshold value, the process is ‘under
control’. New measurements which exceed the calculated
threshold limit may indicate that a noteworthy change has
occurred in the underlying process. In our early outbreak
detection scenario, it may indicate an anomalous daily data
entry. The standard detector was trained on training dataset
to obtain the mean µ and variance σ 2. The control chart
threshold value is calculated for each feature by the formula
given below as defined in [48]:

threshold = µ+ σ ∗ φ−1(1−
p_value

2
) (15)

where φ−1 is the inverse to the cumulative distribution func-
tion of a standard normal, and the p-value is supplied by the
user. Given a p_value of 0.5, we calculate the threshold level
for the feature ‘‘new positive cases’’ as 0.492.

CUSUM charts are good at detecting small shift from
the mean more quickly than Shewhart control charts [47].
CUSUM is calculated by taking the cumulative summa-
tion of the difference between each measured value and the
estimated in-control mean value:

Sk =
k∑
i=1

(xk − µ)+ Sk−1 (16)
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FIGURE 5. Model test results for the region Lazio are given for features HospitalizedPatients, CurrentPositiveCases,
NewPositiveCases, Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue,
reconstructed case counts are plotted in orange, and reconstruction errors are plotted in red.

where Si is the ith cumulative sum, xi is the ith observa-
tion and µ is the in-control mean value. It keeps a running
sum of excess values over the mean each day. When this
sum exceeds a threshold level, we can signal an alarm as
an indication of abnormality. For a process that is under
control, each measured value should be reasonably close to
the mean. Thus, as long as the process remains in control,
the CUSUM plot of each calculated value of Sk should be
centered about zero with small fluctuations. If the process
mean shifts upward, the CUSUM values for data points will
eventually drift upwards.

Standard moving average algorithm introduces lag into the
original time series, which means that changes in the trend
are only seen with a delay. Exponentially Weighted Moving
Average (EWMA) reduces this lag effect by introducing the
decay parameter and puts more weight on more recent obser-
vations. The window (span) is chosen as 7 days. The ARIMA
model is represented by (p, d, q) model parameters which
show the order of Auto-regressive (AR), the differencing
component, and Moving Average (MA), respectively. The

integrated part of ARIMA (the differencing component) helps
in reducing the non-stationarity. The optimum parameters of
this model are selected byminimizing theAkaike information
criterion (AIC). The final model is built using the parameters
ARIMA (2, 1, 3). Fast Fourier Transform (FFT) is the discrete
Fourier transform algorithm to express a time series function
as a sum of periodic components. We apply FFT to univari-
ate time series data (‘‘new positive cases’’ attribute of each
region) and extrapolate to make one step prediction.

An unsupervised version of the OCSVM algorithm is used
for the anomaly detection in test regions. It learns a decision
function during training and classifies the test data as similar
to or different from the training set using the decision score.
A OCSVM model with the Radial Basis Function kernel is
used to build the classifier and detect anomalies in the unseen
test dataset.

The Local Outlier Factor (LOF) algorithm is an unsu-
pervised anomaly detection method based on local density
deviation of a given dataset. It calculates the local density
of a given data point with respect to its neighbors. It gives
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FIGURE 6. Model test results for the region Campania are given for features HospitalizedPatients, CurrentPositiveCases,
NewPositiveCases, Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed
case counts are plotted in orange, and reconstruction errors are plotted in red.

higher LOF scores to the samples that have a substantially
lower density than their neighbors. For LOF model, we set
the number of neighbors to 30 to use in k-nearest neighbor
calculations and set the contamination ratio to 0.1.

The Local Density-Based Spatial Clustering of Applica-
tions with Noise (LDBSCAN) algorithm is an extension to
DBSCAN and takes the advantage of the LOF algorithm in
scoring data points and identifying clusters. The following
values are assigned to the LDBSCAN parameters since they
give the best result: MinPtsLOF = 20, MinPtsLDBCAN = 30,
LOFUB = 5, pct = 0.3.
Isolation Forest algorithm returns an anomaly score for

each observation and ’isolates’ anomalous points via recur-
sive partitioning by randomly selecting a feature and then
randomly selecting a split value for the selected feature. It can
be represented by a tree structure and the number of splitting
required to isolate a sample is used as a measure of normality.
As the name infers, it is an ensemble of trees doing random

partitioning to detect anomalies. The number of estimators
(or trees) is selected as 100; and the rate of contamination is
set to 0.1.

