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ABSTRACT In this paper, considering the difference in social distancing among individuals, according to the
extent of social distancing, a group composed ofN mobile agents is divided intomultiple different subgroups.
Especially, from the perspective of differential game theory, the flocking problem of different subgroups
can be regarded as collision avoidance between neighboring agents, or obstacle avoidance between agents
and virtual static/dynamic obstacles. To explore the internal mechanism of this interesting problem, a novel
flocking algorithm with multiple virtual leaders is designed. The proposed algorithm is a modified version of
the traditional flocking and semi-flocking algorithms. Based on the Lyapunov stability theorem and LaSalle’s
invariance principle, the stability analysis of the proposed algorithm is then proven. Furthermore, considering
the complex environment that swarm robots or unmanned aerial vehicles (UAVs) may face when performing
military missions such as surveillance, reconnaissance, and rescue, etc., we also investigate the flocking
problem of multi-agents in both virtual static and dynamic obstacles environment. Finally, three kinds of
simulation results are provided to demonstrate the effectiveness of the proposed results.

INDEX TERMS Flocking, multi-agent systems, collision avoidance, obstacle avoidance, social distancing.

I. INTRODUCTION
Flocking (or collective behavior), a common phenomenon
in nature, is characterized by self-organization, local inter-
action, and decentralization [1]–[3]. Examples of this phe-
nom include such as fish schools, bird flocks, ant colonies,
and bacteria swarms, etc. Due to its broad applications
in fields such as multi-target tracking of mobile sen-
sor networks [4]–[6], cooperative control of swarm robots
[7]–[9], and coordinated motion of unmanned aerial vehi-
cles [10]–[12], etc., the flocking of multi-agents has attracted
a great deal of attention among researchers from different
disciplines [13]–[24].

In 1986, Reynolds proposed three heuristic rules of the
flocking: flock centering, collision avoidance, and velocity
matching, and especially, he pioneered a computer model
for simulating flocks of birds [13]. Since then, inspired by
Reynolds’ rules, theoretical investigations on the flocking of
multi-agents have achieved fruitful outcomes. For example,
in 1995, Vicsek et al. [14] provided a self-driven particle

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianxiang Xi .

model, also known as the Vicsek model, to investigate the
flocking, transfer, and phase change of non-equilibrium sys-
tems. From the matrix theory (especially, the non-negative
matrix theory), in 2003, Jadbabaie et al. [15] first proposed
the mathematical proof of the Vicsek model, which greatly
promoted the research on consistency and coordinated control
for multi-agent systems. Soon after, Tanner [16] designed a
decentralized control protocol to enable a group of vehicles
to move as a flock, this protocol consists of a gradient-based
term and velocity consensus term. Whereas Olfati-Saber
suggested that navigational feedback should be added to
determine the fragmentation of the initial states, thereby,
Olfati-Saber provided a theoretical framework for the design
and analysis of flocking for multi-agent systems [17]. How-
ever, since the flocking algorithm proposed in [17] requires
substantial communication energy consumptions during the
flocking process, it is impossible to apply this algorithm to
engineering applications such as distributed sensing inmobile
sensor networks. Considering that only partial agents can be
informed of the virtual leader, Su et al. [18] reduced the com-
munication energy consumption in Olfati-Saber’s algorithm
by adding a control indicator hi.
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Recently, the following studies closely related to this paper
have been published. Zhan and Li [19] presented a cen-
tralized flocking algorithm via the model predictive control
based on global position-onlymeasurements for the first time,
and further developed this algorithm to a distributed mecha-
nism. Since the laser range finder cannot identify obstacles
and robots, Sakai et al. [20] designed a flocking algorithm
in which all the detected targets are viewed as obstacles.
Although numerical simulations and experimental results
were provided to verify the effectiveness of this algorithm,
some limitations remain. For instance, the calculation diffi-
culties for a single robot greatly increases during the flocking
process. This work will get over the limitation later. In 2015,
Semnani and Basir [21], benefiting from the advantages of
both the flocking [17] and anti-flocking algorithms [22],
proposed a semi-flocking algorithm to achieve multi-target
tracking in large-scale surveillance systems. After that,
Yuan et al. [23] developed a fully distributed semi-flocking
algorithm that only requires local information on states of the
agents (or sensors). To promote sustainable prosumer man-
agement in smart grids, from the perspective of complex net-
work, Cao et al. [24] proposed a partially visible multi-agent
system to achieve collective behavior of the prosumers. Obvi-
ously, the prosumers also follow Reynolds’ rules during the
flocking process. However, most of the above researches
assume that the agents have the same social distancing (or
equilibrium distance) and sensing radius. In fact, as a society,
social distancing will vary depending on different cultural
backgrounds, environments, industries, and personalities, etc.
From the perspective of psychology, social distancing can be
divided into the following three categories: public distancing,
personal distancing, and intimate distancing [25]. Indeed,
the social distancing of any particular person will vary in spe-
cial cases. For example, during the fight against COVID-19,
social distancing for everyone has increased by more than
2-fold compared with that observed during the normal peri-
ods [26]. Therefore, it is of great theoretical and practical
significance for the research on the flocking of multi-agents
with different social distancing and sensing radii. Note that
the social distancing is proportional to the sensing radius
(refer to [17]). For brevity, we will mention only the different
social distancing later.

