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ABSTRACT This paper proposes an optimal rate control model based on deep neural network (DNN)
features to improve the coding tree unit (CTU)-level rate control in high-efficiency video coding for
conversational videos. The proposed algorithm extracts high-level features from the original and previously
reconstructed CTU blocks based on a predefined DNN model of the visual geometry group (VGG-16)
network. Then, the correlation of the high-level feature and quantization parameter (QP) values of previously
coded CTUs is explored for subjective visual characteristics to estimate the CTU-level rate control model
parameters (alpha and beta) and the bit allocation of each CTU. Therefore, this paper also proposes a new
model for Lambda estimation for each CTU by improving its relationship with the estimated bits per pixel
to control the rate and relative distortion. Furthermore, the Lambda and QP boundary settings were adjusted
based on the proposed perceptual model to ensure the rate control accuracy of each CTU. The results of
experiments with the proposed algorithm, when compared to the rate control model in HM-16.20, reveal
higher bitrate accuracy and an average BD-rate gain based on PSNR, SSIM, and MSSSIM metrics using the
low-delay-P configuration.

INDEX TERMS Deep neural network, high efficiency video coding (HEVC), rate control, video coding.

I. INTRODUCTION
Rate control in all video coding applications is important for
optimizing visual quality by appropriately allocating bits to
each rate control stage at the group-of-picture-level, picture-
level, and block-level for a given bitrate condition. An excel-
lent rate control model must be capable of assigning an
accurate number of bits to each step by maintaining bet-
ter visual quality in compressed videos. Conversely, a rate
control model can be designed to require a lower bitrate
to alleviate bandwidth bottlenecks and maintain the same
subjective image quality [1]. Many rate control algorithms,
for example, TM5 for MPEG–2 [2], VM8 for MPEG–4 [3],
and H.264/AVC, have been studied extensively for differ-
ent video coding standards [4]. Two rate control models
were proposed and implemented on the HM reference soft-
ware during the standardizing process for high efficiency
video coding (HEVC), the latest video coding standard that
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adopts several advanced technologies [6]–[15]. The pixel-
wise unified rate quantization (URQ) model [16], [17] was
the first rate-control algorithm adopted in HM-6.0. The URQ
model selects a corresponding quantization parameter (QP)
that can be applied to the coding tree unit (CTU) block to
set a target bitrate at the pixel-level. However, this is only
effective when all coding parameters besides the QPs are
fixed. Hence, rate-distortion (R–D) performance and bitrate
accuracy are not optimal for CTU since the QP computation
is acknowledged to suffer from the well-known ‘chicken and
egg’ dilemma. Another rate control approach introduced for
HEVC is the R–λ model [18], [19] that was developed to
compute a target bitrate for a CTU in the λ–domain and
demonstrated better rate control performance than several
existing algorithms. However, the R–λ model for HEVC has
several challenges in estimating the proper model parame-
ters. At the CTU-level rate control, the R–λ model cannot
achieve optimal performance for higher-resolution videos
in low bitrate scenarios [20], especially for videos coded
under a low-delay configuration [21], [22]. It is confirmed
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that, according to the human visual system (HVS), there is
much perceptual redundancy of a video sequence that can
be exploited further to improve the coding efficiency as well
as the rate control performance of HEVC significantly. Note
that the CTU-level rate control is essential for regulating the
bitrate allocation, improving the coding performance, and
comprehensively controlling the visual quality of a com-
pressed video. In regards to the perceptual redundancy for the
coding efficiency improvements, our previous study found
that a perceptually adaptive QP at frame-level can signifi-
cantly improve the coding efficiency of the HM-16.20 by
taking advantage of the subjective characteristics of a video
sequence [23].

