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ABSTRACT Resource allocation in wireless cellular networks has been an important and challenging issue.
With the rapid development of wireless communications, more and more mobile multimedia and innovative
applications (e.g. augmented reality and video conferences) have emerged, which are suitable for wireless
broadcast and have requirements on transmission delay. In this paper, we focus on delay-constrained multi-
cell broadcast networks, taking user mobility into consideration for future channel estimation. The promising
network coding technique is also adopted to improve transmission efficiency. The objective is to minimize
total transmission energy consumption via joint resource allocation and scheduling optimization. Both
optimal and heuristic solutions are proposed. Simulation results show that the proposed schemes perform
better than other benchmark schemes, in terms of transmission energy consumption and success rate.

INDEX TERMS Wireless broadcast, energy efficiency, context-awareness, resource allocation, network
coding.

I. INTRODUCTION
With the rapid development of information and communica-
tion technology (ICT) industry, mobile data traffic has been
growing tremendously in recent years [1]. Such huge traffic
data brings more energy consumption, which is unfriendly
for network operators and natural environment. Therefore,
energy efficient green communication has attracted signif-
icant attention. In addition, 60% to 80% of wireless cellu-
lar network energy is consumed by base stations (BSs) [2].
Hence, it is crucial to improve resource utilization and energy
efficiency for BSs.

Resource allocation, as a possible solution, has become
an important and challenging issue. Since the problem of
maximizing network utility was proposed in [3], resource
allocation optimization has been a hot topic and a lot of
schemes have been suggested [4], [5]. To further improve
system performance via resource allocation optimization,
one possible way is to design resource allocation schemes
based on the emerging characteristics of cellular networks.
Nowadays, more and more smart wireless terminals are used.
These smart terminals are usually equipped with various
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sensors and can obtain a lot of context information, such
as users’ current location, moving speed and direction, etc.
These context information can be used to predict users’ future
location, channel conditions, etc. [6], [7], thereby improving
the accuracy and efficiency of resource allocation.

Another characteristic of modern mobile communication
is that more and more multimedia and innovative applica-
tions (such as video conference and augmented reality) have
appeared. These applications generally have the feature that
multiple users request the same file and have requirements on
delivery time. For instance, multiple users may access some
popular audio or video files on mobile phones at the same
time, with quality of service (QoS) requirements on download
time. Research [8] shows that most of the downstream traffic
comes from downloading the same files. Research [9] shows
that on YouTube, the world’s leading video site, 80% of the
visits come from the top 10% popular video resources. For
such applications, wireless broadcast via a common channel
to those users can greatly reduce the burden of BSs and
improve bandwidth utilization [10]. Besides, network cod-
ing (NC) [11] has been shown to be a promising technique
to improve network throughput and bandwidth utilization,
especially for broadcast transmissions. By taking linear or
nonlinear processing of packets, NC can effectively reduce
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the number of retransmissions, so as to decrease total energy
consumption [12]. For example, in Fig. 1, a BS broadcasts
three packets (i.e. a, b, and c) to three users (i.e. user1, user2,
and user3). However, due to unsatisfied channel conditions,
after some transmissions, user1 lost packet a, user2 and user3
lost packets b and c, respectively. Traditionally, BS needs
to retransmit each lost packet sequentially. Whereas, in NC
based broadcast, the BS can encode a new packet d = a ⊕
b⊕ c and retransmits it once to all users via broadcast. Upon
receiving d , user1 can recover the lost a by a = d ⊕ b ⊕ c.
user2 and user3 can recover their own lost packets in a similar
way. By doing so, the minimum number of retransmissions
can be reduced from three to one.

FIGURE 1. Network coding based retransmission.

Considering the above issues, we take the users’ moving
context into consideration, to estimate the future position and
channel state information for users. Network coding tech-
nology also applies to improve broadcast efficiency. Then
we make the joint resource allocation and scheduling opti-
mization for multi-cell networks, aiming to minimize the
transmission energy consumption of all BSs.

The rest of this paper is organized as follows: We review
related work and describe the main contributions of this
paper in Section II. System model is presented in Section III.
Section IV presents the problem formulation and the optimal
solution. In Section V, we propose a heuristic algorithm with
polynomial complexity to solve the optimization problem.
In Section VI, we carry out simulations to evaluate the per-
formance of the proposed schemes. Realistic considerations
are discussed in Section VII. Finally, conclusion is drawn in
Section VIII.

II. RELATED WORKS AND PAPER CONTRIBUTIONS
Many efforts have been made for resource allocation on
energy efficient broadcast. Radio resources such as band-
width, time slots, transmit antennas, transmit power, etc., can
be assigned based on the channel state [13].

In the case of energy efficient broadcast, a well-known
problem of looking for a broadcast tree to minimize the
total energy consumption, called minimum energy broadcast
(MEB), has already been intensively studied. TheMEB prob-
lem has been proved to be NP-hard and a flurry of heuris-
tic algorithms have been proposed [14]–[19]. Local search
is usually employed to integrate with other algorithms for
solving the MEB problem, such as nested partitioning and
linear programming [16], swarm optimization (PSO) [17] and
genetic algorithm (GA) [18]. GA based approach may drop
into local optimal solutions or may find the optimal solution

by slow convergence speed. To overcome these problems,
an enhanced scheme by using memetic algorithm (MA) was
proposed [19]. However, these works did not consider user
mobility.

