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ABSTRACT Recently, error correcting codes in the erasure channel have drawn great attention for
various applications such as distributed storage systems and wireless sensor networks, but many of their
decoding algorithms are not practical because they have higher decoding complexity and longer delay.
Thus, the automorphism group decoder (AGD) for cyclic codes in the erasure channel was introduced,
which has good erasure decoding performance with low decoding complexity. In this paper, we propose new
two-stage AGDs (TS-AGDs) for cyclic codes in the erasure channel by modifying the parity-check matrix
and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for binary
extended Golay and BCH codes. Also, TS-AGD can be used in the error channel using ordered statistics.
Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding
performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown
that the proposed TS-AGD achieves the performance nearly identical to the maximum likelihood (ML)
decoder in the erasure channel and the ordered statistics decoder (OSD) in the error channel.

INDEX TERMS Automorphism group decoder (AGD), Bose-Chaudhuri-Hocquenghem (BCH) codes,
cyclic codes, erasure channel, error correcting codes, iterative erasure decoder (IED), ordered statistics
decoder (OSD).

I. INTRODUCTION
Research on error correcting codes in the erasure channel
is one of the major subjects in information theory. Erasure
channel is a typical channel model for distributed storage
systems and wireless sensor networks, where the locations
of symbol errors are known.

Algebraic codes have a long history from Hamming codes
to algebraic geometry codes. The decoders of algebraic codes
are designed using the mathematical properties of the codes
and thus it is difficult to implement practical decoders for
algebraic codes. However, lots of research works for their
decoding algorithms have been done to reduce the decod-
ing complexity and delay. In cyclic codes, one-step major-
ity decoding [3] and permutation decoding [4] schemes are
exemplary methods which can be practically implemented
using their cyclic property in the error channel.

A low complexity iterative decoder can be one of the
solution as an implementable decoder and thus, the iterative
decoding algorithms and error correcting codes with iterative
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decoder such as turbo and low-density parity-check (LDPC)
codes have been widely studied. In addition, low-complexity
iterative erasure decoder (IED) for algebraic codes has also
been studied [7]. However, IED has inherently inferior decod-
ing performance compared to the maximum likelihood (ML)
decoder and the gap between the decoding performances
becomes larger for the algebraic codes, because the sparse-
ness of their parity check matrices is not guaranteed contrary
to the LDPC codes. Thus, a possible solution for decoding of
algebraic codes is to modify the structure of the decoder in
the erasure channel.

Recently, one approach to overcome the inferior decod-
ing performance of IED for the algebraic codes in the era-
sure channel was proposed, called the automorphism group
decoder (AGD) for cyclic codes [8]. AGD uses the permu-
tations of the automorphism group in the middle of the IED
procedure. For cyclic codes, the permutation operation can be
substituted by the cyclic shift operation for codewords, which
are also codewords. It was shown that for some cyclic codes,
AGD improves the decoding performance but it requires
higher decoding complexity and delay due to repeated decod-
ing process. In addition, many similar concepts have been
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proposed for cyclic LDPC codes in the error channel such as
multiple-bases belief-propagation (MBBP) [9] and revolving
iterative decoding (RID) [10], [11].

In order to operate AGD efficiently, it is important
to design the appropriate parity-check matrix. However,
the conventional design method in [8] includes the problem
to find codewords with minimum Hamming weight which
is known as NP-hard problem in general. In this paper,
we propose a new decoding algorithm, referred to as a
two-stage AGD (TS-AGD) which includes a construction
algorithm of good parity-check matrix with polynomial-time
complexity and also has excellent decoding performance with
low decoding complexity for cyclic codes. The proposed
decoding process is done in two decoding stages. That is,
the first decoding stage finds the cyclic shift values of the
received vector for the successful erasure decoding while
in the second decoding stage, the erasure decoding process
is done for the received vectors cyclically shifted by the
cyclic shift values found in the first decoding stage. Further,
the proposed TS-AGD algorithm can be implemented by the
modified parity-check matrix for the (n, k) cyclic code such
that some of the (n − k)-tuple column vectors in the parity-
check matrix are standard vectors in the appropriate column
indices and Hamming weight of the row vectors in the parity-
check matrix becomes as low as possible, which requires
polynomial-time complexity. The numerical analysis shows
that the proposed algorithms are advantageous for extended
Golay codes and high-rate BCH codes, where they achieve
near-ML decoding performance.