This paper presents a CTU-level rate control algorithm for
an HEVC encoder based on a deep neural network (DNN)
feature. Investigations confirm that the existing R–λ model
estimation does not accurately represent the relationship
between the λ value and model parameters (α and β). Hence,
the estimation process does not favor a proper R–λ rela-
tionship, and this leads to inaccurate rate control and failing
to minimize distortion. Several studies have demonstrated
that CTU-level rate control efficiency in HEVC can be
achieved by diminishing the error due to the selected R–D
model [24]–[26] and the error due to inaccurately estimating
the model parameters [27]–[30]. In this study, the proposed
algorithm establishes a new model for α and β estimations to
improve the correlation between them and the estimated λ,
based on the high-level features and QP values of previ-
ously coded CTUs. As in our previous study [23], high-
level features are obtained from the original and reconstructed
CTUs using a pre-trained visual geometry group (VGG-16)
network model [23], [31]. Based on the proposed models
for estimating α and β, the R–λ estimation for each CTU is
then reformulated tominimize distortion over the entire frame
at a given target bitrate. Consequently, the QP estimation
and the boundary settings of λ and QP are also adjusted
based on the extracted high-level features to maintain visual
quality and ensure the bit accuracy of each CTU. Evaluated
against HM-16.20 and other algorithms using the PSNR,
SSIM, and MSSSIM indices, the proposed algorithm demon-
strates significant coding gains with notable visual quality
enhancement.

The remainder of this paper is organized as follows.
In Section 2, the CTU-level rate control in HM and related
works are briefly discussed. Section 3 details the proposed
CTU-level rate control for HM. The proposed algorithm
is evaluated in Section 4, and the paper is concluded in
Section 5.

II. CURRENT STATE OF R−λ MODEL FOR CTU-LEVEL
RATE CONTROL ALGORITHM IN HEVC ENCODER
The R–λ rate control model is designed by taking λ into
account as a crucial parameter during the rate control loop
process that is estimated as follows:

λ = α × bppβ (1)

where bpp is the bit per pixel term for the estimated bitrate
for a CTU. α and β are the tuning parameters related to
video contents that will be updated after the encoding process
for the co-located CTU of the subsequent frames. In HEVC,
α has initial values set to +3.2003, and β is initialized to
−1.367. Different initial values ofα and β are claimed to have
little impact on the compressed videos, R–D performance,
and bitrate accuracy [19]. However, during the updating pro-
cess, both model parameters are unable to fit the relationship
between distortion and bitrate for each CTU [24]–[30] accu-
rately. This is because, in general, the λreal value is not equal
to α × (bppreal)

β . Therefore, the interrelationship between
α and β towards λ is also critical to the R–λ rate control
model performance. Note that bppreal and λreal respectively
denote the actual consumed bpp and the actual λ used for
calculating the QP after encoding each CTU. Once the bpp
value is estimated for each CTU, the λ estimation process
can be calculated based on equation (1). Then, the boundary
adjustment of the estimated λ, the QP estimation process, and
the QP boundary adjustment are affected. Please refer to the
discussions in [18], [19], [32], [33].

Many studies have attempted to improve the CTU-level
rate control for HEVC. Li et al. [33] proposed a weight-
based R–λ rate control by applying the visual variation of
pixels within a CTU to enhance the perceptual quality of
conversational videos. However, the visual attention model
proposed for the R–λ rate control is designed to affect only
the region of interest, which may cause imbalanced bit allo-
cations in other regions, resulting in the deterioration of
the R–λ model accuracy. Li et al. [28] also proposed an
optimal bit allocation (OBA) algorithm using a recursive
Taylor expansion by arguing that bit allocation for the low-
delay-P (LDP) case of the existing CTU-level R–λ model
is not optimal. However, the proposed algorithm does not
consider any initial QP scheme that leads to insignificant
performance when sequences are coded with higher initial
QP values. Li et al. [29] proposed a model parameter esti-
mation algorithm (MPE) for α and β for CTU-level rate
control by analyzing the CTU scan order that correlates to
the complexity of the CTU contents. However, the proposed
algorithm does not examine the bit allocation, λ, and QP
estimation models, which limits the MPE algorithm perfor-
mance. Wang et al. [30] presented a novel rate control algo-
rithm based on the improved λ parameter that inhibits bit
fluctuation and improves video quality. However, the pro-
posed algorithm did not identify the characteristics of the
test sequences adequately. In short, the algorithm inaccurately
estimated the model parameters. Zhou et al. [26] designed
an SSIM-based R–D model to improve the CTU-level rate
control algorithm. This algorithm formulates the CTU-level
bit allocation as a global optimization problem and disregards
several model estimation issues present in the CTU-level rate
control. This limits the overall performance of the proposed
algorithm.