For wireless mobile networks, one intricacy lies in the
fact that the channel conditions might be changing in time
due to environmental factors and user mobility [20]. During
movements, the channel degradation may occur due to path
loss, fading, or noise. For mobility management, numer-
ous studies have been made in recent years. By analyzing
the entropy of each individual’s trajectory, a 93% potential
predictability in user mobility across the whole user base
was found in [21]. Mobility prediction approaches such as
Markov chain, Bayesian network, artificial neural network
based approaches, and so on, have been suggested [22].
Obviously, it is possible to predict mobile users’ future tra-
jectories based on their historical movements. If BSs know a
user’s future context information (e.g. trajectory) integrated
with channel state information (CSI) fed back from the user,
they can schedule a corresponding broadcast plan under
the delay constraint in advance for energy saving. Vehicle
mobility prediction based rebroadcast nodes selecting algo-
rithm was adopted in [23], [24]. The work in [23] pro-
posed a reliable broadcast routing scheme based on mobility
prediction (RB-MP), to select rebroadcast nodes in vehicu-
lar ad hoc network (VANET). Specifically, RB-MP divides
the neighbors into several sets according to the movement
direction, firstly; then it utilizes the position and velocity
to predict the maintenance time of all neighbors; finally,
several rebroadcast nodes are selected. Similarly, the work
of [24] selected rebroadcast vehicle by considering link avail-
able time which is acquired by the relative speed, radio
transmission range, and the inter-vehicle distance between
vehicles moving in the same direction and on the same
road. Whereas, the work of [25], [26] considered channel
conditions for broadcast/multicast. Combining duty-cycle
with context-awareness, the work of [25] studied efficient
context-awaremulti-hop broadcasting protocol, which allows
nodes to adapt their behavior according to the changing net-
work dynamics and context. The authors [26] considered two
state channel conditions, either good or bad, and investigated
an opportunistic multicast scheduling algorithm. The algo-
rithm estimates optimum data rate and optimum number of
users having appropriate channel conditions to select user
group for multicast. Because when the channel condition is
good, less power is required for the transmission of data,
therefore energy can be saved.

Nevertheless, the aforementioned works are broad-
cast/multicast routing optimization approaches and did not
consider reducing redundant retransmissions to improve
energy efficiency. To process packets and eliminate too much
number of retransmission, network coding (NC) has been
widely implemented. The work of [27] showed the energy
efficiency of network coding over routing, and proposed a
minimum energy multicast approach based on network cod-
ing. In multicast, two-stage cooperative multicast is part of
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the most promising schemes to increase system throughput.
In the first stage, users, which have successfully received data
from BS, can serve as relays to forward the data to other
users in the second stage. However, total energy consump-
tion increased. To improve energy efficiency, the authors
of [28] applied dynamic network coding at the selected
relays. Their simulation showed better energy efficiency. For
a lossy network, random linear network coding (RLNC) can
achieve a reliable and efficient transmission [29], [30], and
enhance other technologies, such as device-to-device (D2D)
communications [31], [32]. Additionally, network coding can
integrate other ways to further improve energy efficiency.
By exploiting network coding and node sleeping scheme,
energy efficiency of multicast is improved in [33].

Despite these literature, to the best of our knowledge,
no prior work considered the resource allocation optimization
for transmission energy minimization, based on both users’
future context information and network coding. In our previ-
ous work [34], single cell networks were considered. But in
real scenarios, users tend to move among multiple cells.

In this paper, we study the joint resource allocation and
scheduling problem for delay-constrained multi-cell net-
works, by utilizing users’ moving context information for
upcoming channel state information estimation. Network
coding technique is also adopted to improve retransmission
efficiency. The objective is to minimize the total transmission
energy consumed by BSs. The main contributions of this
paper are summarized as follows:
• A network coding based multi-cell broadcast system
model is constructed in the paper;

• We formulate the broadcast energy minimization prob-
lem as a context-aware network coded broadcast
scheduling optimization problem. To get the optimal
solution, we transform the optimization problem into an
MIP problem;

• We propose a polynomial-time heuristic scheme to solve
the optimization problem;

• Simulation results show that both theMIP based solution
and heuristic scheme can significantly reduce transmis-
sion energy consumption and improve broadcast suc-
cess rate, compared with two conventional benchmark
schemes.

III. SYSTEM MODEL
A. NETWORK OVERVIEW
We consider a time slotted network with M BSs and K
users, which are labeled as BSj, j = 1, 2, . . . ,M and Ui,
i = 1, 2, . . . ,K , respectively. Each BS is situated in the
center of a cell and connected to the base station control
center (BSC) via a core network (wired backbone network).
BSC acts as routing and BSs management. Frequency reuse
is also adopted among cells. Neighboring BSs use different
frequencies to avoid co-channel interference. The K users
are moving among the cells in a certain mobility pattern.
At a particular time slot, we assume that multiple users are
requesting a same source file from the network. In this paper,

we concentrate on the process that M BSs broadcast the
requested file to K users, subject to a delay constraint that
the delivery process must be completed in T time slots. The
network architecture is illustrated in Fig. 2.

FIGURE 2. Network Architecture.

The requested file is transmitted from the server to the
BSC, then arrives at all BSs, and finally from BSs to users
via wireless channels. In each BS, the file is divided into N
equal length packets and only one packet can be transmitted
per time slot. The transmitted contents and schedule of all BSs
are controlled by the BSC. When a user is moving among
the cells, it will be served by different BSs and receives
the required packets from the assigned BS. However, at a
particular time slot, a user can only be served by one BS
at most. It is assumed that each BS can obtain the served
users’ context information, including the current position,
moving direction, and speed. Based on a user’s historical
context information, BSs are assumed to be able to predict
the user’s channel gain in the next T time slots [7], and feed
the information back to the BSC. We will discuss the value
of T and its impact in a practical system (see Section VI-C)
later. BSC can schedule the broadcast of BSs by exploiting
the users’ future channel gain.

B. NETWORK CODING
In order to improve broadcast reliability and reduce the
number of retransmissions, NC technology is introduced to
encode the transmitted packets. In this paper, we use the
property of random linear network coding (RLNC) [35] or
deterministic linear network coding (DLNC) [36] for broad-
cast, and do not specify a specific network coding algorithm.
It is assumed that appropriate NC parameters are adopted,
so that the RLNC or DLNC based broadcast can ensure
that all transmitted encoded packets are useful to all users.
Therefore, to decode a source file that is split toN equal-sized
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packets, a user only needs to receiveN encoded packets. Note
that this assumption is achievable by both RLNC or DLNC
with some constraints. The detail of network coding is out
of the scope of this paper, the interested readers might refer
to [35], [36].

In this paper, each BS adopts NC to encode the transmitted
packets based on the receiving status of the served users,
to ensure that the transmitted packets are useful to all the
served users. In other words, a user Ui can decode the source
file successfully as long as it has receivedN encoded packets,
which may be sent from different assigned BSs. In this case,
Ui is said to be complete. Otherwise, it is incomplete.