In this paper, considering the difference in social dis-
tancing among individuals, based on the extent of social
distancing, a group composed of N mobile agents can be
divided into multiple different subgroups. Especially, one of
things we are very interested in is the collision avoidance
between different subgroups during the flocking process.
To explore the internal mechanism of this interesting prob-
lem, a novel flocking algorithm with multiple virtual leaders
is proposed. The proposed algorithm is a modified version
of the flocking algorithm provided by Olfaiti-Saber [17] and
the semi-flocking algorithm proposed in [21]. Similarly, this
algorithm does not explicitly distinguish between neighbor-
ing agents and obstacles. However, different from the work of
Sakai et al. [20], from the perspective of differential

game theory, the agents can either be cooperative or
non-cooperative in our algorithm [27]–[29]. Thus, the flock-
ing problem of different subgroups can be regarded as
collision avoidance between neighboring agents, or obsta-
cle avoidance between agents and virtual static/dynamic
obstacles (the virtual obstacles will be illustrated in
Sections II and V). In this way, to some extent, the calculation
difficulties for a single agent (or robot) can be reduced. Fur-
thermore, considering the complex environment that swarm
robots or unmanned aerial vehicles (UAVs) may face when
performing military missions such as surveillance, recon-
naissance, and rescue, etc., we also investigate the flocking
problem of multi-agents in both virtual static and dynamic
obstacles environment.

The outline of this paper is organized as follows. Section II
introduces some preliminary knowledge about graph theory.
A novel flocking algorithm with multiple virtual leaders is
designed in Section III. In Section IV, based on the Lya-
punov stability theorem and LaSalle’s invariance principle,
the stability analysis of the proposed algorithm is proven.
Numerical simulations are presented in Section V to illustrate
the effectiveness of the proposed algorithm and the theoretical
results. Finally, the conclusion is described in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES OF GRAPH THEORY
Suppose that a group consists of N mobile agents. The inter-
action among these agents can be represented by a weighted
undirected graph G = (V ,E,A), where V = {1, 2, . . . ,N }
is a vertex set, E ⊆ {(i, j) : i, j ∈ V , j 6= i} is the edge
set with vertexes of a junction, and the adjacency matrix
A = [aij] of the undirected graph G is defined as aij = 1,
if (i, j) ∈ E , aij = 0 otherwise. Note that the adjacency matrix
A is symmetric (i.e., AT = A). The Laplacian matrix L = [lij]
is aN×N matrix, which is described by L = D−A, where the
degree matrix D ∈ RN×N is a diagonal matrix with diagonal

elements dii =
N∑
j=1

aij.