For the deep LSTM predictor model proposed in [56],
we employ a stacked LSTM network with the history win-
dow size set to 7, and the prediction window size to 1 to
perform the one-step prediction. The final LSTM predictor
architecture is built with 3 hidden LSTM layers (having 64,
32 and 16 units, respectively) with ReLU activation function
and a final fully connected neural network (FCNN) layer for
inference of target variables. For the CNN based predictor,
we follow the DeepAnT architecture proposed in [66]. Each
1D convolution layer has 32 filters followed by ReLU acti-
vation function and max pooling layer. The last layer of the
network is a FCNN layer in which each neuron is connected
to all the neurons in the previous layer. This layer generates
the final prediction of the network for the next time stamp as
in LSTM based predictor.
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FIGURE 7. Model test results for the region Sicilia are given for features HospitalizedPatients, CurrentPositiveCases,
NewPositiveCases, Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed
case counts are plotted in orange, and reconstruction errors are plotted in red.

The encoder component in the deep CNN autoencoder
model, which is similar to the one proposed by Hasan et al.
in [58], is composed of three convolutional layers: Conv1-
Conv3 with 64 kernels of size 3× 3, 32 kernels of size 3× 3,
and 16 kernels of size 3 × 3 respectively with no strides.
We use a max pooling layer after the first and the second
convolution layers with pool size of 2 × 2 and strides 1 × 2
with padding. The decoder component is built to maintain the
symmetricity with three convolutional layers and two unpool-
ing layers with the same number of kernels of size 3× 3. For
the deep LSTM autoencoder architecture proposed in [57],
we use three LSTM layers in the encoder, and three LSTM
layers in the decoder with a fully connected neural network
as the inference layer. On the encoder side, the number of
units in the LSTM layers are 64, 32, and 16. On the decoder
side, the same number of units are used in reverse order to
build a symmetric architecture.

We build the deep spatio-temporal autoencoder for abnor-
mal event detection by following the architecture proposed
by Chong and Tay in [65]. The spatial encoder has two 2D
convolutional layers with 64 and 32 kernels of size 2× 2 and
3× 3, respectively. Temporal encoder-decoder component is
composed of three convolutional LSTM (ConvLSTM) layers
with the number of units are set to 16, 8, and 16 with the
convolution kernel size of 3× 3. The spatial decoder has two
deconvolutional layers with 32 and 64 kernels of size 3 × 3
and 2× 2, respectively. It has a final FCNN layer to generate
the reconstruction of the selected test features.

To build the spatio-temporal 3D convolutional autoen-
coder, we follow the architecture of DeepFall proposed
in [67]. The encoder has two layers of 3D convolutions with
stride of 1× 1× 1 and padding. They have 16 and 8 kernels
with kernel size set to 2×2×2. After each convolution layer,
3D max pooling operation is applied with the stride size of
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TABLE 3. Outbreak Detection Date of Models.

2×2×2 and pool size of 2×2×2 and 3×3×3, respectively.
The decoder has three layers of 3D deconvolutions with a
stride of 2 × 2 × 2 and padding. The kernel sizes are set to
3× 3× 3, 2× 2× 2, 2× 2× 2, respectively.

All deep learning models are trained to minimize the mean
absolute error with Adam optimizer with learning rate set to
0.0001. The L2 regularization with the penalty multiplier set
to 1× 10−4 and dropout regularization with the dropout ratio
set to 0.25 are applied for training. Models are trained for
100 epochs with mini batches of size 16.