C. LINK MODEL AND ENERGY CONSUMPTION
In a transmission, it is assumed that Ui is able to successfully
receive a transmitted packet from the assigned BS if the
received signal-to-interference-plus-noise ratio (SINR) at the
user side is no less than a certain fixed threshold γ . Otherwise,
Ui cannot receive that packet. At a particular time slot t ,
received SINR of Ui relates to BSj is denoted as 0ijt , and can
be written as

0ijt =
GijtPjt
η0

, (1)

whereGijt is the channel gain, Pjt is the transmit power of BSj
at the t-th time slot. The maximum transmit power of all BSs
is set as Pmax . η0 is the sum of noise and interference from
neighbor cells toUi, and modeled as a constant for simplicity.
AnM×T matrixP= {Pjt } is defined to denote the transmit

power of BSs at all T time slots. In this paper, we are aiming to
minimize the total transmission energy consumed by all BSs
of thewhole broadcast process, by determining optimalP. For
a transmission with Pjt , transmission energy consumption by
BSj isPjt times the duration of a time slot. For the convenience
of calculation, it is assumed that each time slot is a unit time,
and will be ignored throughout the paper. Therefore, the total
transmission energy consumption of all BSs is denoted as E ,
and can be written as

E =
M∑
j=1

T∑
t=1

Pjt (2)

IV. CONTEXT-AWARE NETWORK CODED BROADCAST
SCHEDULING
As stated in Section III, each BS can broadcast one packet at
most each time slot, and the broadcast must be finishedwithin
delay constraint T . T must be no less than N , since otherwise
the broadcast cannot be completed. When T > N , BSs do
not need to transmit at every time slot in general. Hence,
the BSC needs to specify the transmission time slots for each
BS. Similarly, users do not have to successfully receive a
packet in each time slot, and BSC also needs to determine the
users to which a BS needs to transmit. If a userUi is assigned
to receive a packet from a BS at a slot, we call that Ui is a
target user. When T = N , each user must be a target user at
every time slot. At a particular slot, once the target users of

BSj are determined, based on the packet reception status and
CSI of its target users, the transmission contents and required
transmit power of BSj at that time slot can be calculated as
well.

We define a K × M × T matrix X to indicate whether a
user is a target user. If Xijt = 1, Ui is a target user of BSj at
time slot t . Otherwise, Ui is not a target user. That is

Xijt =

{
1, if Ui is a target user of BSj at time slot t
0, otherwise

(3)

Now, we will introduce how to determine the optimal
transmit power of BSs to cover the target users. In general,
it shows a positive correlation between broadcast coverage
and transmit power under the constraint of maximum power
Pmax . We say that the minimum power of BSj used to cover
a particular user Ui at the t-th slot is the required power, and
denote it as3ijt .3ijt can be calculated by (1) when the SINR
0ijt equals to threshold γ , and can be written as

3ijt =
γ η0

Gijt
(4)

A K × M × T matrix 3 = {3ijt } is defined to denote all
the required power. For a particular time slot, the minimum
transmit power of a BS is generally determined by the target
user with the worst channel gain. As long as the ’worst’
target user can be covered, the others can be covered as well.
Therefore, a BS can determine the minimum transmit power
at a time slot by first calculating the required power of all
its target users, and then chooses the maximum one as the
transmit power. The broadcast with such selected transmit
power can ensure that the expected received SINR of target
users meets the successful reception SINR requirement with
minimum transmit power.

Since BSs already know the channel gains of each user at
the next T time slots, they can obtain the required power 3.
The primary job of the paper is to determine X based on 3,
and further determine the optimal P to complete broadcast
with minimum energy consumption. It is worth noting that
when a user Ui is specified as a target user and the assigned
BS uses the corresponding required power to transmit a
packet, the received SINR is no less than the threshold γ
and that packet is treated as successfully received by Ui.
Therefore, in such a scenario, the number of times that a user
is specified as a target user represents the number of packets
it will receive. The major notions used in this paper are
given in Table 1. The optimization problem of context-aware
network coded broadcast scheduling can be formulated as:

Minimize
M∑
j=1

T∑
t=1

Pjt

Subject to: C1: Pjt = maxKi=1{Xijt3ijt }, for j ∈ [1,M ],

t ∈ [1,T ];

C2:
M∑
j=1

T∑
t=1

Xijt ≥ N , for i ∈ [1,K ];
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TABLE 1. Major notations.

C3:
M∑
j=1

Xijt ≤ 1, for i ∈ [1,K ], t ∈ [1,T ];

C4: Xijt = 0, if 3ijt ≥ Pmax , for i ∈ [1,K ],

j ∈ [1,M ], t ∈ [1,T ]. (5)

where C1 limits the transmit power of a BS to the maximum
required power of all its target users in the cell. C2 ensures
that each user can be covered by N times at least, such that
it can receive enough packets for decoding the source file.
C3 guarantees that at each time slot, each user can only be
specified as the target user of one BS at most. C4 limits the
transmit power of each BS to themaximum powerPmax . If the
required power of a user is higher than Pmax , the user cannot
be specified as a target user.

Context-aware network coded broadcast scheduling in
single cell networks has been proved to be an NP-hard prob-
lem in our previous work [34]. Single cell networks can be
regarded as a special case of multi-cell networks when the
number of BSs M is equal to 1. Accordingly, the problem
in [34] is reducible to the problem (5) stated above. Thus the
problem (5) is also NP-hard.

To obtain the optimal solution of problem (5), we transform
C1 into Pjt ≥ Xijt3ijt , for i ∈ [1,K ], j ∈ [1,M ], t ∈ [1,T ].
Consequently, the optimization problem becomes an mixed
integer programming (MIP) problem which can be solved by
some standard mathematical tools, such as branch and bound
and cutting planes [37]. We call this method context-aware
with mixed integer programming (CAMIP). Due to the high
computational complexity of the optimal solution, in the next
section, we present a polynomial-time heuristic algorithm to
solve the minimum energy problem.