Interestingly, TS-AGD can also be applied to the error
channel such as additive Gaussian channel using the moti-
vation of ordered statistics decoding (OSD) [12]. In OSD,
k most reliable bits are considered not to be erroneous and
declare a decoded word as the codeword which has the same
hard-decisioned bits as the received vector in the k most
reliable bits, where k is code dimension. It is known that
OSD outperforms hard-decision decoding (HDD) such as
Euclidean decoder. For codelength n, most reliable k bits and
the other n − k bits in OSD are considered as non-erasures
and erasures in the erasure channel. respectively and thus,
TS-AGD for erasure channel can also decode the errors as
OSD can decode. Numerical analysis shows that TS-AGD
has near-ML performance in the error channel as well as in
the erasure channel.

This paper is organized as follows. In Section II, AGD,
IED, and OSD are reviewed. In Section III, the pro-
posed TS-AGD for the binary cyclic codes in the erasure
and error channels is introduced by modifying the parity-
check matrix and the AGD algorithm, referred to as TS-
AGD. In Section IV, numerical analysis of the proposed
TS-AGD schemes verifies the performance improvement
for the extended Golay and high-rate BCH codes. Finally,
the conclusion is given in Section V.

II. PRELIMINARY
In this section, several mathematical notations and abbrevi-
ations are defined. For a vector vvv, wt(vvv) denotes Hamming

weight of vector vvv and supp(vvv) denotes the set of indices of
the nonzero components in vvv. The i-th standard vectoruuui is the
basis vector, where the i-th component of uuui is equal to 1 and
the other components are equal to 0. Let 000 and 111 denote the
all-zero and all-one vectors. The decoding procedures of IED
and AGD are explained and compared and several definitions
are presented in the next subsection. Also suppose that (n, k)
linear binary code C with codelength n and dimension k has
an (n− k)× n parity-check matrix H .

A. ERASURE DECODER: IED AND AGD
1) IED FOR ERASURE CHANNEL
In IED, H can be represented by a bipartite graph G with n
variable nodes (VNs) and n − k check nodes (CNs). Let V
and U be sets of variable nodes and check nodes and let dvi
and duj be degrees of a variable node vi ∈ V and check node
uj ∈ U , respectively, for 0 ≤ i ≤ n−1 and 0 ≤ j ≤ n−k−1.
The bipartite graph is then denoted by G=(V ,U ,H ). In the
erasure channel, the variable nodes have two different states,
i.e., erasure and non-erasure states, while the check nodes
have three states, i.e., decodable, non-decodable, and non-
erasure states. The decoding procedure of IED consists of
several iterations, where each iteration performs check node
update (CNU) and variable node update (VNU) operations
sequentially.

The CNU operation is the procedure that each CN finds
its state by counting the number of the erasure states of the
variable nodes connected to itself. A decodable state of a CN
is declared when the number of the connected VNs in the
erasure state is 1. If the CN is connected to two or more VNs
in the erasure state, then a non-decodable state is declared
for the CN. The CNs which are not connected with VNs
in the erasure state are called non-erasure states. The VNU
operation is a procedure by which VNs in the erasure state
are decoded using their connected decodable CNs.

2) AGD FOR ERASURE CHANNEL [8]
AGD can be applied to cyclic codes, where AGD consists of
the repeated IED and cyclic shift operations for the received
vectors. That is, if there is no decodable check node, then
the received vector is cyclically shifted until decodable check
nodes are found. If it is found, the IED algorithm is repeatedly
applied to the cyclically shifted received vectors.