In conclusion, the estimation models in the CTU-level rate
control are crucial for obtaining high bitrate accuracy in all

VOLUME 8, 2020 165671



I. Marzuki et al.: Optimal CTU-Level Rate Control Model for HEVC Based on Deep Convolutional Features

FIGURE 1. Frame-by-frame depiction of the visual quality of the ‘BQTerrace’ with rate control activated.

rate control models. This paper presents the development
of a new estimation model for the α and β parameters as
well as estimation models for the bit allocation, parameter λ,
QP decision, and boundary adjustment of both λ and QP for
the CTU-level rate control in the HEVC encoder. Further-
more, an adaptive QP decision at the frame-level [23] is also
used for the proposed CTU-level rate control algorithm. The
proposed algorithm is designed to impove the rate control
in HM-16.20 reference software as its performance is sig-
nificantly degraded with rate control enabled. The proposed
algorithm achieves around 20% coding gain and enhances
the subjective quality over the HM-16.20 with rate control
on. The proposed algorithm is based on high-level features
extracted from a predefined DNN model [31]. Note that the
use of the DNN model for video coding is becoming more
appealing to the video coding community [34]–[45]. How-
ever, investigations into using the DNN model specifically
for CTU-level rate control for conversational videos are still
rare. Therefore, a CTU-level rate control algorithm based on
a predefined VGG network for HEVC is presented in this
paper. The code of the proposed algorithm is available online:
https://bit.ly/2QRxOjA.

III. PROPOSED CTU-LEVEL RATE CONTROL ALGORITHM
FOR THE HEVC ENCODER
The R–λ rate control model in HEVC can be written as
Eq. (1). There are three main factors involved: the estimated

bpp and two model parameters, α and β. The bpp term in
the CTU-level rate control of HM-16.20 is calculated by
including the α and β parameters that may also influence
the accuracy of the bpp estimation. Regardless of the block
characteristics, for all CTU blocks in the first frame, α and β
are initialized with fixed values, respectively set to +3.2003
and−1.367. Although the original study [18], [19] argues that
the video contents determine α and β, the model parameters
in the existing CTU-level rate control are still unable to
represent the bpp–λ relationship accurately. Based on our
investigation, improper α and β parameters are responsible
for the deficiency in achieving minimal distortion and rate
control accuracy. Figure 1 shows an example of the visual
quality of the ‘BQTerrace’ sequence encoded by the exist-
ing CTU-level rate control model in HM-16.20 under the
LDP configuration. The subjective quality of the sequence
gradually decreases from the first to the last frames. This
phenomenon is caused mainly by the failure of rate control
when estimating the model parameters. Therefore, a strong
interrelationship between α–λ and β–λ is also crucial for the
CTU-level rate control to improve the bpp–λ relationship,
which also enhances the visual quality of a sequence.

In this paper, the proposed algorithm explores the use of
visual feature extractions based on a particular convolutional
layer of a DNN model for CTU-level rate control purposes.
This paper proposes the use of a pre-trained DNN model
to tackle model parameter estimation for rate control at the
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FIGURE 2. Overall flowchart of the proposed CTU-level rate control.

CTU-level that is intended to improve the rate control per-
formance for conversational video services. Both spatial and
temporal features are considered for estimating the α and β
parameters that also influence the design of other estimation
processes, including the estimations of bit allocation, λ, and
QP. In addition, the boundary settings of λ and QP are also
fine-tuned to be more perceptual-friendly. Since rate control
algorithms also rely on the initial QP of a frame, the proposed
CTU-level rate control takes into account our previous study
of perceptual adaptive QP decision to handle the frame-level
initial QP decision. Please refer to the detailed algorithm,
as discussed in [23].

Figure 2 illustrates the flow of the proposed algorithm. The
proposed CTU-level rate control algorithm is applied after
the frame-level QP initialization in [23] is employed. The
VGG feature for the proposed algorithm is first estimated
during the CTU-level rate control loop. Note that the esti-
mated VGG feature in the proposed algorithm is different
from our previously published work. For the first frame in
a sequence, the proposed algorithm is designed straightfor-
wardly. The standard deviation value (StD) of the original
CTU block is examined to estimate the model parameters of
each CTU within an Intraframe. Then, the estimations of bit
allocation, λ, and QP are kept the same as in the HM-16.20
default processes. After encoding the first Intraframe, a pre-
trained VGG-16 model is employed to extract visual features
from the original and the reconstructed CTU to estimate the

α and β parameters, λ, and QP, as well as the boundary
settings of λ and QP for consecutive frames. The designed
visual features result in a perceptual loss value based on the
Euclidean distance measure.