V. HEURISTIC ALGORITHM
Now, let us check the optimization problem again. For net-
work coding based broadcast, as long as a user has been
covered by N times, it can decode the source file and is said
to be complete. However, to a user who has received all the
required packets, extra transmitted packets are useless and

may cause extra energy waste. Therefore, the ideal broadcast
is that each user is exactly covered by N times. Based on this
idea, in this section, we propose a polynomial-time heuristic
algorithm for the optimization problem.

We first define a K × M × T dynamic cost matrix
C = {Cijt }, where Cijt denotes the energy cost of choosing
Ui as a target user of BSj at j-th time slot. Since the duration
of a slot is assumed to be a time unit, the energy costCijt is set
to be the extra increased transmit power in order to cover Ui,
based on previously selected target users.

Note that C is dynamically updated once a new target user
is selected. Consider the scenario that BSj may need to serve
two user Ui and Ui+1 at t-th slot, where the required power
3ijt < 3(i+1)jt ≤ Pmax . If BSj only wants to cover Ui+1,
the energy cost C(i+1)jt = 3(i+1)jt . However, if Ui is already
selected as a target user, the minimum transmit power of
BSj is Pjt = 3ijt . On that basis, if BSj wants to serve Ui+1
further, the minimum transmit power of BSj is Pjt = 3(i+1)jt .
Therefore, the extra transmit energy cost used to cover Ui+1
is C(i+1)jt = (3(i+1)jt −3ijt ).
Recall that the number of times that a user is specified

as a target user represents the number of packets it will
receive. The basic idea of the proposed heuristic algorithm
is to greedily specify target users by finding the minimum
value from the valid elements in cost matrix C , until every
user has been selected as a target user for N times. Initially,
set X to be zero and Cijt be 3ijt , since if Ui is chosen as the
target user of BSj at t-th slot, BSj must increase the transmit
power to 3ijt at t-th slot and will cause extra energy cost
Cijt = 3ijt . Then, find the minimal element Ci′j′t ′ from C
and set Xi′j′t ′ = 1, subject to the following constraints: 1) the
transmit power of each BSmust be no greater than Pmax , 2) at
each time slot, each user can only be specified as the target
user of one BS at most, and 3) every user cannot be covered
more than N times. After that, update C by setting Cij′t ′ to
be (3ij′t ′ − 3i′j′t ′ ), where i 6= i′ and Xij′t ′ 6= 1. Since Ui′
has been specified as the target user of BSj′ at the t ′-th slot,
it cannot be selected as a target user of current BS and any
other BSs at the t ′-th slot again. Thus we increase the costs to
be greater than Pmax to avoid being selected again. Similarly,
for all complete users, they should not be covered anymore
to avoid unnecessary energy waste. Hence, the related costs
of these users need to be greater than Pmax . Then, specify the
target user corresponding to the minimum valid element inC .
Repeat the process of updating C and specifying target users
greedily, until every user has been selected as a target user
for N times. When the process is complete, X indicates the
target users’ assignments. Transmit power Pjt can be deter-
mined by maxKi=1{Xijt3ijt } and total energy consumption of
broadcasting can be computed by (2). This algorithm is called
Context-Aware Heuristic Scheme (CAHS) and described in
Algorithm 1.

Now, we are going to analyze the computational complex-
ity of CAHS. It is assumed that the complexity of finding the
minimum or maximum value from n numbers is typicalO(n).
In STEP 1, it takes KTM operations to initialize X and takes
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Algorithm 1 Context-Aware Heuristic Scheme (CAHS)
Require: Required power matrix 3.
Ensure: Transmit power P and toal energy consumption E .
STEP 1: Set X=0, C=3.
STEP 2: Count the number for Ui where 3ijt > Pmax , for
i ∈ [1,K ], j ∈ [1,M ], t ∈ [1,T ]. If counts of any user
is less than N , the broadcast cannot be completed and the
algorithm halts. Otherwise continue.
STEP 3: Let Ci′j′t ′=min(Cijt ), for i ∈ [1,K ], j ∈ [1,M ],
t ∈ [1,T ].
STEP 4: Update matrix X by setting Xi′j′t ′ = 1.
STEP 5: Set Cij′t ′ = 3ij′t ′ − 3i′j′t ′ , for i ∈ [1,K ], i 6= i′,
3ij′t ′ ≤ Pmax and Xij′t ′ 6= 1.
STEP 6: Set Ci′jt ′=2Pmax , for j ∈ [1,M ]. Since Ui′ has
been specified as the target user of BSj′ at t ′-th slot, it can-
not be selected as a target user of any other BSs at t ′-th slot
again. Thus we increase the costs to be greater than Pmax
to avoid being selected again.
STEP 7: Set Cijt = 2Pmax , for all complete users Ui, t ∈
[1,T ], j ∈ [1,M ]. If a user is complete, it should not be
selected as a target user anymore, so we increase the costs
Cijt related to it to be greater than Pmax to ensure that each
user is exactly covered by N times.
STEP 8: If any user is incomplete, proceed to STEP 3,
otherwise continue.
STEP 9: Compute transmit power of BSs Pjt =

maxKi=1{Xijt3ijt }, for j ∈ [1,M ], t ∈ [1,T ]; energy
consumption E =

∑M
j=1

∑T
t=1 Pjt , and return.