F. PERFORMANCE METRIC
In order to evaluate the performance of models, we measure
the number of days until an anomaly is detected against
the threshold level. In the context of this empirical study,
an anomaly might mean that the COVID-19 pandemic
might be moving out of control for the investigated region.
According to European Centre for Disease Prevention and
Control [95], the number of newly confirmed cases (or daily
new positive cases) is one of the most accurate indicators of
epidemic intensity. To compare the early COVID-19 outbreak
detection performance, we compare the anomaly scores of
models generated for the feature ‘‘new positive cases’’. For
the prediction-based model, we use the one step predic-
tion errors as anomaly scores. For the reconstruction-based
models, we use the reconstruction errors as anomaly scores.
OCSVM, IsolationForest, LOF and LDBSCAN models gen-
erate one anomaly score for each multivariate observation
regardless of the feature monitored.

VI. RESULTS
A. FRAMEWORK PERFORMANCE
During the training process, the framework learns to
reconstruct the selected features in each data point with the

minimum possible error. In the case of anomalous events such
as peaks of the COVID-19 pandemic, these reconstruction
errors will get bigger, causing an alarm for the possible
outbreak. The framework learns the normal data structure
with the data from northern regions, which have gone through
the pandemic earlier than other regions. To be able to detect
the COVID-19 outbreak as early as possible, the framework
must learn what the normal is when it is trained with highly
contaminated data. As there is no label indicating anomalous
events, the framework learns the distinctive patterns of abnor-
mal events using the data from the nearest spatial neighbors.

We train one unified deep learningmodel using the training
set, which has a total of 684 spatio-temporal multivariate data
points from 9 different regions. Then, we use the model to
calculate the reconstruction errors of each 228 data points
in the test set. As we set the window size to 7 days during
the data preparation process and sliding step size to 1 day,
we calculate the rolling window errors of each feature.

The reconstructed values and reconstruction errors for
features ‘‘hospitalized patients, current positive cases, new
positive cases, recovered cases, deaths, and total positive
cases’’ on test data are plotted against the real case numbers
in figures from 5 to 7. Test results for the region Lazio are
given in Fig. 5; test results for the region Campania are given
in Fig. 6; and test results for the region Sicilia are given
in Fig. 7. In these figures, the real data are depicted in blue; the
reconstructions are depicted in orange; and the reconstruction
errors are depicted in red. All values are min-max normalized
into the range of [0, 1] before plotting.

It can be seen in these plots that there is a subtle increase
in the model error when the real case counts have peaks
as each region goes through the COVID-19 pandemic. The
progression of the COVID-19 pandemic in each test region is
quite different: Lazio hits the peak of the epidemic earlier,
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FIGURE 8. Region Lazio: Generated alarms of top performing models are plotted against daily real case counts for the
parameter ‘‘new positive cases’’. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal
passes the threshold level, it is plotted in red. A red alarm signal can be interpreted as an outbreak for the region.

and goes through a larger wave with many peaks, while
Campania and Sicilia have shorter waves with a smaller num-
ber of peaks. Sicilia has the least number of peaks compared
to other regions. The framework captures the overall structure
of the real data and gives a good error margin to enable the
early detection of the outbreak in each test region.

B. DETECTION TIME
To compare the early outbreak detection performance of the
proposed framework with other models, anomaly detection
time in days is calculated. The Shewhart control chart value
for the feature ‘‘new positive cases’’ is used as the threshold
level for an alarm. Outbreak detection date is calculated as
the date of the first alert raised when the alarm level passes
the threshold line. Table 3 shows a comparison of all mod-
els based on the early outbreak detection performance. Best
performing models on all three regions are highlighted.

In this test dataset, the anomalies are not just the spike
or point anomalies. They are contextual anomalies; and

there is a trend in them showing the progression of the
COVID-19 pandemic in each region. This makes this dataset
difficult for an anomaly detection algorithm as contamination
rate is very high in the training set.

The proposed framework outperforms all compared mod-
els in early outbreak detection for all test regions. Statistical
models show similar performance on the regions Campania
and Sicilia. The FFT falls behind other models on the region
Lazio. LDBSCAN algorithm shows better early outbreak
detection performance on the regions Lazio and Sicilia com-
pared to IsolationForest and LOF. It can be seen that OCSVM
does not work on such highly contaminated training data as it
falls behind on early outbreak detection in all test regions.
CUSUM, on the other hand, performs significantly better
than other statistical and distance-based models. In general,
other deep learningmodels show similar performance on each
test region except DeepAnT, which shows better performance
than other compared deep learning models.