B. PROBLEM FORMULATION
Consider a group of N mobile agents moving in a two-
dimensional Euclidean space with double-integrator dynam-
ics, which is defined as follows:{

ṗi = vi
v̇i = ui

, i = 1, 2, . . . ,N , (1)

where pi, vi ∈ R2 are the position and velocity vector,
respectively, of agent i, and ui ∈ R2 is the control input (or
control protocol). In this paper, we suppose that each agent
is equal in size and mass, and has a limited sensing radius
r (usually r > 0). Then, the neighboring set of agent i is
described by

Ni = {j ∈ V :
∥∥pj − pi∥∥ < r}, (2)

where || · || is the Euclidean norm in R2, and each agent can
acquire the information of its neighboring agents, as shown
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FIGURE 1. The schematic diagram of the neighboring set of agent i .

FIGURE 2. The illustration of an α-lattice flocking structure [17].

in Figure 1. According to the α-lattice flocking (see Figure 2)
proposed in [17], the desired geometry of flocking requests
that the distances between neighboring agents are equal.
In other words, the distances should satisfy the following
constraints: ∥∥pj − pi∥∥ = de, (3)

where i = 1, 2, . . . ,N ,∀j ∈ Ni. de > 0 represents the social
distancing, and usually de < r .
Moreover, one γ−agent can be viewed as the virtual leader

(or group objective) of the multi-agent system, which drives
all agents to move towards the same target and asymptotically
match the same velocity. We assume that there are K (1 ≤
K ≤ N ) virtual leaders, and each virtual leader abides by the
following dynamics:{

ṗγ k = vγ k
v̇γ k = fγ k (pγ k , vγ k ),

γk ∈ {1, 2, . . . ,K }, (4)

where pγ k , vγ k , fγ k ∈ R2 are the position, velocity,
and control input, respectively, of the virtual leader γk .
(pγ k (0), vγ k (0)) = (pd , vd ) denotes the initial state vector
pairs. In Section V, we suppose that the virtual leader always
moves at a constant velocity pd along a fixed direction. Thus,
the dynamic equation (4) is simplified as pγ k (0) = pd ,
ṗγ k = vd . Besides, the main symbols of this paper are listed
in Table 1.

TABLE 1. The main symbols of this paper.

It is worth noting that this section does not explicitly dis-
tinguish between neighboring agents and obstacles. In [20],
it was assumed that, for a robot, all the detected targets
(including other robots) are viewed as obstacles. However,
as a society, the interconnections between individuals are
very complex, and impermanent. To obtain the maximum
benefit, people may choose to cooperate or confront. With
this in mind, in this paper, the agents can either be coopera-
tive or non-cooperative. For example, from the perspective
of differential game theory, when the agents i and j (i.e.,
j = 1, . . . ,N , j 6= i) have the same target, they choose to
cooperate, and then, the agent j is viewed as the neighbors of
agent i. But when the targets of the agents i and j are different,
they are non-cooperative. At the moment, for the agent i,
the agent j is viewed as a virtual dynamic/static obstacle.
Therefore, the flocking problem of different subgroups can be
regarded as collision avoidance between neighboring agents,
or obstacle avoidance between the agents and the virtual
static/dynamic obstacles. This complex phenomenon is the
main research interest in this work. Accordingly, in the next
section, a novel flocking algorithmwith multiple virtual lead-
ers is proposed to explore the internal mechanism of collision
avoidance between different subgroups of multi-agents.

III. FLOCKING CONTROL ALGORITHM WITH
MULTIPLE VIRTUAL LEADERS
As mentioned above, a novel flocking algorithm with mul-
tiple virtual leaders is considered in this section. The pro-
posed algorithm is a modified version of the typical flocking
algorithm [17] and the semi-flocking algorithm [21]. In 2006,
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Olfati-Saber, inspired by Reynolds’ rules, designed a typical
flocking algorithm that has been extensively applied in fields
such as mobile sensor networks and unmanned aircraft sys-
tems (UAS), etc. In [17], the control input ui for agent i is
made up of three components

ui = ugi + u
d
i + u

γ
i , (5)

where ugi , u
d
i are the gradient-based term and velocity con-

sensus term, respectively, of the control input ui. u
γ
i is navi-

gational feedback to enable each agent to successfully track
its virtual leader, which is defined as.