KTM operations to initialize C. The overall complexity of
STEP 1 is O(KTM ). In STEP 2, it first takes KTM operations
to finish counting for each user, then takes K operations to
compare the number of counts with N . The overall com-
plexity of STEP 2 is O(KTM ). In STEP 3, the complexity
is O(KTM ) to find the minimum cost from C. In STEP 4,
the complexity is O(1) to specify a target user. After a target
user is determined, STEP 5 will take maximum (K − 1)
operations to update the cost of other users in the same BS
at that time slot. So the complexity of STEP 5 is O(K ).
In STEP 6, it takes M operations to guarantee the target user
cannot be selected as a target user at the time slot again.
The maximum complexity is O(M ). In STEP 7, it takes one
operation to check whether a user is complete firstly. If so,
it takes at most TM operations to update the value of Cijt
associated with that user. This procedure will repeat at most
K times for all users. Therefore, the maximum complexity
is O(KTM ). STEP8 will take at most K operations to check
if any user is incomplete, hence the complexity is O(K ).
Therefore, for the loop from STEP 3 to STEP 8, the total
complexity of each loop is O(KTM ). It may repeat at most
NK loops to cover K users for N times. Hence the overall
complexity from STEP 3 to STEP 8 is O(K 2TMN ). Finally,
In STEP 9, it first takes K operations to calculate the required
power and takes K operations to find the maximum value

as the transmit power. These operations will be repeated TM
times at most to determine P. Besides, it takes TM operations
to compute the energy summation E . The total complexity of
STEP 9 is O(KTM ). Consequently, the overall complexity of
CAHS is O(K 2TMN ).

VI. SIMULATION AND PERFORMANCE EVALUATION
In this section, we evaluate the performance of proposed
CAMIP and CAHS by simulation. The setting and parameters
are introduced firstly. In subsequent part, we introduce two
benchmark schemes for comparison and present performance
metrics. Lastly, simulation results are discussed.

A. SIMULATION SETUP
A three-tier multi-cell network with 19 BSs is used in the
simulation, as shown in Fig. 3. Suppose that K users are
randomly distributed in the cells at the beginning. Ui, i =
1, 2, . . . ,K , moves with an initial angle θi and a constant
speed νi between 80-100 km/h which is the typical speed
of vehicles on highway. Note that the assumption that users
move at a constant speed and angle is to simplify the cal-
culation. In real scenarios, this assumption is not needed.
Meanwhile, to ensure that all users can possibly decode all the
source packets, the number of slots that a user can be covered
by at least one cell cannot be less than N in the simulation.

FIGURE 3. Network used in simulation.

Next, we will introduce how to determine the channel
gain Gijt . Suppose that BSs already know the users’ context
information, including current location and future moving
trajectories. At a particular time slot t , the path loss between
Ui and BSj can be determined by

PL = 128.1+ 37.6log10(dijt )+ Ls (6)

where dijt denotes the distance (in km) between Ui and BSj,
Ls indicates shadow fading. Let Aijt be the attenuation (in dB)
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caused by shadow fading, and α be the path loss exponent.
Then the channel gain Gijt can be rewritten as

Gijt =
10−Aijt/10

dαijt
(7)

Note that Aijt is usually modeled as a zero-mean Gaus-
sian random variable with standard deviation σ . In general,
the empirical value for σ is between 6 dB and 12 dB, and
α is between 4 and 6. In this paper, we assume that network
operators can collect shadow fading data, which can be used
by BSs. The correlation between shadow fading at different
times can be expressed by Gauss Markov process as follows

Aij(t+1) = ρijtAijt +
√
1− ρ2ijtWt (8)

whereWt is zero-mean Gaussian random variable with 10dB
standard deviation, and ρijt is the correction coefficient which
can be determined by

ρijt = e−
|1d |
dcor (9)

where |1d | is the position change of the mobile user from
t − th slot to (t + 1) − th slot, and dcor is the correlation
distance and set to 50 meters in our simulation according to
3GPP [38]. For more details of this shadow fading model,
we refer the readers to [39]. In practice, in a particular time
slot t , forUi, theBSj can know theGijt fromCSI. By using (7),
Aijt can be determined. Due to the fading correlation, BSs can
use (8) to estimate Aijt ′ for the follow T slots, where t ′ > t .
The duration of a time slot is assumed to be 0.167 second,

which is same as [40], for wireless video streaming. Addi-
tional parameters of the simulation are shown in Table 2.
The simulation environment is established by MATLAB,
and Gurobi 8.1 [41] is utilized to solve the CAMIP. In the
simulation, for each set of parameters, we present the average
performance over 3000 realizations.

TABLE 2. Simulation parameters.

B. BASELINE APPROACHES AND PERFORMANCE
METRICS
This paper mainly focuses on minimizing energy consump-
tion of broadcast in multi-cell networks through power allo-
cation. To the best of our knowledge, there is no reference

approach that can be directly applied to our system model for
performance evaluation. Therefore, based on related works,
we introduce a non-context-aware non-network coding based
baseline broadcast approach. Furthermore, a non-context-
aware network coding based baseline approach is also intro-
duced to reveal the influence of network coding on broadcast
process. Because of non-context-awareness, the two conven-
tional schemes keep broadcasting in chronological order until
all users are complete or all time slots are consumed. At the
same time, in order to achieveminimum energy consumption,
each user will be specified as the target user of BS with
minimum required power.

In the case of the first non-network coding based algorithm,
BSs transmit source packets and retransmit the lost source
packets, which is called general scheme (GS). GS has two
phases: initial phase and retransmission phase. In the initial
phase, all BSs synchronously transmit the N source packets
sequentially, which will consume N time slots.
After sequentially broadcast the N packets once, if any

user is still incomplete, the algorithm steps into retransmis-
sion phase. BSs first check the lost packets and denote the
collection as R. Then, the BSs will retransmit the packets in
R to the users. To retransmit a packet r ∈ R, BSs first find
all the incomplete users which require r , denoted as users∗.
Then just like the initial phase, users∗ will be specified as
the target users of the BSs with minimum required power,
provided the required power is no more than Pmax . However,
in the retransmission phase, users may need different packets
at the same slot, so we can specify different BSs to retransmit
different packets at a slot. When all users are complete or all
time slots are used, the algorithm halts.

The other benchmark scheme adopts the same transmission
pattern as GS, with the only difference that network coding
technique is applied, which is referred to as general scheme
with network coding (GSNC). GSNC broadcasts network
coded packets, and retransmits encoded packets which are
beneficial to all users. Therefore, in the retransmission phase,
GSNC does not consider that users request different packets
at the same time. The pseudo code of GS and GSNC is shown
in Algorithm 2 and Algorithm 3 respectively in Appendix I.

Here, metrics used to evaluate the performance of these
schemes are described as follows:
• Energy consumption (normalized): We use energy con-
sumption (normalized) to indicate the transmission
energy consumed by all BSs for broadcasting the file to
all users.