We compare our model with the best performing models,
namely the CUSUM, DeepAnT, and LDBSCAN. Fig. 8 to 10
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FIGURE 9. Region Campania: Generated alarms of top performing models are plotted against daily real case counts for the
parameter ‘‘new positive cases’’. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal
passes the threshold level, it is plotted in red. A red alarm signal can be interpreted as an outbreak for the region.

illustrate the alarms generated by models, which are plotted
against the standard threshold level and daily real case counts
for the parameter ‘‘new positive cases’’. The case counts
and model alarm values (or anomaly scores) are min-max
normalized into the range of [0, 1] before plotting. When an
alarm value passes the threshold line, it is plotted in red to
illustrate an outbreak signal.

When we look at plots for the region Lazio in Fig. 8,
the alarm level of the proposed framework passes the thresh-
old line onMarch 4. It generates strong alarm signals through
the wave of the COVID-19 pandemic. CUSUM, LDBSCAN
and DeepAnT send first alarm signals on March 12, which
is the date national lockdown was announced in Italy.
Fig. 9 shows the test results for the region Campania. The
proposed model can detect the early upswing trend in the
epidemic while other models fall behind in detecting the
outbreak. The proposed model gives the first outbreak signal
which passes the threshold level on March 5, while CUSUM
and DeepAnT give on March 8, and LDBSCAN gives the
signal onMarch 18. The region Campania is very challenging

for early outbreak detection as the upswing trend starts very
late and suddenly in mid-March. Fig. 10 shows the test
results for the region Sicilia. The proposed framework sends
the first outbreak signal on March 1. It is followed by the
DeepAnT model, which sends the first outbreak signal on
March 4, followed by the CUSUM model, which sends the
first outbreak signal on March 12, and followed by LDB-
SCAN, which sends the first outbreak signal on March 16.
LDBSCAN shows good outbreak detection performance on
Lazio and Campania but fails on the region Sicilia. DeepAnT
is very successful in early outbreak detection in all regions,
but significantly better on the region Sicilia compared to
other base models. However, despite the downward trend of
the pandemic in the region Sicilia after April 15, DeepAnT
continues to send outbreak signals.

It can be observed that our model has the capability of
detecting abnormal upswing trends in COVID-19 pandemic
waves in each test region. The main advantage of the pro-
posed framework is that once it is trained on the training
set, it does not need the history of the tested region to detect
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FIGURE 10. Region Sicilia: Generated alarms of top performing models are plotted against daily real case counts for the
parameter ‘‘new positive cases’’. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal
passes the threshold level, it is plotted in red. A red alarm signal can be interpreted as an outbreak for the region.

any anomalous event. It can detect point anomalies as well
as contextual anomalies in test regions. It is better at track-
ing the abnormal events and in detecting every major peak
throughout the wave of the COVID-19 pandemic in each
test region. What makes the proposed framework different
from other deep learning-based models is the way it uses the
spatio-temporal data. The nearest neighbor’s data, which is
weighted based on the distance to the region, is exploited
to extract the best spatio-temporal features. This makes the
framework robust against noise and anomalies in the dataset.

C. DISCUSSION ON OTHER PARAMETERS
The basic reproduction number (R0), which is an indicator
of average number of secondary cases infected by the person
who already had an infection, is one of the most important
characteristics of an epidemic [96]. Health authorities and
governments around the world build their preventive mea-
sures based on the reproduction number of the epidemic [97].
Themost concerning characteristics of the current COVID-19
is its high reproduction number which was around 4.5 during
the early outbreak and may evolve throughout the pandemic

based on the mitigation measures taken by the governments
such as rates of diagnostic testing, quarantine measures, case
and contact isolation, face masks usage enforcement, and
public education [98], [99]. In Italy, almost every day from
February 25 until the start of national lockdown in March 12,
new and stricter policies have been declared in many Italian
provinces aimed at containing the outbreak and delaying the
epidemic peak [8].