uγi =
K∑
k=1

c1(pγ k − pi)+ c2(vγ k − vi)
Nγ k

(6)

where Nγ k represents the number of the agents tracking the
virtual leader γk , and c1, c2 > 0.
Note that we are more focused on collision avoidance

between different subgroups of multi-agents, rather than
multi-target tracking of multi-agent systems. The semi-
flocking algorithm proposed in [21] is mainly divided into
the following two parts: the target searching mode and the
target tracking mode. Whereas, for convenience, we neglect
the target searching mode in this paper. In other words,
we assume that different groups can be informed of their
own virtual leaders. For example, in Section V, based on
the extent of social distancing, a group S, composed of N
mobile agents, can be divided into the subgroups S1 and
S2. We assume that the number of the subgroup S1 are M
(1 < M < N ), but the agents i = M + 1, . . . ,N for the
subgroup S2. γ1 and γ2 are the virtual leaders of the subgroups
S1 and S2, respectively. Therefore, the navigational feedback
uγi is simplified as uγi = c1(pγ 1 − pi) + c2(vγ 1 − vi) for
i = 1, 2, . . . ,M , but uγi = c1(pγ 2 − pi) + c2(vγ 2 − vi) for
i = M + 1,M + 2, . . . ,N .
Moreover, to the best of our knowledge, a major limitation

of the artificial potential function proposed in [16]-[18] is
the local minima that deviate from the globally optimal goal,
whichmay lead to unexpected failure during the flocking pro-
cess. To overcome this limitation, based on the Lennard-Jones
potential function [30] and the self-organization process [31],
a simpler pair-wise action function is designed to simplify
the interaction protocols between neighboring agents. More
specifically, the control input (5) is modified as

ui =
∑
j∈Ni

fα(||pj − pi||)eij +
∑
j∈Ni

aij(vj − vi)

+

K∑
k=1

c1(pγ k − pi)+ c2(vγ k − vi)
Nγ k

, i ∈ V , (7)

where eij =
pj−pi√

1+ε||pj−pi||2
, ε ∈ (0, 1) is a value along the line

connecting pi to pj, and aij is the element of the adjacency
matrix A in Section II. The pair-wise action function fα(x) is

described by

fα(x) =


k1

(
1
x
−

1
de

)
, x ≤ de

0, x > r

k2(de − x)e
(x−de)2

r , de < x ≤ r,

(8)

where k1 is the coefficient of repulsion and k2 is the coeffi-
cient of attraction. The pair-wise action function fα(x) can be
shown in Figure 3 when the social distancing de is 5. The plot
shows that the action force between neighboring agents is a
repulsion for a short range, but an attraction for a long range.
In particular, the pair-wise potential function Fα(x) is defined
as Fα(x) =

∫ x
de
fα(s)ds.

FIGURE 3. The pair-wise action function with a finite cut-off.

IV. STABILITY ANALYSIS
To analyze the collision avoidance capability and stability of
the novel flocking algorithm with multiple virtual leaders,
in this section, we first introduce a theorem related to the
proposed algorithm. And then, prove this theorem by the Lya-
punov stability theorem and LaSalle’s invariance principle.
Theorem 1: Consider a group of N mobile agents with

double-integrator dynamics (1), and each agent is affected
by the control input (7). Suppose that the initial positions
and velocities of all agents are chosen at random with the
Gaussian distribution. Then, the following statement holds:

1) Flocking of the agents with the same virtual leader is
formed asymptotically.

2) The velocity of the agents with the same virtual leader
asymptotically become consistent.

3) No collisions occur between any neighboring agents.