• Success rate: In a realization of broadcast, we call that
the broadcast succeeds only if all users are complete
after T slots. The success rate is defined as the number of
successful realizations over the total number of realiza-
tions, which can indicate the reliability of transmission.

• Average broadcast latency (slots): Broadcast latency of
a realization is defined as the total number of time slots
consumed when all users are complete. The average
broadcast latency is defined as the averaged value of
broadcast latency over all realizations (in time slots).
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C. NUMERICAL RESULTS
We evaluate the performance of proposed CAMIP and CAHS
by comparing to two conventional schemes GS and GSNC
using performance metrics with various K , T , and M .
Firstly, let T = 64, N = 16, K varies from 5 to 100, results

are shown in Fig. 4. From Fig. 4a, we can find that the energy
consumption of CAMIP and CAHS is always far less than
GS and GSNC. In particular, when K = 100, CAMIP and
CAHS can save energy 75% and 71% respectively, compared

FIGURE 4. Results versus K .

to GS. As can be observed from Fig. 4b, three network
coding based schemes, CAMIP, CAHS, and GSNC always
maintain a success rate of 100%, whereas the success rate of
non-network coding based scheme GS gradually decreases
with K increasing. When K = 100, the success rate of
GS is 68% only. In Fig. 4c, the average broadcast latency
of context-aware schemes CAMIP and CAHS are far higher
than GS and GSNC. When K = 100, the average broadcast
latency of CAMIP and CAHS is 130% and 121% higher than
GS, respectively.

Next, let K = 50, N = 16, T varies from 32 to 128,
results are shown in Fig. 5. Results illustrated in Fig. 5a
indicates that the energy consumption of CAMIP and CAHS
decreases when T increasing. On the contrary, it increases in
GS and GSNC. That means that when the delay constraint
is relaxed, the performance of context-aware schemes gets
better. Whereas, GS and GSNC broadcast in chronological
order, more relaxed constraint brings more random simulated
network, which leads to more energy consumption. Note
that the energy consumption of GS and GSNC should show
a nearly constant when T increasing. In Fig. 5b, with the
increase of T , the success rate of GS increases gradually.
When T = 32, the success rate of GS is 54%. While T =
128, the success rate is 99%. This happens because more
relaxed time constraint means more time slots for retransmis-
sion. Broadcast failure caused by insufficient time slots will
reduce, hence the success rate of GS increases. In Fig. 5c,
the average broadcast latency of CAMIP and CAHS becomes
higher when T increasing, whereas GS and GSNC have little
changes. The reason is that CAMIP and CAHS may choose
later slots that have better channel gain to reduce energy
consumption.

Lastly, let K = 50, T = 64, N varies from 8 to 32, simu-
lation results are depicted in Fig. 6. The energy consumption
of the four schemes increases when N increasing in Fig. 6a.
Meanwhile, CAMIP and CAHS always outperform GS and
GSNC. In Fig. 6b, with the increase of N , the success rate
of GS decreases gradually. When N = 8, the success rate
is 99%, When N = 32, the success rate is 36%. The reason is
same as T increasing. Fig. 6c depicts the increasing average
broadcast latency of the four schemes. As N increases, all
schemes need more time slots to finish broadcasting.

D. SUMMARY
From Fig. 4 to Fig. 6, compared to the benchmark schemes,
we can conclude that the context-aware network coding based
schemes, CAMIP and CAHS, can significantly save energy
in most cases, and improve success rate as well. However,
the payment for less energy consumption is higher broad-
cast latency, because context-aware schemes would take full
advantage of all time slots for energy saving, therefore takes a
longer time to complete broadcast. The analysis of the delay
constraints shows that when the delay constraint is relaxed,
the performance of context-aware schemes can be improved.
Besides, from the comparison between GS and GSNC, it is
revealed that network coding can significantly improve the
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FIGURE 5. Results versus T .

success rate of broadcast and save transmission energy for
BSs.

VII. REALISTIC CONSIDERATION
In this section, we discuss some problems which may arise
in practice and present corresponding solutions. Since all the
above parts are finished under the assumption that the channel
gain of mobile users can be perfectly predicted, the pro-
posed CAMIP and CAHS exhibit remarkable performance
compared with conventional schemes. In practice, because

FIGURE 6. Results versus N .

of high variability of users’ channel condition or inaccurate
prediction, BSs cannot perfectly obtain users’ future channel
information in general, which will be expected to result in
some performance degradation. Meanwhile, to simplify the
problem and reduce computation complexity, we only con-
sider noise and omit co-channel interference. However, there
does exist many systems suffering co-channel interference
from neighbor cells.

For the proposed schemes, both imperfect channel pre-
diction or co-channel interference may cause performance
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degradation, mainly in terms of packet loss during transmis-
sions. To evaluate how much prediction errors or co-channel
interference will affect the proposed schemes, we investigate
packet loss ratio under various situations. We define a new
metric named valid transmission rate to denote the ratio of
the total number of received packets to the total number of
transmitted packets for all users.

A. IMPERFECT PREDICTION
In the proposed schemes, the transmit power of a BS is
determined based on the predicted channel gain of its target
users. To evaluate the impact of prediction errors, we assume
the real channel gain of a transmission is the sum of cor-
responding predicted channel gain plus a zero-mean Gaus-
sian random variable with different standard deviations. Let
K = 50, T = 64, N = 16, and the standard deviation
varies from 0 to 2 dB, we evaluate the packet loss ratio via
simulation. The results are presented in Fig. 7. From the
figure, we can find that the valid transmission rate drops
down to below 75% when the standard deviation is 0.25 dB.
Besides, the valid transmission rate decreases as the standard
deviation increases. In other words, the influence of imperfect
prediction is more serious when the standard deviation is
large. In particular, when the standard deviation is 0.25 dB,
the valid transmission rates of CAMIP and CAHS is 73%
and 64%, respectively. When the standard deviation is 2 dB,
the valid transmission rates of CAMIP and CAHS reduce to
69% and 63%, respectively.

FIGURE 7. Valid transmission rate versus imperfect prediction.