A detailed description in several sub-categories is given as
follows.

A. ESTIMATION OF THE PROPOSED VGG FEATURE
The use of our previously published work here [23], as illus-
trated in Figure 3, is to investigate further our findings on the
visual features extracted from the original and reconstructed
CTUs using a pre-trained VGG-16 network. The pre-trained
VGG-16 trained on the ImageNet dataset [31] is directly
employed for examining the HM-16.20 CTU-level rate con-
trol model without conducting a separate training phase. The
reason for the use of the pre-trained VGG-16 network has
also been discussed in our previously published paper in [23].
Briefly, the VGG-16 has an extremely deep convolutional
layer, which results in convolution filters intimately to search
universal patterns and generalize them. Therefore, many stud-
ies use the predefined VGG-16 model as a feature extrac-
tion technique. Note that the visual features in our previous
study [23] are based on the averagedVGG feature of all CTUs
within a picture used for determining the frame-level adaptive
QP, which is different from the feature used for the proposed
CTU-level rate control.

In this proposed CTU-level rate control, instead of using
the averaged VGG features, individual CTU-level VGG fea-
tures are applied to favor the model estimations for the
proposed CTU-level rate control algorithm. The correlation
between the visual feature and the QP value of each CTU
isused, as shown in Figure 4. The ‘BlowingBubbles’ test
sequence is codedwith QP 22, 27, 32, and 37. The normalized
StD values of the original CTU blocks in Figure 4(a) coded
under the ‘All Intra’ configuration were observed to have a
strong correlation with the selected QPs. It is emphasized that
the StD value from the original CTU block is regarded as the
visual characteristic for the proposed CTU-level rate control
algorithm of the first frame only. The remaining CTUs in
the frames following will apply the proposed VGG feature.
Figure 4(b) shows a high correlation between the VGG fea-
ture and QP selection per CTU under the IPPP structure.

B. ESTIMATION OF BIT ALLOCATION AND MODEL
PARAMETERS FOR THE PROPOSED CTU-LEVEL RATE
CONTROL ALGORITHM
The R–λ relationship in Eq. (1) of the CTU-level rate control
model in HM-16.20 is shown to be inadequate for optimally
allocating bits for each CTU and inaccurately computes the
model estimations. The estimated α, β, and bpp are the
key parameters to overcome the disadvantages mentioned
above. First, the estimated α, β, and λ of each CTU from
the first 17 frames of the ‘BlowingBubbles’ test sequence
are collected. Then, the correlations of each estimated α and
β parameter with the λ values of all CTUs within a frame
are observed using the Pearson product-moment correlation
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FIGURE 3. Proposed a double-simplified VGG-16 network architecture.

FIGURE 4. Correlation between QP values and: (a) Normalized StD and
(b) VGG feature.

coefficient, and the correlation results are tabulated per frame,
as shown in Table 1. From the table it can be seen that
the αestimated − λ and βestimated − λ in the CTU-level rate

control of HM-16.20 are very weak, which is critical for the
bpp−λ relationship. In particular, when POC = 0, αestimated
and βestimated are set to their default values, which shows no
correlation to the estimated λ in Table 1. Inaccurate αestimated
and βestimated on the first frame lead to the miscalculation
of allocating bits, estimating λ, degrading distortion, and
decreasing visual quality; all the results may also affect the
following frames.

To improve the correlations of αestimated − λ and
βestimated − λ in the CTU-level rate control, the estimation
process of the α and β parameters is analyzed by taking
advantage of the VGG feature and QP value relationship
in Figure 4 before completing the encoding process. The
updating parameter process of α and β for a CTU based on the
existing work in [18], [19] is observed, symbolized as αnew
and βnew and respectively can be computed as per Eq. (2) and
Eq. (3)

αnew = αestimated +
(
δα
(
ln λreal − λcomp

)
×αestimated

)
(2)

βnew = βestimated +
(
δβ
(
ln λreal − λcomp

)
×ln bppreal

)
(3)

According to [18], [19], Eq. (3) can also be formulated as

βnew = βestimated −
(
δβ
(
−2

(
ln λreal − λcomp

)
× ln bppreal

))
(4)