It is known that the cyclic shift operation is easy to imple-
ment with negligible complexity and delay. In the AGD,
IED should be performed for each cyclically shifted received
vector until the decoding is successful or the number of
cyclic shifts is equal to the length of codeword. Although the
decoding complexity and delay of the AGD are much higher
than those of the IED, the decoding performance of the AGD
is much better than that of the IED.

The decoding performance and complexity of IED and
AGD can be improved by using an optimized parity-check
matrix. For binary case, Hehn uses cyclic orbit generator
(cog) and cog family to construct parity-check matrix [8].
Two vectors vvv1 and vvv2 are said to be cyclically indistinguish-
able if the cyclic shift of vvv1 is identical to vvv2, and otherwise,
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cyclically distinguishable. Then, the cog is defined as the
cyclically distinguishable binary codeword of a dual code
with minimum Hamming weight, which can be used as a row
of the parity-check matrix. Cog family is the set of cogs that
have the same Hamming autocorrelation property, where the
Hamming autocorrelations of cog’s are defined as

|OOτ | = cogcogcog · cogcogcog(τ ), |ZOτ | = (111− cogcogcog) · cogcogcog(τ ),

|OZτ | = cogcogcog · (111− cogcogcog(τ )), |ZZτ | = (111− cogcogcog) · (111− cogcogcog(τ ))

(1)

where cogcogcog(τ ) is right cyclic shift of cogcogcog by τ and · denotes the
inner product. Then, the parity-check matrix is constructed
by n − k cogs, where it is desirable to select the n − k
cogs from cog families minimizing the upper bounds of
Theorem 3.9 in [8].

B. ERROR DECODER: OSD
Let ccc = (c0, . . . , cn−1) ∈ C be a binary codeword in a code C
and binary phase shift keying (BPSK)modulation is assumed.
Then, a received vector rrr = (r0, . . . , rn−1) is denoted as
ri = (−1)ci + zi, where zi ∼ N (0, N0

2 ). Then, we select the k
most reliable information (MRI) elements from the received
vector, that is, the k elements with the largest values in
|rrr| = (|r0|, . . . , |rn−1|) that are linearly independent. Declare
a decoded codeword as the codeword which has the same
hard-decisioned bits as the received vector in the indices of
the k MRI elements.

Procedure of OSD requires the following operations.
In order to find the decoded codeword with the same elements
as the hard-decisioned k MRI elements, matrix inversion of
(n− k)× (n− k) submatrix with columns except the indices
of k MRI bits from H is used. In fact, many of the n − k
columns are linearly dependent actually and thus it is needed
to reiterate the following procedure for k new MRI bits by
removing the column with minimum reliability and adding
the dependent column with maximum reliability among the
columns except the indices of the k MRI bits. Thus, OSD
requires high decoding complexity from these operations.
In order to reduce the complexity, locality-aware OSD was
introduced recently [16]. Similarly, we will show that low-
complexity TS-AGD will be proposed in the error channel
using the approach of OSD.

C. SOME DEFINITIONS
In this subsection, some definitions for the proposed TS-AGD
algorithms are presented as follows. First, several defini-
tions of binary sequences are presented. Let sD(t) denote
a characteristic sequence of index set D such that sD(t) = 1
if t ∈ D and sD(t) = 0, otherwise. Two binary sequences
frequently used in this paper are defined as follows.
Definition 1 (Erasure Sequence): Erasure sequence se(t)

is defined as a characteristic sequence of the erasure set Se,
which is the set of indices of erasure symbols in the vector
received over the erasure channel.
Definition 2 (Parity Check Sequence): Parity check

sequence sp(t) of the (n−k)×n parity-check matrixH of the

(n, k) cyclic code is a binary sequence of length n defined as

sp(t) =
{
1, if wt(hhht ) = 1
0, otherwise

(2)

where hhht is the t-th column of H. Furthermore, let Sp denote
the support set of sp(t), i.e., the set of indices of column
vectors with Hamming weight 1.

