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ABSTRACT Recently, many encryption algorithms based on fractional-order chaotic system have been
proposed to solve the problem of image encryption. In this paper, we propose a novel color image
compression-encryption algorithm based on fractional-order hyperchaotic system and DNA coding. In the
data compression stage, the data of R, G, and B channels of the color image are converted to the frequency
domain by two-dimensional discrete cosine transform (DCT), and then the amount of encrypted data is
reduced by the quantization process. We design a data processing algorithm to ensure that the data after DCT
is compatible with DNA coding data format. In the encryption stage, the processes of DNA encoding and
decoding, DNA operation, and pixel scrambling are all controlled by the corresponding chaotic sequences,
which are generated by the chaotic system. The original image is used to calculate the initial state of
the chaotic system, which improves the performance of the algorithm against the chosen-plaintext attack
significantly. Experimental results and security analysis illustrate that the proposed algorithm has excellent
compression and security performance. It can not only reconstruct the original imagewell under the condition
of low compression ratio, but also provide high security to resist various attacks. Besides, experimental
results also indicate that the algorithm proposed can be applied to the fields of color image compression,
encryption, and transmission.

INDEX TERMS Color image encryption, DNA encoding, fractional-order hyperchaotic system, discrete
cosine transform(DCT), image compression.

I. INTRODUCTION
One of the important signs of the information age is that
people can realize information sharing without the limitation
of time and space. The transmitted data also transits from the
original text data to the multimedia data, and the color image
is an important part of the multimedia data. Although clas-
sical cryptography can encrypt one-dimensional (1D) data
well [1], it is not suitable for two-dimensional (2D) data
such as image [2]–[3]. And because of the larger amount of
information carried by color image, it is necessary to design
a compression-encryption algorithm which can transmit it
efficiently and safely.

Since Lorenz discovered the first chaotic attractor
in 1963 [4], the research on the chaotic system has taken
root and flourished. Because the state of the chaotic system
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is disordered and the generated chaotic sequence is highly
sensitive to the initial value of the system [5], there are
more and more complex chaotic systems [6], synchronization
control methods between chaotic systems [7], and image
encryption algorithm based on the chaos [8]–[11] have been
proposed. Hua et al. used a 2D Logistic-adjusted-Sine map to
encrypt images [9]. In [10], Pak et al. used the combination
of the 1D chaotic map to encrypt color images. Zhang et al.
introduced the unified image encryption algorithm based
on chaos and cubic S-Box [11]. However, the trajectory of
the low-dimensional chaotic system is simple and can be
predicted to a certain extent, and its key space is small.
Therefore, high dimensional chaotic systems have been
applied to more and more encryption algorithms [12]–[19].
A new approach of image encryption based on 3D chaotic
map is proposed through Hossain et al. [12]. Zhang et al.
proposed a color image encryption algorithm based on the
spatiotemporal chaos of the nonlinear coupled map lattices
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and genetic operations [13]. Ye et al. designed a block
chaotic image encryption scheme based on self-adaptive
modelling [17]. Yang et al. used Qi hyperchaotic system
and singular value decomposition in YCbCr color space
to encrypt color images [18]. Although the image encryp-
tion algorithm designed by high-dimensional chaotic system
improves its security performance greatly, it is not involved
in image compression.

Due to the high correlation and redundancy of image
pixels, how to compress the image for transmission has
become an urgent problem. To solve this problem, many
related algorithms are proposed [20]–[26]. Chai et al. used
block compressive sensing (CS) and elementary cellular
automata to encrypt and compress images [20]. Li et al.
introduced joint image encryption and compression schemes
based on 16 × 16 DCT [21]. Gong et al. designed an
image compression-encryption scheme by combining the
hyperchaotic system with discrete fractional random trans-
form [25].

DNA coding has the characteristics of high parallelism,
low power consumption and high information density [27].
The application of DNA coding and DNA computing based
on the chaotic system can further enhance the effect of pixel
scrambling and confusion, and improve the security and
parallelism of the algorithm [28]–[40]. Liu et al. proposed
an RGB image encryption algorithm based on DNA encod-
ing and chaos maps [28]. A novel chaotic image encryp-
tion scheme based on DNA sequence operations is proposed
through Wang et al. [29]. Wang et al. proposed a novel color
image encryption scheme based on DNA permutation and the
Lorenz system [31].Wu et al. used a 2DHénon-Sine map and
DNA approach to encrypt images [33]. Liu et al. presented an
image encryption scheme based on the hyperchaotic system
and DNA with fixed secret keys [38].

With the deepening of research, people find that there
are a lot of fractional dimensions in reality, and frac-
tional dimensions can describe natural phenomena prefer-
ably compared with the traditional integer-order chaotic
system [41]. Besides, the fractional-order chaotic system
has the characteristics of nonlocality, high nonlinearity, and
can greatly enhance the key space [42], which makes the
research on it become a new trend. Although the solu-
tion of fractional-order differential equation is more com-
plex than that of integer order, many papers have proposed
based on the Adomian decomposition method (ADM) to
solve this problem [43]–[47], which can effectively reduce
the calculation time. Then, more efficient image encryption
schemes based on the fractional-order chaotic system have
been proposed [48]–[59]. Yang et al. designed an image
compression-encryption scheme based on fractional-order
hyperchaotic systems combined with 2D compressed sens-
ing and DNA encoding [49]. In [55], the authors proposed
a three-dimensional fractional-order discrete Hopfield neu-
ral network and applied it to image encryption. In [56],
Ismail et al. presented a lossless image encryption algorithm
based on edge detection and generalized chaotic maps for

key generation. Generalized chaotic maps are used to design
pseudo-random number key generator. In [58], the authors
proposed an image compression-encryption scheme based on
set partitioning in hierarchical trees coding-decoding algo-
rithm and synchronization of chaotic maps with non-integer
order. Although the image encryption algorithm based on
the chaotic system develops rapidly, not all algorithms based
on this principle are secure. For example, image encryp-
tion algorithms [10], [28] and [33] are all proved to be
able to be cracked by chosen-plaintext attack [60]–[62],
because these encryption algorithms are not sensitive to
changes of plaintext. Among the recently proposed algo-
rithms, the fractional-order chaotic system is not used in
the algorithm [38] and DNA computing is not used in the
algorithm [42]. In addition, algorithm [48] only uses DNA
addition and subtraction to encrypt images and algorithm [49]
can only encrypt the gray image.