Note that αestimated denotes the estimated α, and βestimated cor-
responds to the estimated β. δα and δβ are constants, bppreal
represents the bits per pixel required during the encoding
process, and λreal and λcomp represent the actual and the
estimated λ, respectively. Inspired by the updating process
of α and β in Eq. (2) and (4), the VGG feature and QP
value of eachCTU are investigated experimentally to improve
αestimated–λ and βestimated–λ. The parameters λreal , bppreal ,
δα , and δβ in Eq. (2) and (4) are disregarded in the experi-
ments to create a new estimation model for α

′

new and β
′

new as
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TABLE 1. Comparisons of αestimated − λ and βestimated − λ and the proposed α
′

new − λ and β
′

new − λ.

in (5) and (6), before the encoding process, expressed as

α′new = αestimated +
(
VGGprevCTU + QPprevCTU

)
(5)

β ′new = βestimated −
(
VGGprevCTU + QPprevCTU

)
(6)

where VGGprevCTU andQPprevCTU represent the VGG feature
and QP value of the previously coded CTU. Note that CTUs
of POC= 0 set the StD value of the original CTU block as the
VGG features, and theQP value is set to the frame-level initial
QP value. As a result, the proposed model of the estimated
α
′

new and β
′

new can demonstrate stronger correlations for the
relationship α

′

new–λ and β
′

new–λ compared with the existing
estimated α and β models in HM-16.20, as shown in Table 1.
Consequently, the bit allocation formula is also proposed for
the CTU-level rate control based on the estimated α

′

new and
β
′

new, which can be defined as
bppCTU =

TCTU
NCTU

+
(
VGGprevCTU + QPprevCTU

)
TCTU = Tpic × ηCTU

/∑
{AllNotCodedCTUs} ηCTU

ηCTU = NCTU ×
(
λpic

α′new

)β ′new (7)

where bppCTU is the bit per pixel allocation of the current
CTU, TCTU stands for the current CTU target bits, and NCTU
denotes the total number of pixels in a CTU. Other parame-
ters, such as Tpic and λpic, are the target bits and the estimated
λ from the frame-level rate control. In (7), ηCTU is calculated
to represent the weight of the current CTU to satisfy the TCTU
constraint.

C. ESTIMATION OF λ AND QP FOR THE PROPOSED
CTU-LEVEL RATE CONTROL
Since Eq. (5) to (7) are intended to improve the estimation
α, β, and bit allocation of each CTU, and the distortion
minimization can also be achieved for the R–D performance.

However, to improve bpp–λ in (1), a new estimated model
λ
′

new is also proposed as

λ′new =
(
α′new ×

(
bppCTU

)β ′new)
+
((
VGGprevCTU × 2.07052

)
+ 16.771

)
(8)

Note that the term
(
VGGprevCTU×2.07052

)
+16.771 is intro-

duced tominimize distortion and bemore visual-friendly over
the rate, and vice versa.

As a result of the above analysis, the correlation coeffi-
cients of bppCTU and λ′new of each CTU block from several
frames of the ‘BlowingBubbles’ sequence are depicted to
observe how well these statistical models fit the experimental
analysis. As shown in Figure 5, the bppCTU–λ

′
new relationship

strongly matches the model in (7) and (8) with the given
adaptive α′new and β ′new parameters. Note that α′new and β ′new,
the parameters in Figure 5, are found in the average values
of all CTUs in a frame. Table 2 shows comparisons between
the proposed bppCTU − λ

′
new relationship and the existing

bpp–λ in HM-16.20 applied to the first 17 frames of the
‘BlowingBubbles’ sequence in percentage. The relationship
models of the proposed and HM-16.20 are compared using
R2, illustrated in Figure 5, as the coefficient of determination,
which has a value in the range [0, 1]. R2 value that is closer
to 1 is the better model. The proposed models tend to have
better correlations of bpp–λ than the existing HM models.

Finally, based on the proposed visual feature, given the
newly estimated λ

′

new, the estimation QP denoted as QP
′

new
can also be further computed as

QP′new = 4.2005× log
(
λ′new

)
+ 13.7122+ VGGprevCTU

(9)

In addition, for every CTU, the boundary settings of λ and QP
respectively should also be adjusted to impose an appropriate
bit allocation on each CTU based on the visual feature charac-
teristic. Specifically, the λ

′

new boundary setting can be defined
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FIGURE 5. The curve fitting of the proposed bppCTU − λ′new relationship from different frames of ‘BlowingBubbles’.