For column indices of the parity-check matrix H , the com-
ponents of Sp are called standard indices and otherwise, non-
standard indices. Thus, the number of 1’s in a length of sp(t) is
smaller than or equal to n−k . TheHamming cross-correlation
of two binary {0, 1} sequences, se(t) and sp(t), is defined as

RH (τ ) =
n−1∑
t=0

se(t)sp(t + τ ) (3)

where RH (τ ) takes values in {0, 1, . . . , n− k}.
In the next section, we propose a modification of parity-

check matrix, TS-AGD algorithm, and their analysis.

III. MODIFICATION OF PARITY-CHECK MATRIX
AND TWO-STAGE AGD
In this section, we propose a new modification method of the
parity-check matrix and a two-stage decoding algorithm, and
the result of a numerical analysis for the proposed decoding
algorithm is discussed.

A. MODIFICATION OF THE PARITY-CHECK MATRIX
First, we propose a method to modify the parity-check matrix
for the proposed two-stage decoding algorithm because the
decoding performance of the proposed two-stage decoding
algorithm depends on the structure of the parity-checkmatrix.
Here, the following criteria are used for the modification of
the parity-check matrix using Definition 2.
〈Three criteria for modification of parity-check matrix〉
(i) Modify the parity-check matrix such that as many of its

column vectors as possible are the standard vectors.
(ii) The parity check sequence of the parity-check matrix

has Hamming autocorrelation values as low as possible.
(iii) Each row of the parity-check matrix has as low Ham-

ming weight as possible.
In fact, the best criteria for the parity-check matrix of (n, k)
cyclic codes can be described as:
(i) n − k columns of the parity-check matrix are standard

vectors.
(ii) All Hamming autocorrelation values of the parity check

sequence of the parity-check matrix are equal.
(iii) The Hamming weights of all rows of the parity-check

matrix are equal to the minimum Hamming weight of
its dual code.

It is easy to check that in order for the parity check sequences
to satisfy the second criterion, they should be the character-
istic sequences of cyclic difference sets DC with parameters
(n, k, λ) for (n, k) cyclic codes, if their parameters are allowed
for the cyclic difference sets. Note that k-subset DC of a
cyclic group G with order n is an (n, k, λ) cyclic difference
set if every nonzero component of G has exactly λ repre-
sentations as a difference dc − d ′c with components from dc,
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FIGURE 1. The second stage decoding procedure of the TS-AGD of τ such that RH (τ ) = |Se|.

d ′c ∈ DC [13]. It is known that some cyclic codes satisfy the
above best criteria. The other criteria can be compromised if
one criterion cannot be achieved due to the other criteria. The
proposed decoding algorithms together with the proposed
modification of the parity-check matrix will be explained in
the next subsection.

B. A NEW TWO-STAGE AGD IN THE ERASURE CHANNEL
Using AGD algorithm, we propose a new two-stage AGD of
(n, k) cyclic codes in the erasure channel as follows.

1) FIRST DECODING STAGE (PREPROCESSING STAGE)
Find a {0, 1} parity check sequence sp(t) of length n from the
parity-check matrix H of an (n, k) cyclic code. Find a {0, 1}
erasure sequence se(t) of length n from the received vector
r = (r0, r1, . . . , rn−1). Then, calculate a Hamming cross-
correlation as

RH (τ ) =
n−1∑
t=0

sp(t)se(t + τ ), 0 ≤ τ ≤ n− 1. (4)

Clearly, RH (τ ) takes values of the nonnegative integers less
than or equal to min{|Se|, |Sp|} because |Se| is the number of
erasure symbols and |Sp| is the number of standard vectors of
the parity-check matrix. It can be assumed that the decoding
complexity of the preprocessing stage for each τ is analogous
to the CNU of one check node. If there exists τ such that
RH (τ ) = |Se|, then proceed to the second decoding stage.
If not found, cyclically shift the received vector and proceed
to the second decoding stage for r(τ ) in the order of τ ’s such
that values ofRH (τ ) are decreasing, where r(τ ) is a cyclic shift
of r by τ .