Proof:We first define p̃i = pi−pγ k , ṽi = vi−vγ k as the
position error vector and velocity error vector, respectively.
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FIGURE 4. Flocking for two subgroups of multi-agents with different social distancing applying the control input (7) in 2-D. The
red triangles belong to the subgroup S1, whose social distancing is 5, whereas the green triangles represent the subgroup S2, and
its social distancing is 10. The number of subgroups S1 and S2 are 20 and 40, respectively. The red ‘‘ĺw’’ and green ‘‘O’’ denote the
virtual leader, respectively, of the subgroup S1 and S2. An undirected edge connecting two agents means that they are neighbors
of each other. (a) t = 0 step. (b) t = 400 step. (c) t = 800 sec. (d) t = 1800 step. (e) t = 2500 step. (f) t = 3000 step.
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Accordingly, the error dynamics of agent i is given by{
˙̃pi = ṽi
˙̃vi = ui − uγ k ,

i = 1, 2, . . . ,Nγ k . (9)

And then, let pij = pi − pj and p̃ij = p̃i − p̃j, clearly, p̃ij =
pij. Thus, the collective potential function Vi in [17] can be
rewritten as

Ṽi(p̃ij) =
∑

j∈V\{i}

Fα(||p̃ij||)

=

∑
j/∈Ni,j6=i

Fα(r)+
∑
j∈Ni

Fα(||p̃ij||). (10)

In the same way, the control input (7) of agent i is modified
as

ui =
∑
j∈Ni

fα(||p̃ij||)eij +
∑
j∈Ni

aij(ṽj − ṽi)

−
1
Nγ k

(c1p̃i + c2ṽi), c1, c2 > 0. (11)

We choose an energy-like Lyapunov function as follows:

Qk (p̃, ṽ) =
1
2

Nγ k∑
i=1

(Ui(p̃)+ ṽTi ṽi), (12)

where

Ui(p̃) =
Nγ k∑

j=1,j6=i

Fα(||p̃ij||)+
c1
Nγ k

ṽTi ṽi

= Ṽi(p̃ij)+
c1
Nγ k

ṽTi ṽi, (13)

and p̃ = [p̃1, p̃2, . . . , p̃Nγ k ]
T , ṽ = [ṽ1, ṽ2, . . . , ṽNγ k ]

T .
Thanks to the symmetry of the pair-wise potential function

Fα(x) and the adjacency matrix A, it follows that

∂Fα
∂ p̃ij
=
∂Fα
∂ p̃i
= −

∂Fα
∂ p̃j

, (14)

then

1
2

Nγ k∑
i=1

U̇i(p̃) =
Nγ k∑
i=1

(ṽTi ∇ṽi Ṽi(p̃ij)+
c1
Nγ k

ṽTi p̃i). (15)

Consequently,

Q̇k (p̃, ṽ) =
1
2

Nγ k∑
i=1

U̇i(p̃)+
Nγ k∑
i=1

ṽTi ˙̃vi

= −ṽT [(L +
c2
Nγ k

INγ k )⊗ I2]ṽ ≤ 0, (16)

where ⊗ is the Kronecker product notation, L denotes the
Laplacian matrix in Section II, and INγ k , I2 are the identity
matrices with corresponding dimensions.

Because L and INγ k are both positive semi-definite matri-
ces, L + c2

Nγ k
INγ k is a positive semi-definite matrix as well.

Hence, Q̇k (p̃, ṽ) ≤ 0, which means that Qk (p̃, ṽ) = Qk (t) is
a non-increasing function over time t , and then Qk (t) ≤ Qk0

TABLE 2. Parameters of the proposed algorithm.

FIGURE 5. The velocities of all agents during the flocking process.
(a) x-axis direction. (b) y-axis direction.

for all t ≥ 0. Note that Qk0 is the initial value of Qk (t). From
Equations (12) and (13), we conclude that c1p̃Ti p̃i ≤ 2Qk0
for any agent i, which guarantees different α-lattice flocking
of multiple subgroups with corresponding virtual leaders.
Therefore, the part (i) is proven.
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FIGURE 6. Flocking for two subgroups of multi-agents with different social distancing applying the control input (7) in 2-D.
Compared with the simulation shown in Figure 4, this simulation exchanges the initial positions and dynamic equations of the
virtual leader γ1 and γ2. Other parameters remain unchanged. (a) t = 0 step. (b) t = 500 step. (c) t = 1000 sec. (d) t = 2000 step.
(e) t = 2500 step. (f) t = 3000 step.
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Since Qk (t) > 0 and Q̇k (t) ≤ 0, we suppose that
� = {(p̃T , ṽT )T |Qk (t) ≤ Q0} is an invariant set. Accord-
ing to LaSalle’s invariance principle, the trajectories of all
agents starting from � will converge to the largest set
9 = {(p̃T , ṽT )T |Q̇k (t) = 0}. From Equation (16), we have
Q̇k (p̃, ṽ) = −ṽT (L ⊗ I2)ṽ −