Under this situation, to ensure that more packets can be
received by users, one possible way is to increase the transmit
power of BSs. To investigate whether it is possible to alleviate
or overcome the packet loss by increasing transmit power,
we choose a specific standard deviation and raise transmit
power to different levels. Considering the high degree of
mobility prediction [21] and channel prediction [7], we select
0.5 dB standard deviation as the level of imperfect prediction.
Note that the real SINR threshold of successful reception,
i.e. γ , is still 3 dB. But we increase the target SINR when

calculating the minimum required power 3, instead of using
γ directly. Let K = 50, T = 64, N = 16, standard deviation
is equal to 0.5 dB, the target SINR varies from 3 to 5 dB,
the results are illustrated in Fig. 8.

FIGURE 8. Valid transmission rate versus target SINR.

From Fig. 8, we can see that the valid transmission rate
increases as the used target SINR increases. The valid trans-
mission rate can get a huge improvement when the target
SINR is increased by 0.5 dB. When the target SINR equals
to 3.5 dB, the valid transmission rate of CAMIP and CAHS
is 92% and 89%, respectively. If the target SINR increases
continuously, the valid transmission rate approaches to 100%
gradually. As expected, the results show that increasing the
target SINR is an efficient way to alleviate the impact of
imperfect prediction. It is worth noting that we should choose
a proper threshold according to the degree of imperfect pre-
diction to balance the energy consumption and valid trans-
mission rate since the increase of target SINR will also lead
to higher energy consumption.

Actually, BSs can dynamically adjust the transmit power,
and the problem can be further alleviated based on real time
CSI feedback in practice. Specifically, BSs can adjust the
transmit power of BSs for the next time slot properly by
comparing the predicted channel gain with the current real
channel gain. For example, if the real channel gain is lower
than the predicted one used in scheduling, the BS can raise
the transmit power appropriately, and ensure that the target
users can also receive packets at the next time slot. Similarly,
if the real channel gain is higher than the predicted one, the BS
can reduce the transmit power appropriately to reduce energy
consumption.

B. CO-CHANNEL INTERFERENCE
Recall that the noise is modeled as a constant and
co-channel interference is omitted when calculating the min-
imum required power 3. This assumption holds when the
inter-cell interference is negligible, which can be achieved
by some inter-cell interference mitigation methods, such
as conventional hard frequency reuse with large frequency

VOLUME 8, 2020 164853



L. Lu et al.: Energy Efficient Resource Allocation and Scheduling for Delay-Constrained Multi-Cell Broadcast Networks

reuse factors, fractional frequency reuse with multiple cell
regions [42], and soft frequency reuse [43]. For these
frequency reuse techniques, the co-channel interference
is mitigated at the expense of lower spatial bandwidth
efficiency [44]. However, it is known that all BSs are
simultaneously reusing the same frequency resources can
maximize system-wide spectral efficiency [45], which leads
to non-negligible co-channel interference. Since co-channel
interference is omitted when making resource pre-allocation,
the proposed schemes will suffer packet loss when applied to
those systems with co-channel interference.

Simulations are carried out to investigate how much per-
formance degradation will cause by co-channel interference.
In our simulation, in the resource allocation phase, we still
assume the frequency reuse factor is seven and no co-channel
interference is considered. While in the transmission phase,
the frequency reuse factor is regarded as one and inter-cell
interference is counted when calculating the real SINR at user
side. Let T = 64,N = 16,K varies from 5 to 100. The results
are illustrated in Fig. 9. As the number of users increases,
the valid transmission rate decreases first and then increases.
Since the number of BSs is 19, when K is small, there exists
some spare BSs at each time slot with high probabilities,
which will not cause inter-cell interference. As the number
of users increases, more and more BSs will work, and the
co-channel interference will becomemore serious, which will
make the valid transmission decrease.

When the number of users is larger than 19, each BS
may sever multiple users simultaneously. For a given cell,
the transmit power is allocated to make the ‘worst’ user
achieve the SINR threshold γ , which means the received
SINR of the other users in this cell is larger than γ without
considering co-channel interference. In other words, the co-
channel interference mainly affects those users located at
cell borders, with a negligible impact on those users located
close to BS. As the number of users increases, the ratio of
border users to total users decreases, which makes the valid
transmission increase. Therefore, when the number of users

FIGURE 9. Valid transmission rate versus K when considering co-channel
interference.

is large, the influence of co-channel interference becomes
smaller. Nevertheless, co-channel interference still causes
heavy performance degradation. In particular, when K = 50,
the valid transmission rates of CAMIP andCAHS is only 45%
and 28%, respectively.

To alleviate the impact of co-channel interference, BSs can
increase the transmit power to reduce packet loss. Therefore,
we can treat co-channel interference as ‘noise’ and set a
larger constant value for η0 in equation (1). Here, we evaluate
how the valid transmission rate changes by setting differ-
ent constant values for η0. Note that the transmission from
neighboring cells is regarded as co-channel interference when
determine real received SINR at user side. Similarly, we set
K = 50, T = 64, N = 16, and test the ratio of successfully
transmitted packets by varying η0 from -130 to -50 dBm. The
results are presented in Fig. 10. It is easy to conclude that
the valid transmission rate becomes higher with the increase
of constant η0. When the constant is equal to -50 dBm, both
CAMIP and CAHS can achieve 100% valid transmission rate,
which means the packet loss caused by co-channel interfer-
ence can be eliminated when an appropriate value is selected
for η0.

FIGURE 10. Valid transmission rate versus η0.

C. INFEASIBLE SCENARIOS
In our simulation assessment, all users are assumed to be
feasible, i.e. all users must be within transmission range of
BSs for at least N slots. This requirement is unnecessary in
real scenarios. Due to signal attenuation or interference, there
may exist some users which cannot be covered for N times
by BSs within the latency constraint. For these users, they
can never successfully receive all source packets in any case.
In this scenario, we can simply skip these users and consider
the remaining feasible users only. Take the users who can
satisfy the latency constraint as a group, and then use the
proposed schemes to allocate resources.