TABLE 2. Comparisons of bpp−λ and the proposed bppCTU − λ.

in Eq. (10), as shown at the bottom of the next page, and
correspondingly, the QP

′

new boundary smoothing is modified
as Eq. (11), as shown at the bottom of the next page. Note
that λ

′

prevCTU and QP
′

prevCTU stand for the newly estimated
λ and QP of the previously coded CTU block. From (10)
and (11), the proposed CTU-level rate control promises more
variations for λ

′

new andQP
′

new to facilitate better visual quality
for the coded CTU based on the proposed visual feature.
Therefore, CTUs that have a higher VGGprevCTU may have
more considerable latitude for visual quality improvements.

IV. EXPERIMENTAL RESULTS
The proposed rate control algorithm was evaluated under
experimental conditions in Table 3. Specifically, the proposed
algorithm was assessed based on objective and subjective
performance evaluations under the common test conditions
of HEVC [46]. For objective performance, several assess-
ments were carried out, such as bitrate accuracy, bitrate
error, coding efficiency, and objective visual quality based
on three different metrics: PSNR, SSIM, and MSSSIM.
The subjective evaluation was performed by conducting
the mean opinion scores (MOS) test and calculating the
difference MOS (DMOS) scores. The assessments were
completed by comparing the proposed algorithm with the
HM-16.20, URQ model [17], OBA model [28], and MPE
model [29].

A. OBJECTIVE PERFORMANCE EVALUATIONS
The same experimental environment was set for both the
anchor CTU-level rate control algorithm in HM-16.20 and
the proposed algorithm to obtain fair comparisons, as listed
in Table 3. All the objective performance measures are listed
in Table 4. A total of 16 test sequences are encoded under the
LDP configuration with the IPPP structure, which is a typical
case in practical applications [19], using all QP parameters:
22, 27, 32, and 37. All experiments of each QP were then
summarized by averaging the results of every test sequence.
The bitrate error 1BE is defined as

1BE = BAproposed − BAHM (12)
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where BAproposed and BAHM denote the bitrate accuracy pro-
duced by the proposed algorithm and the CTU-level rate
control model of the anchor software, respectively. The
smaller the 1BE value, the better the improvements. Note
that BAproposed and BAHM are calculated based on the same
target bitrate expressed as

BA =
TB− AB
TB

(13)

where BA represents the result of the bitrate accuracy, TB
denotes the given target bitrate, and AB stands for the actual
bitrate generated by the tested rate control algorithm. Thus,
ABmay differ according to the rate control model that is being
tested. The main objective of the BA evaluation is to check
how accurately the tested models can meet the given target
bitrate TB. In terms of the objective visual quality, the assess-
ments were applied by observing the difference between the
generated PSNR, SSIM, and MSSSIM metrics of the pro-
posed algorithm (symbolized as PSNRproposed , SSIMproposed ,
and MSSSIMproposed ) compared with the HM-16.20 soft-
ware (symbolized as PSNRHM , SSIMHM , and MSSSIMHM ),
defined as

1YPSNR = PSNRproposed − PSNRHM (14)

1YSSIM = SSIMproposed − SSIMHM (15)

1YMSSSIM = MSSSIMproposed −MSSSIMHM (16)

1YPSNR,1YSSIM , and1YMSSSIM denote the difference values
of the objective visual quality under the PSNR, SSIM, and
MSSSIM metrics, respectively. A positive value for (14) to
(16) indicates that the objective visual quality of the proposed
algorithm is better than that of HM-16.20. Finally, the coding
efficiency performance (BD-BR) of the proposed algorithm
was also measured against the anchor algorithm with the
PSNR, SSIM, and MSSSIM metrics, denoted as BD-BR-
PSNR, BD-BR-SSIM, and BD-BR-MSSSIM, respectively.
A negative value of BD-BR indicates gains over the anchor
CTU-level rate control algorithm.

From Table 4, the proposed algorithm can surpass the
objective performance evaluations of the existing HM-16.20
algorithm. Primarily, test sequences that have larger back-
ground areas, many homogeneous regions, and slowmotions,
such as ‘BQTerrace,’ ‘BQSquare,’ ‘FourPeople,’ ‘Johnny,’
‘KristenAndSara,’ etc., the proposed algorithm can facili-
tate significant coding gains in all objective quality aspects.
For instance, in terms of the BD-BR PSNR, BD-BR-SSIM,
and BD-BR-MSSSIM, the proposed CTU-level rate control
algorithm distributes gains up to −57.08%, −76.29%, and

TABLE 3. Experimental environment.