According to the above analysis, we design a new image
compression-encryption algorithm to overcome these short-
comings, which has the following contributions. First of all,
our algorithm can encrypt color images of any size effectively
and can compress the image according to different quan-
tization matrix. Secondly, we calculate the initial value of
the chaotic system through different bit-planes of the image,
which makes the initial value of the chaotic system highly
sensitive to the plaintext and improves the performance of
the encryption algorithm against the chosen-plaintext attack.
Thirdly, we use four kinds of DNA operations (add, subtract,
XOR, XNOR) to further confuse image pixels, and these
four operations and DNA coding are controlled by chaotic
sequence, which greatly enhances its security performance.
At last, we give the calculation process of using the Adomain
algorithm to solve the fractional-order hyperchaotic Chen
system in detail, and take the initial state of the fractional
chaotic system as the key, which greatly improves the key
space of the system.

The rest of this paper is arranged as follows. Section 2
introduces the preliminaries about the fractional-order hyper-
chaotic Chen system, the Adomian decomposition method,
the solution of fractional-order hyperchaotic Chen sys-
tem and DNA coding and operations. Section 3 describes
the image compression-encryption algorithm based on
fractional-order hyperchaotic Chen system andDCT in detail.
Section 4 deals with the experimental simulation and security
analysis. Finally, a brief conclusion is drawn in Section 5.

II. PRELIMINARIES
A. FRACTIONAL-ORDER HYPERCHAOTIC CHEN SYSTEM
In 1999, Chen first proposed Chen chaotic system [63]. Then
the hyperchaotic Chen system is proposed, which is defined
as follows [64]:

ẋ1 = a(x2 − x1)+ x4
ẋ2 = bx1 + x1x3 + cx2
ẋ3 = x1x2 − dx3
ẋ4 = x2x3 + rx4,

(1)
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where ẋi are the derivative of system state variable xi(i =
1, 2, 3, 4). a, b, c, d and r are positive parameters. When a =
35, b = 3, c = 12, d = 7, r∈(0.1085, 0.1798], the system of
Eq. (1) is hyperchaotic.

In this paper, the Adomian decomposition method is
used to solve the fractional differential equation, which uses
Caputo differential operator. Caputo fractional differential is
defined as follows [65]:
∗Dqt f (t)

=


0

1
0(m− q)

∫ t
0

f (m)(τ )
(t − τ )q+1−m

dτ, m− 1 < q < m

dm

dtm
f (t), q = m,

(2)

where ∗Dqt is the Caputo differential operator and 0(x) is the
gamma function.

According to the definition of fractional-order system,
the fractional-order hyperchaotic Chen system can be
described as

∗Dqt0x1 = a(x2 − x1)+ x4
∗Dt0qx2 = bx1 − x1x3 + cx2
∗Dqt0x3 = x1x2 − dx3
∗Dqt0x4 = x2x3 + rx4,

(3)

where q is the fractional-order. When a = 35, b = 3, c =
12, d = 7, r = 0.5, q = 0.95, the system is hyperchaotic.

B. ADOMIAN DECOMPOSITION METHOD
For a given fractional-order system ∗qt0Dx(t) = f (x(t))+g(t),
Where x(t) = [x1(t), x2(t), · · · , xn(t)] is the given function
variable. G(t) = [g1(t), g2(t), · · · , gn(t)] is an autonomous
system, representing some constants. f is a function contain-
ing linear and nonlinear parts [40]. Therefore, any fractional
chaotic system can be classified according to the above com-
ponents. The form of decomposition is as follows [66]:

∗Dqt0x(t) = Lx(t)+ Nx(t)+ g(t)
x(k)(t+0 ) = bk , k ∈ [0,m− 1]
m ∈ N ,m− 1 < q ≤ m,

(4)

where L and N represent the linear part and the nonlinear
part of the system respectively, and bk is the initial value.
Applying Jqt0 to both sides of the Eq. (4) at the same time,
the following equation can be obtained [67]:

x = Jqt0Lx + J
q
t0Nx + J

q
t0g+8, (5)

where 8 =
∑m−1

k=1 bk
(t−t0)k
k! is the initial value condition of

the system, and Jqt0 =
(t−t0)q
0(q+1) represent the integral operator

of order q. The properties of the integral operator Jqt0 are as
follows [45]:

Jqt0 (t − t0)
γ
=

0(γ + 1)
0(γ + 1+ q)

(t − t0)γ+q

Jqt0C =
C

0(q+ 1)
(t − t0)q

Jqt0J
r
t0x(t) = Jq+rt0 x(t),

(6)

where t ∈ [t0, t1], q ≥ 0, r ≥ 0, γ > −1.

The nonlinear part is decomposed by Adomian decompo-
sition algorithm as follows

Aij =
1
i!
[
d i

dλi
N (vij(λ))]λ=0

vij =
i∑

k=0

(λ)kxkj ,
(7)

where i ∈ [0,+∞), j ∈ [1, n].
Then the nonlinear term in Eq. (7) can be expressed as [68]

Nx =
+∞∑
i=0

Ai(x0, x1, · · · , x i). (8)

Take Eq. (8) into Eq. (5), and the solution of the equation
is as follows

x =
+∞∑
i=0

x i = Jqt0L
+∞∑
i=0

x i

+Jqt0L
+∞∑
i=0

Ai(x0, x1, · · · , x i)+ Jqt0g+8. (9)

The iterative relationship of the solution of Eq. (10) is as
follows

x0 = Jqt0g+8
x1 = Jqt0Lx

0
+ Jqt0A

0(x0)
x2 = Jqt0Lx

1
+ Jqt0A

1(x0, x1)
· · ·

x i = Jqt0Lx
i−1
+ Jqt0A

i−1(x0, x1, · · · , x i−1).
· · ·

(10)