c2
Nγ k

ṽT ṽ. As mentioned above,
it is clear that L⊗ I2 is also positive semi-definite. Therefore,
we conclude that Q̇k (p̃, ṽ) = 0 if and only if ṽT (L ⊗ I2)ṽ = 0
and ṽT ṽ = 0, which is equivalent to v1 ≡ · · · ≡ vNγ k ≡ vγ k .
Thus, the part (ii) is proven.

At last, we prove the part (iii) by contradiction. Assume
that there are at least two agents colliding during the flocking
process, we then acquire

Q(p̃, ṽ) =
K∑
k=1

Qk (p̃, ṽ)

=
1
2

K∑
k=1

Nγ k∑
i=1

(
Ṽi(p̃ij)+

c1
Nγ k

ṽTi ṽi

)
+

1
2

N∑
i=1

ṽTi ṽi

≥
1
2

K∑
k=1

Nγ k∑
i=1

Ṽi(p̃ij) ≥ Q0, (17)

which contradicts the condition Q(t) ≤ Q0 =
K∑
k=1

Qk0.

Hence, this hypothesis is not valid, and then, the part (iii) is
proven.

V. SIMULATION RESULTS
In this section, numerical simulations are presented to val-
idate the effectiveness of the proposed algorithm. All sim-
ulations are performed on a platform with the following
configurations: 2.20 GHz CPU, 8.00 GB RAM,Windows 10,
and MATLAB R2016b.

As mentioned in Section I, in real society, social distanc-
ing will vary depending on different cultural backgrounds,
environments, industries, and personalities, etc. Considering
the difference in social distancing among individuals, in this
section, based on the extent of social distancing, a group S,
composed of N = 60 mobile agents, can be divided into the
subgroups S1 and S2. The initial positions of all the agents
are chosen at random with the Gaussian distribution, whereas
the initial velocities are zero. The number of the subgroup S1
is 20, whose social distancing is 5, whereas the number of
the subgroup S2 is 40, and its social distancing is 10. The
initial position and initial velocity of the virtual leader γ1 are
set as pγ1 (0) = [70, 0]T , and vγ1 (0) = [0, 0]T , respectively,
and marked with a red ‘‘×’’. The initial position and initial
velocity of the virtual leader γ2 are set as pγ2 (0) = [0, 0]T ,
and vγ2 (0) = [0.5, 0]T , respectively, and marked with a green
‘‘O’’. Other parameters of the proposed algorithm are given
in Table 2, which remain unchanged throughout this paper.

Figure 4 displays consecutive snapshots of the flocking
for two subgroups of multi-agents with different social dis-
tancing applying the control input (7). From the perspec-
tive of differential game theory, when the virtual leader γ2

FIGURE 7. The velocities of all agents during the flocking process
(simulation in Figure 6). (a) x-axis direction. (b) y-axis direction.