2) SECOND DECODING STAGE (IED Stage)
In the second decoding stage, the IED algorithm is used for
decoding of the cyclically shifted received vector according
to the values of RH (τ ). Recall that Sp is the support set of
sp(t). Let r(τ ) = (rn−τ , rn−τ+1, . . . , rn−1, r0, . . . , rn−τ−1)
be a received vector cyclically shifted by τ , where erasure
symbols are located in the indices in S(τ )e = {t|se(t − τ ) =
1, 0 ≤ t ≤ n− 1}.

(i) For τ such that RH (τ ) = |Se|: It is clear that S
(τ )
e ⊆ Sp,

that is, all of the erasure symbols in r(τ ) are located in the
indices of standard vectors. Note that the i-th component
of the received vector r is expressed as the transmitted
symbol ci for a non-erasure symbol and ĉi for an erasure
symbol. Suppose that r(τ ) can be split into two n-tuple
vectors as

r(τ ) = r(τ )e + r(τ )ne (5)

where the j-th component of r(τ )e is denoted as ĉj for
j ∈ S(τ )e and otherwise, 0 and the j-th component of r(τ )ne
is equal to the j-th component of r(τ ) for j /∈ S(τ )e and
otherwise, 0. In general, the syndrome vector should be
zero as

S = H (r(τ ))
>
= H (r(τ )e )

>
+ H (r(τ )ne )

>
= 0 (6)

where > is a transpose of a vector and thus

(r(τ )e )> = H (r(τ )e )
>
= H (r(τ )ne )

>
. (7)

If the j-th column vector of H is the i-th standard vector
uuui, ĉj is equal to the i-th component of H (r(τ )ne )

>

because
RH (τ ) = |Se|. Clearly, each j-th column for j ∈ Se ⊂ Sp
has a different standard vector uuui. In this case, we can
recover all of the erasure symbols by H (r(τ )ne )

>

in one
iteration, which is described in Fig. 1.

(ii) For τ such that RH (τ ) = |Se| − 1: In this case, we have
one erasure symbol in the non-standard vector of H
and the other erasure symbols are located in the column
indices in Sp. Here, the decoding process is done in two
steps, that is, one for one erasure symbol in the non-
standard vector of H and the other for the other erasure
symbols with indices in Sp. Suppose that the set of era-
sure symbol indices is given as {e0, e1, . . . , ez−1}, where
z is the number of erasure symbols. Suppose that the
ej-th column is the ij-th standard vectoruuuij , 0 ≤ j ≤ z−2,
and the ez−1-th column of H is a non-standard vector.
We also have |Sp| − z+ 1 standard vectors in H , where
non-erasure symbols are located. In the first decoding
step, assume that for z ≤ ij ≤ |Sp|, some ij-th component
of the ez−1-th column ofH is equal to 1. Then, using the
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FIGURE 2. The second stage decoding procedure of the TS-AGD of τ such that RH (τ ) = |Se| − 1.

FIGURE 3. The second stage decoding procedure of the TS-AGD of τ such that RH (τ ) ≤ |Se| − 2.

ij-th row ofH , the erasure symbol ĉez−1 can be recovered
because there is no erasure symbol except for ĉez−1 at the
positions of component 1 in the ij-th row of H . Then,
we go to the second decoding stage, which is the same
as that of R(τ ) = |Se|. If the ij-th component of the
ez−1-th column of H is 0, decoding of the first step
cannot be successful because ez−1 disappears in the IED
procedure. If the first decoding step is not successful,
then we try to decode it for other τ values such that
RH (τ ) = |Se| − 1. The second decoding procedure is
described in Fig. 2.