C. SOLUTION OF FRACTIONAL-ORDER HYPERCHAOTIC
CHEN SYSTEM
Firstly, the fractional-order hyperchaotic Chen system Eq. (3)
is decomposed into linear part Lxi , nonlinear part Nxi and
autonomous system gi according to the Adomian algorithm.
Substituting the values of a, b, c, d and r into the equation.
The decomposition results are as follows
Lx1
Lx2
Lx3
Lx4

 =

35(x2 − x1)+ x4

7x1 + 12x2
−3x3
0.5x4

 ,

Nx1
Nx2
Nx3
Nx4

 =


0
−x1x3
x1x2
x2x3

 , (11)

where the autonomous system gi = 0. The nonlinear terms
in the system are decomposed according to Eq. (7), and the
before six terms of the decomposition coefficient are

A0−x1x3 = A02 = −x
0
1x

0
3

A1−x1x3 = A12 = −x
1
1x

0
3 − x

0
1x

1
3

A2−x1x3 = A22 = −x
2
1x

0
3 − x

1
1x

1
3 − x

0
1x

2
3

A3−x1x3 = A32 = −x
3
1x

0
3 − x

2
1x

1
3 − x

1
1x

2
3 − x

0
1x

3
3

A4−x1x3 = A42 = −x
4
1x

0
3 − x

3
1x

1
3 − x

2
1x

2
3 − x

1
1x

3
3

−x01x
4
3

A5−x1x3 = A52 = −x
5
1x

0
3 − x

4
1x

1
3 − x

3
1x

2
3 − x

2
1x

3
3

−x11x
4
3 − x

0
1x

5
3 ,

(12)
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

A0x1x2 = A03 = x01x
0
2

A1x1x2 = A13 = x11x
0
2 + x

0
1x

1
2

A2x1x2 = A23 = x21x
0
2 + x

1
1x

1
2 + x

0
1x

2
2

A3x1x2 = A33 = x31x
0
2 + x

2
1x

1
2 + x

1
1x

2
2 + x

0
1x

3
2

A4x1x2 = A43 = x41x
0
2 + x

3
1x

1
2 + x

2
1x

2
2 + x

1
1x

3
2

+x01x
4
2

A5x1x2 = A53 = x51x
0
2 + x

4
1x

1
2 + x

3
1x

2
2 + x

2
1x

3
2

+x11x
4
2 + x

0
1x

5
2 ,

(13)



A0x2x3 = A04 = x02x
0
3

A1x2x3 = A14 = x12x
0
3 + x

0
2x

1
3

A2x2x3 = A24 = x22x
0
3 + x

1
2x

1
3 + x

0
2x

2
3

A3x2x3 = x32x
0
3 + x

2
2x

1
3 + x

1
2x

2
3 + x

0
2x

3
3

A4x2x3 = A44 = x42x
0
3 + x

3
2x

1
3 + x

2
2x

2
3 + x

1
2x

3
3

+x02x
4
3

A5x2x3 = A54 = x52x
0
3 + x

4
2x

1
3 + x

3
2x

2
3 + x

2
2x

3
3

+x12x
4
3 + x

0
2x

5
3 .

(14)

The initial conditions are x0i = xi(t0). Let c0i = x0i .
According to Eq. (3), Eq. (10) and the properties Eq.(6), x1i
is obtained as

x11 = [35(c02 − c
0
1)+ c

0
4]
(t − t0)q

0(q+ 1)
= c11

(t − t0)q

0(q+ 1)

x12 = (7c01 + 12c02 − c
0
1c

0
3)
(t − t0)q

0(q+ 1)
= c12

(t − t0)q

0(q+ 1)

x13 = (c01c
0
2 − 3c03)

(t − t0)q

0(q+ 1)
= c13

(t − t0)q

0(q+ 1)

x14 = (c02c
0
3 + 0.5c04)

(t − t0)q

0(q+ 1)
= c14

(t − t0)q

0(q+ 1)
.

(15)

The other five coefficients can be calculated as follows
c21 = 35(c12 − c

1
1)+ c

1
4

c22 = 7c11 + 12c12 − c
1
1c

0
3 − c

0
1c

1
3

c23 = −3c
1
3 + c

1
1c

0
2 + c

0
1c

1
2

c24 = 0.5c14 + c
1
2c

0
3 + c

0
2c

1
3,

(16)



c31 = 35(c22 − c
2
1)+ c

2
4

c32 = 7c21 + 12c22 − c
2
1c

0
3 − c

0
1c

2
3

−c11c
1
3
0(2q+ 1)
02(q+ 1)

c33 = −3c
2
3 + c

2
1c

0
2 + c

0
1c

2
2 + c

1
1c

1
2
0(2q+ 1)
02(q+ 1)

c34 = 0.5c24 + c
2
2c

0
3 + c

0
2c

2
3 + c

1
2c

1
3
0(2q+ 1)
02(q+ 1)

,

(17)



c41 = 35(c32 − c
3
1)+ c

3
4

c42 = 7c31 + 12c32 − c
3
1c

0
3 − c

0
1c

3
3

−(c11c
2
3 + c

2
1c

1
3)

0(3q+ 1)
0(2q+ 1)0(q+ 1)

c43 = −3c
3
3 + c

3
1c

0
2 + c

0
1c

3
2 + (c11c

2
2

+c21c
1
2)

0(3q+ 1)
0(2q+ 1)0(q+ 1)

c44 = 0.5c34 + c
3
2c

0
3 + c

0
2c

3
3

+(c22c
1
3 + c

1
2c

2
3)

0(3q+ 1)
0(2q+ 1)0(q+ 1)

,

(18)



c51 = 35(c42 − c
4
1)+ c

4
4

c52 = 7c41 + 12c42 − c
4
1c

0
3 − c

2
1c

2
3
0(4q+1)
02(2q+1)

−c01c
4
3 − (c31c

1
3 + c

1
1c

3
3)

0(4q+ 1)
0(3q+ 1)0(q+ 1)

c53 = −3c
4
3 + c

4
1c

0
2 + c

0
1c

4
2 + c

2
1c

2
2
0(4q+1)
02(2q+1)

+(c31c
1
2 + c

1
1c

3
2)