asymptotically moves towards the virtual leader γ1, the sub-
groups S1 and S2 have the same target. Each agent only needs
to consider the social distancing with its neighboring agents
during the flocking process. From Figure 4(a) to Figure 4(c),
there are increasing numbers of agents connected together,
but at a certain distance (i.e., the social distancing). Then,
the subgroups S1 and S2 form an irregular flocking (note that
this is different from the traditional α-lattice flocking, in the
next, we will explain the reason), as shown in Figure 4(c).
Obviously, no collisions occurred. However, when the virtual
leader γ2 overtakes the virtual leader γ1, since the subgroup
S1 successfully tracks the virtual leader γ1, it no longer
moves. At this time, for the subgroup S2, the subgroup S1 is
viewed as a virtual static obstacle represented by a translucent
red ellipse (includes the following translucent green ellipse).
From Figure 4(d) to Figure 4(f), it is shown that there are no
collisions with the virtual static obstacle or other neighboring
agents, and finally, forms two different α-lattice flocking.
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FIGURE 8. Flocking for three subgroups of multi-agents with different social distancing applying the control input (7) in 2-D. The red triangles
belong to the subgroup S1, whose social distancing is 5. The green triangles represent the subgroup S2, whose social distancing is 10. Whereas the
blue triangles denote the subgroup S3, and its social distancing is 15. The number of three subgroups is equal to 20, respectively. The red ‘‘ĺw’’ and
green ‘‘o’’ denote the virtual leader, respectively, of the subgroup S1 and S2, whereas the blue star represents the virtual leader of the subgroup S3.
An undirected edge connecting two agents means that they are neighbors of each other. (a) t = 0 step. (b) t = 1000 step. (c) t = 2000 sec.
(d) t = 3000 step. (e) t = 3500 step. (f) t = 4500 step.

The velocities ofmulti-agents during the above simulation are
further shown in Figure 5. The graph shows that the velocities
in the x-axis direction and y-axis direction gradually converge

to a constant set, respectively, when the subgroups S1 and S2
have the same target. Then, after the subgroup S2 is regarded
as a virtual static obstacle, the velocities begin to oscillate
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during the obstacle avoidance process, and finally, converge
back to a constant set. Accordingly, the above phenomena are
completely consistent with our predictions of Theorem 1 in
Section IV.

From another perspective, Figure 4 can be regarded as a
flocking problem of multi-agents in a virtual static obstacle
environment. However, in practice, the obstacles are not only
static, but also may be dynamic. Therefore, we next exchange
the initial positions and dynamic equations of the subgroups
S1 and S2. In other words, the initial position and velocity
of the virtual leader γ1 are set as pγ1 (0) = [0, 0]T , and
vγ1 (0) = [0.5, 0]T , respectively. The initial position and
velocity of the virtual leader γ2 are set as pγ2 (0) = [70, 0]T ,
and vγ2 (0) = [0, 0]T , respectively. The remaining parameters
remain fixed. Figure 6 displays consecutive snapshots of
the flocking of multi-agents in a virtual dynamic obstacle
environment. From Figure 6(a) to Figure 6(c), we can find
that its trajectory is similar to Figure 4, when the subgroups
S1 and S2 have the same target. However, when the virtual
leader γ1 overtakes the virtual leader γ2, for the subgroup S2,
the subgroup S1 can be viewed as a virtual dynamic obstacle
at the moment. From Figure 6(d) to Figure 6(f), it is clear that
there are no collisions with the virtual dynamic obstacle or
other neighboring agents. Similarly, Figure 7 reveals that the
velocity consensus is achieved during the flocking process.

The above simulations demonstrate the effectiveness of
the proposed algorithm in the flocking for two subgroups of
multi-agents with collision avoidance capability. Note that
the above simulations only apply to the case where the obsta-
cle is dynamic or static, respectively. However, when swarm
robots or unmanned aerial vehicles (UAVs) perform military
missions such as surveillance, reconnaissance or rescue, and
so on, the environment they face may be more complex.
In other words, there are both static and dynamic obstacles.
Therefore, we then divide the group S into the following
three subgroups S1, S2 and S3 to help simulate the flocking
of multi-agents in this complex environment.