(iii) For τ such that RH (τ ) ≤ |Se|−2: Let S̄p = {t|sp(t) = 0},
i.e., the complement of Sp. Let Sp = Spe∪Spne , where Spe
is a subset of indices such that the erasure symbols exist
and Spne = Sp\Spe . Similarly, let S̄p = S̄pe∪S̄pne and then
clearly, |Spe | = RH (τ ). For j ∈ Spne , suppose that the j-
th component of the ei-th column of H with ei ∈ S̄pe
is 1 and that the j-th components of the other columns
with indices in S̄pe \ {ej} of H are all zero and further,
there exists uuuj in the columns with indices in Spne . Then,
we can recover the erasure symbol with index ei. That is,
all erasure symbols except for ĉei are disappeared in the
inner product of the j-th row ofH and the received vector
cyclically shifted by τ and thus ĉei can be recovered.

To decode the remaining erasure symbols, it is needed
to return to the preprocessing stage to find the values of
τ ’s with higher values of RH (τ ). The second decoding
stage of the proposed two-stage decoding algorithm is
described in Fig. 3.
Overall, the decoding procedure of TS-AGD is
described in the flowchart of Fig. 4.

C. ANALYSIS OF MODIFICATION CRITERIA FOR THE
PARITY-CHECK MATRIX
This subsection analyzes the modification criteria of H for
(n, k) cyclic codes. The first criterion is related to the num-
ber of standard vectors, that is, the number of t’s such that
sp(t) = 1, which is less than or equal to n − k . As described
in the previous subsection, the proposed TS-AGD procedure
can be done for the cyclically shifted received vector r(τ )

such that RH (τ ) has higher values. As the number of 1’s in
sp(t) increases, it is more probable for RH (τ ) to have higher
values.

The second criterion is how to locate the standard vectors
in the parity-check matrix. It is not easy to prove the second
criterion and thus the following theorem replaces the proof
of the second criterion. First, we need a lemma to prove the
following theorem.
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FIGURE 4. Flowchart of the TS-AGD algorithm.

Lemma 1 (Bonferroni Inequality [15]): Let Ei, i ∈ A,
be sets of components. Then we have the following inequal-
ity as∑
I⊂A,|I |=1

|Ei| −
∑

I⊂A,|I |=2

∣∣∣∣∣⋂
i∈I

Ei

∣∣∣∣∣
≤

∣∣∣∣∣⋃
i∈A

Ei

∣∣∣∣∣ ≤ ∑
I⊂A,|I |=1

|Ei| −
2
|A|

∑
I⊂A,|I |=2

∣∣∣∣∣⋂
i∈I

Ei

∣∣∣∣∣. (8)

Theorem 1: In the upper bound of Lemma 1, the number
of occurrences of RH (τ ) ≥ |Se| − 1 for 0 ≤ τ ≤ n − 1
is maximized if the parity check sequence of the modified
parity-check matrix has a particular constant dependent on
|Se| autocorrelation values.

Proof: First, it is desirable for the proposed decod-
ing algorithm to successfully decode more erasure patterns,
which is possible if RH (τ ) ≥ |Se| − 1. Thus, we have to
modify the parity-check matrix, for which RH (τ ) ≥ |Se| − 1
is most common for as many shift values τ as possible. The
following two cases are considered.
(i) RH (τ ) = |Se|:

This means that S(τ )e ⊆ Sp. It is easy to check that in
RH (τ ), it is equivalent to cyclically shift sp(t) instead of
se(t). Let S

(τ )
p be the support set of sp(t + τ ). Let Eτ

be the set of erasure patterns which can be successfully
recovered by sp(t + τ ). Then, we have |Eτ | =

(
|Sp|
|Se|

)
,

which leads to
n−1∑
τ=0

|Eτ | ≤ n
(
|Sp|
|Se|

)
. (9)

FIGURE 5. The number of doubly counted erasure patterns for τ such that
RH (τ ) = |Se|.