0(4q+ 1)
0(3q+ 1)0(q+ 1)

c54 = 0.5c44 + c
4
2c

0
3 + c

0
2c

4
3 + c

2
2c

2
3
0(4q+1)
02(2q+1)

+(c32c
1
3 + c

1
2c

3
3)

0(4q+ 1)
0(3q+ 1)0(q+ 1)

,

(19)



c61 = 35(c52 − c
5
1)+ c

5
4

c62 = 7c51 + 12c52 − c
5
1c

0
3 − c

0
1c

5
3

−(c41c
1
3 + c

1
1c

4
3)

0(5q+ 1)
0(4q+ 1)0(q+ 1)

−(c31c
2
3 + c

2
1c

3
3)

0(5q+ 1)
0(3q+ 1)0(2q+ 1)

c63 = −3c
5
3 + c

5
1c

0
2 + c

0
1c

5
2

+(c41c
1
2 + c

1
1c

4
2)

0(5q+ 1)
0(4q+ 1)0(q+ 1)

+(c31c
2
2 + c

2
1c

3
2)

0(5q+ 1)
0(3q+ 1)0(2q+ 1)

c64 = 0.5c54 + c
5
2c

0
3 + c

0
2c

5
3

+(c42c
1
3 + c

1
2c

4
3)

0(5q+ 1)
0(4q+ 1)0(q+ 1)

+(c32c
2
3 + c

2
2c

3
3)

0(5q+ 1)
0(3q+ 1)0(2q+ 1)

.

(20)

The solution of the system Eq. (4) can be expressed as
follows

x̃j(t) = c0j + c
1
j
(t − t0)q

0(q+ 1)
+ c2j

(t − t0)2q

0(2q+ 1)

+c3j
(t − t0)3q

0(3q+ 1)
+ c4j

(t − t0)4q

0(4q+ 1)

+c5j
(t − t0)5q

0(5q+ 1)
+ c6j

(t − t0)6q

0(6q+ 1)
, (21)

where j = 1, 2, 3. Fig.1 shows the attractor phase diagram of
the fractional-order hyperchaotic Chen system simulated by
Eq. (21).

D. DNA CODING AND COMPUTING
In biology, each DNA contains four bases: C (cytosine),
T (thymine), A (adenine), and G (guanine). According to
the principle of DNA base complementary pairing, A and
T, C and G can be complementary pairing respectively.
The coding rules are dynamically controlled by the chaotic
sequences. On this basis, the addition, subtraction, XOR,
and XNOR operation between DNA sequences can achieve
a better encryption effect. Table.1 shows 8 ways of DNA
coding [49].

Because each DNA encoding and decoding method has a
corresponding DNA operation, in terms of the first encoding
and decoding method, the corresponding DNA addition and
subtraction operation are shown in Table.2. The XOR oper-
ations corresponding to the fourth DNA coding method are
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FIGURE 1. Attractor phase diagram of the fractional-order hyper-chaotic Chen system.(a)Attractor x-y of fractional hyperchaotic Chen
system;(b)Attractor x-z of fractional hyperchaotic Chen system;(c)Attractor x-w of fractional hyperchaotic Chen system;(d)Attractor z-w of fractional
hyperchaotic Chen system.

TABLE 1. Eight ways of DNA encoding and decoding.

TABLE 2. Addition and subtraction operation of first encoding method.

TABLE 3. XOR operation of fourth encoding method.

shown in Table.3. The XNOR operations corresponding to
the seventh DNA coding method are shown in Table.4.

III. IMAGE COMPRESSION-ENCRYPTION AND
DECRYPTION ALGORITHM
A. COMPRESSION-ENCRYPTION ALGORITHM
The flow chart of the color image compression encryption
algorithm we proposed is shown in Fig.2. The color image
I size used in the experiment is M × N , and the specific
encryption process is as follows.

TABLE 4. XNOR operation of seventh encoding method.

Step 1: The image I is decomposed into the components of
R, G, and B channels. I1, I2, and I3 are three two-dimensional
matrices.
Step 2: In order to process image data of any size, it is

necessary to add an appropriate number of pixels with zero
value to these three two-dimensional matrices. t represents
the size of the segmented image block. The image size after
zero fillings is given toM andN again. Each two-dimensional
matrix can be divided into (M × N )/t2 image blocks.
Step 3: Setting initial values x00, x01, x02 and µ, then

the sequence {ki}, {kx} and {ky} are obtained iteratively
according to Logistic mapping. The length of {ki} isM ×N ,
which is used for DNA operation with the original image. The
length of {kx} and {ky} are M and N respectively, which are
used for pixel scrambling. The formula for logistic mapping
is as follows [69]

xn = µxn−1(1− xn−1), (22)

here, when µ ∈ (3, 5699, 4] and x0 ∈ (0, 1), the system is
chaotic.

The formula for calculating the initial value x00, x01, and
x02 is as follows

x00 =

M∑
i=0

N∑
j=0

I1(i, j)+
M∑
i=0

N∑
j=0

I2(i, j)

255×M × N × 2

x01 =

M∑
i=0

N∑
j=0

I1(i, j)+
M∑
i=0

N∑
j=0

I3(i, j)

255×M × N × 2

x02 =

M∑
i=0

N∑
j=0

I2(i, j)+
M∑
i=0

N∑
j=0

I3(i, j)

255×M × N × 2
,

(23)
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FIGURE 2. Flow chart of compression-encryption algorithm.

where x00 is the average gray value of I1 and I2, which is
related to the original image and can be used as one of the
keys. In the same way, x01 and x02 can be obtained.
Step 4: The sequence {ki} is transformed into a matrix of

M × N of the same size as Ii(i = 1, 2, 3), which is used for
DNA operation with the original image Ii(i = 1, 2, 3). In this
process, the value of the matrix transformed by the chaotic
sequence should be between 0 and 255, which can be obtained
by Eq. (24){

ki = mod(round(ki × 104), 256)
R = reshape(ki,N ,M )′.

(24)

Step 5: Set the initial value of the chaotic system. These
initial values are calculated according to the original image.