Besides, infeasible situation may also happen during the
transmission process. As resource pre-allocation schemes,
they are designed to run once before transmission. For a user
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who is required to receive N packets, the proposed schemes
will pre-allocate N transmissions for that user. However,
as explained in the previous subsections, both imperfect pre-
diction and co-channel interference may cause packet loss,
which will make that user infeasible. To address this issue,
on one hand, we can appropriately raise or dynamically
adjust transmit power to reduce the probability of packet
loss. On the other hand, we can run the proposed resource
allocation schemes multiple times during the transmission
process, by taking the receiving status of all users as dynamic
input. By doing so, extra transmissions can be dynamically
allocated for those users which have suffered packet loss,
so as to increase the valid transmission rate.

We evaluate the performance of running multiple alloca-
tions during broadcasting to cope with potential infeasible
situations caused by imperfect prediction and co-channel
interference. Instead of making resource allocation before
transmission, we run the proposed schemes before every
time slot, taking the most recent receiving status as input.
To evaluate the performance improvement under imperfect
prediction scenarios, we run simulations with K = 50, T =
64, N = 16 and standard deviation is equivalent to 0.5 dB.
If we run the resource allocation schemes once before trans-
mission, the valid transmission rate of CAMIP and CAHS is
73% and 65%, respectively. While for this multiple running
method, the valid transmission rate of CAMIP and CAHS
can separately achieve 93% and 90%. To evaluate the perfor-
mance improvement under co-channel interference scenarios,
we run simulations with K = 50, T = 64, N = 16, and
count co-channel interference at the user side. If the resource
allocation schemes run once before transmission, the valid
transmission rate of CAMIP and CAHS is only 45% and
28%, respectively. While for this multiple running method,
the valid transmission rate of CAMIP and CAHS increases
to 76% and 63%, respectively. From the results, we can find
that the multiple allocation method shows very considerable
improvements.

VIII. CONCLUSION
This paper considers the problem of energy minimization for
delay-constrained multi-cell broadcast networks. Network
coding integrated with context-awareness which exploits
context information to predict users’ channel gain in certain
future time periods for transmission scheduling is consid-
ered for energy saving. We formulate the energy minimiza-
tion problem as a context-aware network coded broadcast
scheduling optimization problem and prove it is NP-hard.
In order to get the optimal solution, we transform the opti-
mization problem into an MIP problem which can be solved
by some standard tools, called CAMIP. Due to the high
complexity of CAMIP, a polynomial-time heuristic algorithm
CAHS is proposed. In the simulation, we set a network with
19 BSs, and consider three performance metrics (i.e. energy
consumption, success rate, and average broadcast latency)
for performance evaluation. Meanwhile, two conventional
schemes, GS and GSNC, are introduced for comparison.

Algorithm 2 General Scheme (GS)
Require: Required power matrix 3.
Ensure: Transmit power P and toal energy consumption E .
1: Define a set R as the packet collection, define users∗ to

save the incomplete users, and BSs∗ to save BSs which
can be used to transmit packets at a particular time slot
in retransmission phase.

2: Initialize target user indication matrix X=0.
3: // Initial phase, broadcast N packets sequentially
4: for t ∈ [1,N ] do
5: for i ∈ [1,K ] do
6: 3i′j′t ′ ← min(3ijt ), for all BSj which can cover Ui

at time slot t
7: Xi′f ′t ′ ← 1
8: end for
9: end for
10: // Find the collection of packets need to be retransmitted
11: for i ∈ [1,N ] do
12: if the i-th packet is required by any user then
13: put i-th packet into R
14: end if
15: end for
16: // Retransmission phase, retransmit lost packets
17: while there exists user is incomplete do
18: t = t + 1
19: if t > T then
20: return
21: end if
22: users∗ ← all incomplete users
23: BSs∗ ← all BSs
24: for r ∈ R do
25: for all user Ui who need packet r of users∗ do
26: 3i′j′t ′ ← min(3ijt ), for all BSj which can cover

Ui at time slot t
27: Xi′j′t ′ ← 1
28: delete Ui′ and BSj′ from users∗ and BSs∗ respec-

tively
29: end for
30: if users∗ or BSs∗ is empty then
31: break
32: end if
33: end for
34: end while
35: Pjt = maxKi=1{Xijt3ijt }, for j ∈ [1,M ], t ∈ [1,T ]
36: E =

∑M
j=1

∑T
t=1 Pjt

37: return P and E

Simulation results show that both CAMIP and CAHS could
significantly decrease transmission energy consumption of
BSs and improve broadcast success rate as well, compared
with conventional schemes. However, every coin consists of
two sides. The proposed schemes get better energy consump-
tion performance, at the expense of higher average broadcast
latency and decoding complexity. Finally, we discuss some
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Algorithm 3General SchemeWithNetwork Coding (GSNC)
Require: Required power matrix 3.
Ensure: Transmit power P and total energy consumption E .

1: Initialize target user indication matrix X=0
2: // Initial phase, broadcast N packets sequentially
3: for t ∈ [1,N ] do
4: for i ∈ [1,K ] do
5: 3i′j′t ′ ← min(3ijt ), for all BSj which can cover Ui

at time slot t
6: Xi′j′t ′ ← 1
7: end for
8: end for
9: // Retransmission phase, retransmit lost packets
10: while there exists user is incomplete do
11: t = t + 1
12: if t > T then
13: return
14: end if
15: for all incomplete users do
16: 3i′j′t ′ ← min(3ijt ), for all BSj which can cover Ui

at time slot t
17: Xi′j′t ′ ← 1
18: end for
19: end while
20: Pjt = maxKi=1{Xijt3ijt }, for j ∈ [1,M ], t ∈ [1,T ]
21: E =

∑M
j=1

∑T
t=1 Pjt

22: return P and E

problems which may arise in practice and present the cor-
responding solutions. We can appropriately raise or dynam-
ically adjust transmit power, or execute multiple allocations
according to the receiving status of all users to reduce the
probability of packet loss.

In future work, we are going to study a system model
considering co-channel interference and to investigate more
application scenarios based on the proposed approaches, such
as edge computing.

APPENDIX I. CONVENTIONAL SCHEMES
See Algorithms 2 and 3.
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