Figure 8 displays consecutive snapshots of the flocking
of multi-agents in both virtual static and dynamic obstacles
environment. The number of each subgroup is equal to 20.
The social distancing of the subgroup S3 is 15. The ini-
tial position and velocity of the virtual leader γ3 are set as
pγ3 (0) = [140, 0]T , and vγ3 (0) = [0, 0]T , respectively, and
marked with a blue star. The initial position and velocity
of the virtual leader γ1 are set as pγ1 (0) = [70, 0]T , and
vγ1 (0) = [0, 0]T , respectively. The initial position and veloc-
ity of the virtual leader γ2 are set as pγ2 (0) = [0, 0]T , and
vγ2 (0) = [0.5, 0]T , respectively. Other parameters remain
unchanged (include the social distancing of the subgroups S1
and S2). From Figure 8(a) to Figure 8(c), for the subgroups
S2 and S3, the subgroup S1 can be regarded as a virtual
static obstacle when the virtual leader γ2 overtakes the virtual
leader γ1. Whereas from Figure 8(d) and Figure 8(e), for the
subgroup S3, the subgroup S2 is viewed as a virtual dynamic
obstacle when the virtual leader γ2 overtakes the virtual
leader γ3, and finally, forms three different α-lattice flocking,

FIGURE 9. The velocities of all agents during the flocking process
(simulation in Figure 8). (a) x-axis direction. (b) y-axis direction.

as shown in Figure 8(f). Apparently, the graph shows that
no collisions occurred during the whole flocking process.
Moreover, Figure 9 indicates that the velocity consensus is
also achieved, where the oscillation curves correspond to the
collision avoidance process between different subgroups.

From the above simulations, we can find that the subgroup
with large social distancing (e.g., the subgroup S3) always
actively avoids the subgroup with small social distancing
(e.g., the subgroup S1 or S2), and especially, this is not
related to the dynamic equation of the corresponding virtual
leaders. In addition, it is worth noting that the formed flocking
structure (i.e., Figure 4(c) and Figure 6(c)) is different from
the traditional α-lattice structure, when different subgroups
have the same target. What causes these phenomena? The
pair-wise action function fα with different social distancing
is shown in Figure 10. Suppose that the social distancing of
agent i is de, whereas the agent j has a larger social distancing
(i.e., 2de and 3de). The graph shows that, if

∥∥pj − pi∥∥ = de,
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FIGURE 10. The action force function with different social distancing.

FIGURE 11. Comparison of computational complexity with different
flocking algorithms.

the action force f iα of agent i is zero, and then, it stays at
rest. However, for the agent j, its action force f jα > 0, which
is the repulsive force. Since the repulsive force, the agent j
will gradually move away from the agent i until its action
force is zero. Therefore, the irregular flocking is formed,
as shown in Figure 4(c). Figure 10 reveals that social dis-
tancing de plays a key role in the flocking of multi-agents.
In other words, the subgroup with small social distancing has
a stronger cohesive force than the other with the large one.

Figure 11 shows the comparison of computational
complexity with different flocking algorithms. As Figure 11
illustrates, the proposed algorithm demonstrates lower com-
putational complexity than the other two algorithms, with
respect to the number of agents. Therefore, we can con-
clude that the proposed algorithm is simple, yet effective

for exploring the internal mechanism of collision avoidance
between different subgroups of multi-agents.

VI. CONCLUSION
Most existing studies of flocking for multi-agent systems
assumed that the agents have the same social distancing.
However, as a society, social distancing will vary depending
on different cultural backgrounds, environments, industries,
and personalities, etc. Considering the difference in social
distancing among individuals, in this paper, according to
the extent of the social distancing, a group S, composed of
N mobile agents, was divided into multiple different sub-
groups. Then, a novel flocking algorithmwithmultiple virtual
leaders was proposed to research the flocking problem of
multi-agents with different social distancing. The proposed
algorithm is an improvement on the traditional flocking and
semi-flocking algorithms. Especially, from the differential
game theory, the flocking problem of different subgroups
could be regarded as collision avoidance between neigh-
boring agents, or obstacle avoidance between the agents
and the virtual static/dynamic obstacles. Finally, numerical
simulations demonstrated the effectiveness of the proposed
algorithm and theoretical results. This work indicated that
the social distancing plays a key role in the flocking of
multi-agents, especially in multiple different subgroups of
multi-agents.

As future works, we intend to consider the impact of indi-
vidual heterogeneity on the flocking for multi-agent systems,
rather than just being limited to different social distancing
between individuals, and to explore how to apply the pro-
posed algorithm to extremely large-scale datasets.
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