Then, four chaotic sequences {Xi}, {Yi}, {Zi} and {Hi} can be
obtained by solving the fractional-order chaotic system with
the Adomian algorithm. The calculation formula of initial
values is as follows

X (0) =
sum(bitand(I1, 17))

17×M × N

Y (0) =
sum(bitand(I2, 34))

34×M × N

Z (0) =
sum(bitand(I3, 68))

68×M × N

H (0) =
sum(bitand(I1, 136))

136×M × N
,

(25)

where 17 represents the binary number 00010001, bitand
(I1, 17) represents the value of acquiring the first and fifth
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bit-plane of I1. The four initial values are determined by the
average values of the first and fifth bit-planes of I1, the second
and sixth bit-planes of I2, the third and seventh bit-planes of
I3 and the fourth and eighth bit-planes of I1, respectively.
Step 6 : I1, I2 and I3 are divided into t×t size image blocks.

In this paper, we set t = 4. The fourth-order DCT matrix T is
used to do DCT for each sub-block, and the coefficient matrix
Ji(i = 1, 2, 3) in the frequency domain is obtained. The DCT
formula is as follows [70]

Ji(u, v) = c(u)c(v)
M−1∑
m=0

N−1∑
n=0

Iicos
(2m+ 1)uπ

2M

×cos
(2n+ 1)vπ

2N
, (26)

where c(u) and c(v) are

c(u) =


1
√
M
, u = 0√

2
M , u 6= 0,

(27)

c(v) =


1
√
N
, v = 0√

2
N , v 6= 0.

(28)

Step 7 : The DCT transform coefficients are quantized
according to the compression matrix, and different compres-
sionmatrix determines different compression ratios(CR). The
compression matrices used in the experiment are as follows

Mask1 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 0 0

 ,

Mask2 =


1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0

 ,

Mask3 =


1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0

 ,

Mask4 =


1 1 1 1
1 1 0 0
1 0 0 0
1 0 0 0

 ,

Mask5 =


1 1 1 0
1 1 0 0
1 0 0 0
0 0 0 0

 ,

Mask6 =


1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,
where the compression ratio of Mask1 is 0.875, Mask2 is
0.8125, Mask3 is 0.75, Mask4 is 0.5, Mask5 is 0.4, Mask6 is
0.2. After processing, the quantized coefficient matrix J ′i (i =
1, 2, 3) and R

′

are obtained.

Step 8: Processing the quantized data J ′i (i = 1, 2, 3) to
get J ′′i (i = 1, 2, 3). Since the quantized coefficients are not
guaranteed to be between 0 and 255, and the DCT coeffi-
cient has positive and negative, the algorithm we proposed
can adaptively adjust the quantized coefficients to meet the
coding format. Taking the fractional part and sign of the
coefficient matrix as one of the keys and using it in the
decryption process can effectively avoid the block effect of
the decrypted image caused by the direct discard. The detailed
process is presented in Algorithm 1.

Algorithm 1 The Proposed Data Processing Algorithm
Input: J ′i (i = 1, 2, 3): Quantized date; t: Size of the seg-

mented image block
Output: J ′′i (i = 1, 2, 3): Formatted data; Mi: Fractional

coefficient matrix; Ni: Sign coefficient matrix
1: Set t = 4;
2: Initialize matrices S and T, where S = ones(t, t), T =

zeros(t, t);
3: Set S(1, 1) = 0;
4: Divide quantized date J ′i into image blocks Bi of size t×t;
5: Li← Bi × S;
6: find the maximum value max_num in abs(Li);
7: max_Multiple← fix(255/max_num);
8: find the maximum value max_num_first in abs(J ′i );
9: max_Multiple_first ← fix(255/max_num_first);
10: T(1, 1) = max_Multiple_first;
11: for k = 2 : t do
12: T(1, k) = max_Multiple;
13: end for
14: for i = 2 : t do
15: for j = 1 : t do
16: T(i, j) = max_Multiple;
17: end for
18: end for
19: J ′i ← Bi × T;
20: INTJi← fix(J ′i );
21: J ′′i ← uint8(abs(INTJi));
22: Mi = J ′i − INTJi;
23: Ni = sign(INTJi);

Step 9: Perform the DNA encoding on J ′′i (i = 1, 2, 3) and
R′ respectively, which is controlled by chaotic sequence {Xi}
and {Yi}. Then the results of DNA coding are calculated by
DNA operations. There are four kinds of operations, which
are controlled by chaotic sequence {Zi}. Finally, the process
of DNA decoding is controlled by chaotic sequence {Hi}.
Among the four chaotic sequences, {Xi}, {Yi} and {Hi} are
between 1 and 8 and {Zi} is between 0 and 3, which is
transformed by the following formula

Xi = mod(round(Xi × 104), 8)+ 1
Yi = mod(round(Yi × 104), 8)+ 1
Zi = mod(round(Zi × 104), 4)+ 1
Hi = mod(round(Hi × 104), 8)+ 1,

(29)
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FIGURE 3. Flow chart of decryption algorithm.

where {Xi}, {Yi} and {Hi} sequence values correspond to
8 ways of DNA encoding and decoding, and {Zi} sequence
values correspond to 4 ways of DNA operations. Except for
the first sub block, the DNA calculation of the result of the
current sub-block and the last sub-block is performed again
to obtain a better diffusion effect, which controlled by the
sequence {Zi}.
Step 10: Pixel scrambling. The sequences {kx} and {ky}

are arranged in descending order. The sequence {Ux} and
{Uy} composed of the index values of the sorted elements
in the original sequence are obtained. Taking the {Ux}, {Uy}
sequence values and their corresponding indexes as row and
column exchange coordinates, row and column permuta-
tions are performed on the matrices of the three channels

after DNA decoding. The detailed process is presented
in Algorithm 2.
Step 11: Combining three two-dimensional matrices to get

encrypted image.

B. DECRYPTION ALGORITHM
The decryption process is the reverse operation of the
encrypted image, and the decrypted image can only be
obtained by using the same key as the encrypted image. The
flow chart of the decryption algorithm we proposed is shown
in Fig.3.