−75.57%, respectively. Conversely, the proposed algorithm
can yield moderate coding improvements for ‘PartyScene,’
‘Kimono,’ and ‘RaceHorses’ that have more moving textures
and more motions.

Comparisons of the objective performances of the
proposed and other algorithms in the HM-16.20, URQ,
OBA, and MPE models are presented in Tables 5–8. The
BD-BR performances of the proposed algorithm and other
algorithms applying the PSNR, SSIM, and MSSSIM met-
rics are compared in Table 5. From the table, the pro-
posed algorithm outperforms the coding efficiency in all
measured metrics against all other CTU-level rate control
algorithms. Specifically, in terms of BD-BR-PSNR, the pro-
posed algorithm provides compelling coding improvements,
on average, by approximately −25.34% compared with
the R–λ model in HM-16.20, −35.72% coding gain over
the URQ model, −19.71%, and −21.87% gain against the
OBA and MPE models, respectively. For BD-BR-SSIM and
BD-BR-MSSSIM performances in ascending order, the pro-
posed algorithm achieves an average gain of approximately
{−29%,−35%,−43%,−49%} and {−27%,−35%,−42%,
−49%} over the OBA, MPE, HM-16.20, and URQ, respec-
tively. From Table 5, Class E contributes the highest BD-BR
gain in all metrics that significantly influences the averaged
BD-BR results of the proposed algorithm. The visual char-
acteristics of sequences classified to Class E, i.e., ‘FourPeo-
ple,’ ‘Johnny,’ and ‘KristenAndSara,’ play a prominent role
in obtaining higher objective measures for the proposed
algorithm.

For the PSNR, SSIM, and MSSSIM quality comparisons
in Table 6, the proposed algorithm can produce substan-
tially more quality over the other algorithms, mainly against
HM-16.20, OBA, and MPE. In other words, the proposed
algorithm cannot attain the PSNR difference from the URQ
model because URQ tends to require more bitrates than the
given target bits abnormally during the encoding process.

λ′new = max
{
max

(
λ′prevCTU ×

2
−1.0
3.0
/(

2× VGGprevCTU
)
, λpic ×

2
−2.0
3.0
/
2× VGGprevCTU

)
,

min
{
λ′new,min

(
λ′prevCTU ×

2
1.0
3.0
/(

2× VGGprevCTU
)
, λpic ×

2
2.0
3.0
/(

2× VGGprevCTU
))}} (10)

QP′new = max
{
max

(
QP′prevCTU − 11,QPpic − 12

)
, min

{
QP′new,min

(
QP′prevCTU + 11,QPpic + 12

)}}
(11)
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TABLE 4. Objective comparisons between rate control of HM-16.20 and the proposed algorithm.

TABLE 5. BD-BR comparisons under the PSNR, SSIM, and MSSSIM metrics of the proposed algorithm and other existing rate control algorithms.

TABLE 6. Y-PSNR, Y-SSIM, and Y-MSSSIM comparisons of the proposed algorithm and other existing rate control algorithms.

Therefore, the giher PSNR scores can be obtained. Con-
sequently, the URQ model bit rate accuracy and bitrate error
are also less precise than the other algorithms, as shown in
Table 7 and Table 8, respectively. Fortunately, among all
existing models for the SSIM and MSSSIM comparisons,

the proposed algorithm is the most effective. However, a rel-
atively small SSIM and MSSSIM rate is achieved when
compared with the URQ model, on average, at 0.00342 and
0.00197, respectively. These effects are mainly caused by the
above issues of the URQ model. Accordingly, the proposed
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TABLE 7. Bitrate accuracy comparisons between the proposed and other algorithms.

TABLE 8. Bitrate error comparisons of the proposed algorithm and other existing algorithms.

FIGURE 6. MOS comparisons of HM-16.20, OBA, URQ, and the proposed algorithms.

algorithm exhibits the highest performance for bitrate error
comparisons of approximately −1.12042 against the URQ
model, as shown in Table 8.