A recent study by Tahmasebi et al. [100] emphasizes the
effect of different social distancing scenarios on the spread
of COVID-19. They also discuss that other than government
intervention scenarios, the pre-existing regional specific vari-
ables such as environmental, economic, and health factors
may also have influenced the vulnerability to COVID-19.
In order to build a more realistic early outbreak detection
and pandemic tracking algorithm, all region-specific factors
should be considered. In fact, many questions regarding
the spread dynamics of COVID-19 have remained unan-
swered, such as why different regions experience different
reproduction and fatality rates, which cultural and health
variables have themost influence on the spread of COVID-19.
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As we gain more information on the COVID-19 pandemic,
we will be able to build more effective models to detect the
outbreak on each different region.

VII. CONCLUSION
In this study, a deep learning framework is presented
for unsupervised detection of anomalies in multivariate
spatio-temporal data. We also presented a novel way of
pre-processing the non-image multivariate spatio-temporal
data by using the nearest spatial neighborhood. The 3D
cuboid data is formed by stacking the data from the nearest
spatio-temporal neighbors of each multivariate data point.
The proposed hybrid framework is designed to be trained in
a truly unsupervised fashion without any labels indicating
normal or abnormal data. The proposed approach is robust
enough to learn the underlying dynamics even if the train-
ing dataset is highly contaminated with anomalies (more
than 5%).

In all distance/clustering-based algorithms, the biggest
challenge is to combine the contextual features along the
spatial and temporal dimensions in a meaningful way. In the
proposed approach, we handle spatial and temporal context
by different deep learning components as these contextual
variables refer to different types of dependencies. The pro-
posed framework requires no prior knowledge on anomalies
such as the distribution and types of anomalies.

There have been many studies that model the epidemio-
logical dynamics of Covid-19. However, none of them have
been focused on building an anomaly detection system for
early epidemic detection. We conducted experiments using
COVID-19 Italy dataset provided by the Italian Department
of Civil Protection. We used northern Italian regions data to
train the model and then used this one unified model to detect
anomalous patterns of central and southern regions of Italy.
We evaluated the performance of the proposed framework
against 15 different anomaly detection algorithms includ-
ing state-of-the art deep learning-based approaches proposed
in recent years. It outperformed the state-of-the-art deep
learning approaches in both early detection and tracking
the COVID-19 outbreak. Experiments have shown that the
framework is capable of handling the small amount of data
event if the contamination level is too high as in the case of
COVID-19 Italy dataset.

Our contributions can be summarized as follows:
1) To the best of our knowledge, the proposed framework,

which is composed of a novel data crafting and a hybrid deep
learning model, is the first attempt in solving unsupervised
anomaly detection problemwhich is designed specifically for
non-image multivariate spatio-temporal data.

2) It achieves good generalization capabilities in scenarios
where the training data are scarce and contaminated with
anomalies. In the case study, only 82 daily data entries (data
points) are available for each region. Even these contami-
nated outbreak data are sufficient to build a robust anomaly
detection model due to its effective architecture to exploit
spatio-temporal neighborhood data.

3) The biggest challenge in anomaly detection for
spatio-temporal data is to combine the contextual attributes
in a meaningful way. In the proposed hybrid approach, spatial
and temporal contexts are handled by different deep learning
components as these contextual variables refer to different
types of dependencies.

This study illustrates the capability of the proposed
approach to detect anomalous patterns and disease outbreaks
in a timely manner. Our framework is aimed to provide
useful insight for the crisis management against the novel
coronavirus. It might help monitoring COVID-19 pandemic
progression in various regions simultaneously to detect any
signs of an outbreak.

The proposed framework has some limitations. The main
limitation is that it is based on the assumption that simi-
lar control measures to suppress the outbreak are taken by
all regions. However, it is not true as some regions put
more restrictions on mobility resulting less correlation on
daily pandemic data between neighboring regions. Further
improvements can be achieved by including the control mea-
sures taken by each region into the model as part of the
spatial context. Another limitation is the selection of the
hyper parameters for each dataset for optimum performance.
We plan to explore optimization-based techniques to select
framework’s hyper-parameters to further enhance the per-
formance. Finally, we plan to enhance the framework by
adding the attention mechanism to tackle the weaknesses in
analyzing long sequences.
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