There are several points to pay attention to when
decrypting. Firstly, in the case of inverse pixel scrambling,
the order of row and column permutation is opposite to that
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of encryption. Secondly, in encryption, the DNA decoding
method of the image is determined by {Hi}. So in decryption,
the DNA encoding method of the ciphertext image is also
determined by {Hi}. Thirdly, when performing the inverse
DNA operation, if the addition operation is used in encryp-
tion, the subtraction operation should be used in decryption,
and vice versa. Finally, the zero pixels added during encryp-
tion should be removed during decryption.

Algorithm 2 The Proposed Pixel Scrambling Algorithm
Input: kx : Chaotic sequence with length M; ky: Chaotic

sequence with length N; Qn(n = 1, 2, 3): Matrix of three
channels after DNA decoding;

Output: Q′n(n = 1, 2, 3): Matrix of three channels after
pixel scrambling;

1: [∼,Ux] = sort(kx , descend);
2: [∼,Uy] = sort(ky, descend);
3: for i = 1 : M do
4: temp = Qn(i, :);
5: Qn(i, :) = Qn(Ux(i), :);
6: Qn(Ux(i), :) = temp;
7: end for
8: for i = 1 : N do
9: temp = Qn(:, i);

10: Qn(:, i) = Qn(:,Uy(i));
11: Qn(:,Uy(i)) = temp;
12: end for
13: Denote Qn as Q′n.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This part introduces the detailed experimental results and per-
formance analysis of our compression-encryption algorithm.
All the experimental results are run on MATLAB 2015b in
a personal computer with Intel(R) Core(TM) i5-5200, CPU
2.20GHZ and memory 6.00GB, and the operating system
is Microsoft Windows 10. When the parameters of chaotic
system set in the experiment are: a = 35, b = 3, c = 12, d =
7, r = 0.5, q = 0.95, the system is hyperchaotic. Taking Lena
(256 × 256) as the input image, the four initial values of the
chaotic system are calculated by the input image, which are
as follows: X (0) = 0.4979, Y (0) = 0.4276, Z (0) = 0.7086
and H (0) = 0.7807. We select six color images (256 ×
256) as experimental images, which are ‘‘Lena’’, ‘‘peppers’’,
‘‘baboon’’, ‘‘airplane’’, ‘‘house’’ and ‘‘lake’’. The encrypted
and decrypted images are shown in Fig.4. It can be seen that
the algorithm can encrypt images effectively.

A. COMPRESSION PERFORMANCE ANALYSIS
Six compression matrices are used in the experiment, and
the compression ratios are 0.875, 0.8125, 0.75, 0.5, 0.4 and
0.2 respectively. Peak signal-to-noise ratio (PSNR) is used to
measure the quality of the decompressed image. Generally,
the larger PSNR is, the smaller the distortion of the decom-
pressed image is. The calculation formula of PSNR index is

FIGURE 4. Experimental simulation results. (a) original Lena image;
(b) encrypted Lena image; (c) decrypted Lena image; (d) original peppers
image; (e) encrypted peppers image; (f) decrypted peppers image;
(g) original baboon image; (h) encrypted baboon image; (i) decrypted
baboon image; (j) original airplane image; (k) encrypted airplane image;
(l) decrypted airplane image; (m) original house image; (n) encrypted
house image; (o) decrypted house image; (p) original lake image;
(q) encrypted lake image; (r) decrypted lake image.
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as follows [49]
MSE =

1
M × N

M∑
i=1

N∑
j=1

(P′(i, j)− P(i, j))2

PSNR = 10log10(
2552

MSE
)

, (30)

where MSE represents mean square error, which is used
to describe the deviation between the estimated value and
the real value, P′(i, j) represents the encrypted image, and
P(i, j) represents the image before encryption. According to
Eq. (30), PSNR of three channels can be calculated.

The experimental results of encryption and decryption
under different compression ratios are shown in Fig.5.
We combined the proposed encryption algorithm with CS,
and compared with our algorithm. The discrete wavelet
transform (DWT) is used for sparse representation of the
image, the measurement matrix is obtained from partial
Hadamar matrix, and the orthogonal matching pursuit (OMP)
algorithm is used to reconstruct the image. The change of
encrypted image data size with compression ratio is shown
in Table.5, and the corresponding PSNR indexes are shown
in Table.6. It can be seen from Table.5 and Table.6 that
with the decrease of the compression rate, the amount of
data and PSNR index of encrypted image decrease gradually.
Although the compression algorithm based on CS can obtain
smaller encrypted image, the PSNR index of reconstructed
image is not ideal. As can be seen from Table.6, the PSNR
index of the decompressed image is still greater than 30dB
when CR = 0.2 in our algorithm, which shows that it can
reconstruct the original image well.

B. HISTOGRAM ANALYSIS
Gray histogram reflects the statistical feature of gray value
and frequency in the image. Taking the components of R
channel of each color picture as an example, the histogram
before encryption and after decryption is shown in Fig.6,
where (a), (b), (c), (g), (h) and (i) represent the histogram
of original image, (d), (e), (f), (j), (k) and (l) represent the
histogram of decrypted image. In general, we hope that the
histogram of the plaintext image and the encrypted image
have a great change, and the histogram of the encrypted
image of different plaintext images has a similar structure.
The theoretical analysis of the variance of the histogram [71]
can further illustrate the anti-statistical attack performance of
the algorithm. The calculation formula of histogram variance
is as follows [38]

var(C) =
1
n2

n∑
i=1

n∑
j=1

(ci − cj), (31)

where n is the greyness level, C = {c0, c1, · · · , c255} denotes
the vector of the histogram value and ci and cj are the quantity
of the gray value. Taking the R channel of each image as
an example, the calculation results of different algorithms
are shown in Table.7. From the experimental results, our
proposed encryption algorithm reflects this requirement well.

FIGURE 5. Decrypted image with different compression ratio. (a) original
Lena image; (b) encrypted Lena of CR = 0.875; (c) encrypted Lena of CR =
0.8125; (d) encrypted Lena of CR = 0.75; (e) decrypted Lena of CR = 0.875;
(f) decrypted Lena of CR = 0.8125; (g) decrypted Lena of CR = 0.75;
(h) encrypted Lena of CR = 0.5; (i) encrypted Lena of CR = 0.4;
(j) encrypted Lena of CR = 0.2; (k) decrypted Lena of CR = 0.5;
(l) decrypted Lena of CR = 0.4; (m) decrypted Lena of CR = 0.2.