B. SUBJECTIVE PERFORMANCE EVALUATIONS
The main goal of the subjective quality evaluation is to
compare the proposed CTU-level rate control algorithm
with other algorithms, including HM-16.20, URQ [17], and
OBA [28]. For all the test sequences, the double stimulus con-
tinuous quality scale (DSCQS) method [47] was performed.
Sixteen reviewers participated in the test, of which 11 were
in the relative field, and the rest were naïve in image pro-
cessing. Simple demonstrations were conducted to introduce
the evaluation process to the reviewers. The reconstructed

frames from the proposed algorithm, HM-16.20, URQ, and
OBA, were randomly displayed twice with all the QP values
for each participant. Then, the observers were instructed to
give MOS values on a continuous scale ranging from 1 to 5.
Finally, the MOS values were processed and depicted in the
results, as shown in Figure 6. As shown in Figure 6, the
proposed algorithm produces higher visual quality at all QP
settings compared to conventional algorithms. Moreover, the
proposed algorithm controls a better tradeoff between the rate
and distortion with QP = 37 than the competing models and
still maintains visual quality. In figure 6, the URQ model
is the competing algorithm with the smallest MOS against
the proposed algorithm. This is mainly due to the inability
of the URQ to control the overflow bitrates. In our analy-
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FIGURE 7. Visual quality comparisons of the proposed and other existing algorithms on P-frame #77 of ‘BQTerrace’ sequence coded at 2,352 Kbps (left)
and P-frame #89 of ‘PartyScene’ sequence coded at 1,559 Kbps (right).

sis, the URQ model tends to require more bits and abnor-
mally exceeds the given target bitrate. In the reconstruction
frames, the model ensures better visual quality than the other
algorithms. In Figure 7, two example frames from POC =
77 of ‘BQTerrace’ coded at 2,352 Kbps and POC = 89 of
‘PartyScene’ coded at 1,559 Kbps are presented to show the

visual quality comparisons of the proposed and the other
existing algorithms. From the visual quality comparisons
depicted in Figure 7, the proposed algorithm achieves bet-
ter visual quality in the two frame examples than in those
produced by the HM-16.20, URQ, and OBA rate control
models.
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TABLE 9. DMOS comparisons of the proposed and other existing
algorithms.

To verify the visual quality comparisons from the exist-
ing algorithms and the proposed algorithms, the DMOS
scores were then calculated, respectively symbolized as
MOSotherModels and MOSproposed , which can be defined by

DMOS = MOSproposed −MOSotherModels (17)

Table 9 shows all the DMOS test sequences. The average
DMOS per sequence for all the QP values is listed to quickly
find the visual quality comparisons of the generated recon-
struction frames. Positive values indicate that the video qual-
ity of the proposed algorithm is subjectively better than that of
existing algorithms. As tabulated in Table 9, theDMOS scales
for the entire test sequences are moderately outperformed
over the HM-16.20, URQ, and OBA models.

C. COMPLEXITY PERFORMANCE EVALUATIONS
The proposed algorithm requires a tradeoff between a sig-
nificant performance and running time in comparison with
the existing rate control algorithm in HM-16.20. The addi-
tional complexity originates from constructing the high-level
features from the original and reconstructed CTUs using the
VGG-16 network. However, the proposed algorithm can be
fully-optimized in parallel to speed up CTU-by-CTU feature
extractions. Hence, throughput can be enhanced with a paral-
lel machine such as GPU that suppresses more encoding time.
In addition, the proposed CTU-level rate control with the
predefined VGG-16 employment requires about 24× more
encoding time over the HM-16.20 reference software with
rate control enabled. The proposed algorithm also takes a
higher running time of about 18× than the MPE rate control
model.

V. CONCLUSIONS
In this paper, a deep-learning feature-based CTU-level rate
control is proposed to obtain better objective and subjective
coding performance for HEVC under the low-delay-P config-
uration. The proposed algorithm utilizes a predefined model
of the VGG-16 network to extract features from both the orig-
inal and reconstructed CTU blocks. The proposed algorithm

was designed by exploring a perceptual loss function based
on the extracted features combined with the QP value of
each CTU to remodel the estimation functions of the exist-
ing CTU-level rate control of HM-16.20. Compared to the
anchor, the proposed algorithm conludes better rate control
performances by enhancing the visual quality through sig-
nificant coding improvements. For future work, the proposed
algorithm in [23] will be advanced with several more adjust-
ments that benefit the rate control model for the random-
access configuration of HEVC.
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