It shows that our encryption algorithm can resist the statistical
attack commendably.

C. CORRELATION ANALYSIS OF ADJACENT PIXELS
The correlation of adjacent pixels reflects the correlation
degree of pixel values in adjacent positions of the image,
which is one of the important statistical characteristics of

VOLUME 8, 2020 163533



H. Dong et al.: Color Image Compression-Encryption Using Fractional-Order Hyperchaotic System and DNA Coding

TABLE 5. Encrypted image data size(KB) with different CR.

TABLE 6. PSNR(dB) index under different CR.

TABLE 7. Comparison variance by different algorithms(R channel).

the image. The smaller the correlation between the adjacent
pixels of the encrypted image, the better the performance
of the designed encryption system. Then 10000 pixels are
selected from plaintext image and encrypted image to test the
pixel correlation. The correlation rxy of two adjacent pixels is
calculated as follows [50]

rxy =
cov(x, y)
√
D(x)D(y)

=
E {[x − E(x)][y− E(y)]}

√
D(x)D(y)

E(x) =
1
M

M∑
i=1

xi

D(x) =
1
M

M∑
i=1

[xi − E(x)]2,

(32)

where rxy ∈ [0, 1], and the larger rxy is, the higher the
correlation between adjacent pixels is.

Taking the R components of Lena as an example, the pixel
distribution in the horizontal, vertical and diagonal directions
before and after encryption is shown in Fig.7. Observing

FIGURE 6. Histogram before and after encryption of R channel.
(a) original Lena of R channel; (b) original peppers of R channel;
(c) original baboon of R channel; (d) encrypted Lena of R channel;
(e) encrypted peppers of R channel; (f) encrypted baboon of R channel;
(g) original airplane of R channel; (h) original house of R channel;
(i) original lake of R channel; (j) encrypted airplane of R channel;
(k) encrypted house of R channel; (l) encrypted lake of R channel.

Fig.7, after encryption, the pixel distribution of the image is
particularly chaotic, and there is no rule to follow. Table.8 lists
the adjacent pixel correlations of different cipher images with
our proposed encryption algorithm. Table.9 lists the adjacent
pixel correlation of encrypted Lena image with different
encryption algorithms. From the data listed in Table.8, it can
be seen that the correlation of adjacent pixels in all directions
of the encrypted image is close to 0, which shows that our
proposed encryption algorithm can effectively reduce the
correlation of adjacent pixels and improve the security of
the encryption system. Moreover, Table.9 shows the com-
parison results of our encryption algorithm with those in
references [5], [12] and [33]. It can be seen that the pixel
correlation of our algorithm is similar to that of other algo-
rithms, and the correlation in some directions is even smaller,
which indicates that our algorithm has excellent encryption
performance.

D. KEY SPACE
The key space is used to measure the resistance of the
encryption system to the brute-force attack. For an encryp-
tion system, the key space needs to be greater than 2100 to
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TABLE 8. Pixel correlation coefficients of plain and cipher images.

TABLE 9. Pixel correlation comparison for Lena (256× 256).

ensure security. In our encryption algorithm, the key space
consists of block size t , the parameters and initial values

of logistic chaotic system µ, x00, x01 and x02, the initial
values of fractional-order hyperchaotic Chen system X (0),

VOLUME 8, 2020 163535



H. Dong et al.: Color Image Compression-Encryption Using Fractional-Order Hyperchaotic System and DNA Coding

TABLE 10. Sensitivity of different keys.

FIGURE 7. Distribution of adjacent pixels in plain and cipher image.
(a) Horizontal direction on the R components of Lena; (b) Vertical
direction on the R components of Lena; (c) Diagonal direction on the R
components of Lena; (d) Horizontal direction on the R components of
Lena; (e) Vertical direction on the R components of Lena; (f) Diagonal
direction on the R components of Lena.

Y (0), Z (0) and H (0), fractional-order q, the number of 0
pixels added. The key capacity of this encryption algorithm is
10137 > 2455. In addition, you can change the parameter µ of
three logistic maps to make them different to further enhance
the key space. Therefore, our algorithm can effectively resist
brute force attacks.

E. KEY SENSITIVITY ANALYSIS
The basic requirement for the encryption system is to have a
high sensitivity to the key, even if the input key changes to a
very small extent, it can’t get the correct decryption image.
Taking the Lena image as an example, we test the key sensi-
tivity of µ, x00, x01, x02, X (0), Y (0), Z (0), H (0), and p. The
corresponding key sensitivity is shown in Table.10. We test
whether the correct decryption image can be obtained by only
changing a single key slightly. (By default, the symbol matrix
in step 8 of the encryption process is not known.) The test
results are shown in Fig.8, which can be seen that even if the
key is changed to a very small extent, the correct decryption
image can’t be obtained. So our encryption system is very
sensitive to the key.

F. INFORMATION ENTROPY
In the image encryption algorithm, information entropy is
usually used as an index to evaluate the randomness of the
image. The formula of information entropy is as follows

H (x) = −
2N−1∑
i=0

p(xi)log2p(xi), (33)

FIGURE 8. Decryption image with key changed slightly. (a) Lena with
µ+ 10−16; (b) Lena with x0 + 10−15; (c) Lena with X (0)+ 10−14; (d) Lena
with Y (0)+ 10−16; (e) Lena with Z (0)+ 10−14; (f) Lena with H(0)+ 10−14;
(g) Lena with x1 + 10−16; (h) Lena with x2 + 10−16; (i) Lena with
p+ 10−16.

where p(xi) represents the proportion of pixel in the image
whose pixel value is xi, and 2N represents the gray level of
the image. When the gray level is 256 = 28, the theoretical
value of information entropy Hmax = log2256 = 8.

Table.11 shows the information entropy comparison of
different plain images and cipher images. It can be seen that
the information entropy of the encrypted image is closer to
the theoretical value than the image before encryption, which
shows that our encryption algorithm can better resist the
information entropy attack. The comparison results of infor-
mation entropy with other encryption algorithms are shown
in Table.12. From the experimental data in Table.12, we can
see that the average information entropy of our algorithm is
better than other algorithms.

G. DIFFERENTIAL ATTACK
In order to detect whether the encryption system has the
ability to resist differential attack, number of pixels change
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TABLE 11. Information entropy comparison of different images.

TABLE 12. Comparison of information entropy with other algorithms for
Lena.

rate (NPCR) and unified average changing intensity (UACI)
are usually used tomeasure. The calculation formulas of these
two indicators are as follows [36]

NPCRn =

∑
i,j Dn(i, j)

M × N
× 100%, (34)

UACIn =
1
MN
× [

∑
i,j

|c′n(i, j)− cn(i, j)|
255

]× 100%, (35)

Dn(i, j) =

{
1, c′n(i, j)− cn(i, j) 6= 0
0, c′n(i, j)− cn(i, j) = 0,

(36)

where n is an integer and n ∈ [1, 3], n = 1, 2 and 3 represent
the NPCR and UACI indexes of R, G and B channels respec-
tively. C ′n represents the encrypted image after the original
image Cn changes one pixel value.

We just change the value of a single pixel in the plain image
to observe the NPCR and UACI indexes of the two encrypted
images. The results of the two indexes are listed in Table.13,
which can be seen that the NPCR and UACI indexes of the
encrypted image are very close to the ideal values, so it shows
that the encryption algorithm can well resist the differential
attack. Table.14 shows the comparison results between our
algorithm and other algorithms based on the Lena image.
From the experimental data in Table.14, it can be seen that
the NPCR and UACI indexes of the comparison algorithm
are poor when only changing the single pixel value, which
can not resist the differential attack effectively. In contrast,

TABLE 13. NPCR and UACI of different images.

TABLE 14. Comparison of NPCR and UACI for the Lena by different
algorithms.

our algorithm greatly improves the performance of resisting
differential attack.

H. RESISTING KNOWN-PLAINTEXT AND
CHOSEN-PLAINTEXT ATTACKS ABILITY
From the previous analysis, because the parameters used for
encryption in these algorithms are not sensitive to plain-
text [10], [28], [33], they have been cracked by known plain-
text attack and selective plaintext attack, which are often used
to evaluate the security of the algorithm [73]. In our algo-
rithm, we improved the performance of resisting these two
attacks through corresponding operations. Firstly, our encryp-
tion algorithm is based on fractional-order hyperchaotic Chen
system and logistic map, and its initial values are completely
determined by plaintext. Secondly, our encryption algorithm
is highly sensitive to the keys, and the chaotic sequences {Xi},
{Yi}, {Zi} and {Hi} can dynamically control each encryp-
tion process. This means that when the plaintext changes,
the keys will change, which will lead to the change of chaotic
sequence, so the encryption result will also alter. Therefore,
our algorithm is highly dependent on the original image and
can resist these two attacks.

I. ANTI-NOISE ABILITY
In the process of transmission, the encrypted image will
inevitably be disturbed by noise. The typical noise types
are Gaussian noise (GN) and salt pepper noise (SPN). The
encrypted image and the corresponding decrypted image
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FIGURE 9. Experimental results of anti-noise performance. (a) encrypted
image with Gaussian noise variance of 0.15; (b)decrypted image with
Gaussian noise variance of 0.15; (c) encrypted image with Gaussian noise
variance of 0.2; (d) decrypted image with Gaussian noise variance of 0.2;
(e) encrypted image with salt and pepper noise density of 0.002;
(f) decrypted image with salt and pepper noise density of 0.002;
(g) encrypted image with salt and pepper noise density of 0.005;
(h) decrypted image with salt and pepper noise density of 0.005.

under different noise densities are shown in Fig.9. The vari-
ance of Gaussian noise is 0.15 and 0.20, respectively. The
density of salt and pepper noise was 0.002 and 0.005, respec-
tively. It can be seen from Fig.9 that most of the original
image information can be recovered after decrypting the
cipher image with noise, so our algorithm has good anti-noise
performance.

J. ANTI-CROPPING ABILITY
When transmitting an encrypted image, it is easy to be
attacked by occlusion. Therefore, we test the decrypted
images with different degrees of data loss, which are 1

8
of the occluded encrypted images, 1

16 of the occluded
encrypted images and 1

32 of the occluded encrypted images to
detect the anti-cropping attack performance of our algorithm.
The experimental results are shown in Fig.10. It can be seen

FIGURE 10. Experimental results of anti-noise performance. (a) 1/8 of the
encrypted image is cropped; (b) 1/16 of the encrypted image is cropped;
(c) 1/32 of the encrypted image is cropped; (d) decrypted image
of 1/8 data cropped; (e) decrypted image of 1/16 data cropped;
(f) decrypted image of 1/32 data cropped.

from Fig.10 that although a part of the encrypted image has
been cut off, our algorithm can still recover the original image
well.There are some flaws in the decrypted image, but most of
the original image information can be obtained from it, which
shows that our proposed algorithm has good anti-cropping
attack ability.

V. CONCLUSION
In this paper, we proposed a novel color image compression-
encryption algorithm based on the fractional-order hyper-
chaotic system combined with DCT and DNA coding. In the
compression stage, the two-dimensional DCT transforms the
image to the frequency domain for processing, and the quan-
tization operation is used to reduces the amount of image
data. In the encryption stage, chaotic sequences are gener-
ated by fractional-order hyperchaotic Chen system, which are
used to control DNA coding, decoding and DNA perations.
Moreover, the logistic map is used to scramble the pixel posi-
tion, which further improves the security of the algorithm.
Experimental results verify that our algorithm can effectively
compress image data and resist various attacks. However,
although the high-dimensional fractional-order hyperchaotic
system is used in the encryption algorithm to ensure that
it has enough key space, the process of pixel scrambling is
only controlled by the one-dimensional logistic map, and its
parameter space is very limited, which may affect the key
space. Secondly, we only use statistical tests to analyze the
security of encryption algorithm, which are necessary but
not sufficient. These shortcomings will be improved in future
research.
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