It is easy to check that doubly counted erasure pat-
terns are included in (9), which should be excluded.
If the shaded parts in Fig. 5 include all the era-
sure symbols, those erasure patterns are doubly
counted, where a(τ1, τ2) denotes the number of pairs(
sp(t + τ1), sp(t + τ2)

)
= (1, 1). Thus we have(2|Sp|+a(τ1,τ2)−n

|Se|

)
doubly counted erasure patterns. Using

Lemma 1, the number of erasure patterns which are
successfully decoded by sp(t) is bounded as∣∣∣∣∣
n−1⋃
τ=0

Eτ

∣∣∣∣∣ ≤
n−1∑
τ=0

|Eτ | −
2
n

∑
τ1,τ2

∣∣Eτ1 ∩ Eτ2 ∣∣
≤ n

(
|Sp|
|Se|

)
−

2
n

∑
τ1,τ2

(
2|Sp| + a(τ1, τ2)− n

|Se|

)
.

(10)
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FIGURE 6. The number of doubly counted erasure patterns for τ such that
RH (τ ) = |Se| − 1.

(ii) RH (τ ) = |Se| − 1:
In this case, the index of one erasure symbol is in
S̄p and the indices of the other erasure symbols are
in Sp. Thus, the total number of such erasure patterns is(n−|Sp|

1

)(
|Sp|
|Se|−1

)
, where doubly counted erasure patterns

are included. There are two cases of doubly counted
erasure patterns as shown in Fig. 6.
a) Each of two erasure symbols is located in

A10 and A01, respectively and the other erasure
symbols are located in A00, which are counted as(n−|Sp|−a(τ1,τ2)

1

)2(2|Sp|−n+a(τ1,τ2)
|Se|−2

)
.

b) One erasure symbol is located inA11 and the other era-
sure symbols are located in A00, which are counted as(a(τ1,τ2)

1

)(2|Sp|+a(τ1,τ2)−n
|Se|−1

)
. Similarly, from Lemma 1,

the number of erasure patterns which are successfully
decoded by sp(t) is given as∣∣∣∣∣
n−1⋃
τ=0

Eτ

∣∣∣∣∣ ≤
n−1∑
τ=0

|Eτ | −
2
n

∑
τ1,τ2

∣∣Eτ1 ∩ Eτ2 ∣∣
≤ n

(
n− |Sp|

1

)(
|Sp|
|Se| − 1

)
−

2
n

∑
τ1,τ2∈[0,n−1]

((
n−|Sp|−a(τ1, τ2)

1

)2
×

(
2|Sp| + a(τ1, τ2)− n

|Se| − 2

)
+

(
a(τ1, τ2)

1

)
×

(
2|Sp| + a(τ1, τ2)− n

|Se| − 1

))
. (11)

In order to maximize the upper bounds in (10) and (11),
the second terms of the right hand sides should be minimized,
which can be solved by the convex optimization as described
in Appendix. That is, it is derived in Appendix that max-
imizing the upper bound on the number of occurrences of
RH (τ ) ≥ |Se| − 1 for 0 ≤ τ ≤ n− 1 by convex optimization
occurs when the autocorrelation values of sp(t) are constant.
Thus, we prove the theorem.
The third criterion is related to the performance of the

decoder, that is, H with the minimum Hamming weight
of rows can have better decoding performance in IED as
mentioned in [8] as cog, because more erasure symbols are
removed in the inner product of the received vector and the
rows with the minimum Hamming weight of H .

D. ANALYSIS OF DECODING COMPLEXITY OF TS-AGD IN
THE ERASURE CHANNEL
Decoding complexity of TS-AGD in the erasure channel is
analyzed as follows. In the decoding stage, it requires a large
number of iterations and high decoding complexity. In the
preprocessing stage, TS-AGD derives the order of decoding
by computing cross-correlation of the parity check sequence
and erasure sequence. TS-AGD decodes in order of more
successful decoding cases of cyclic shift values τ but the
conventional AGD decodes for all the possible τ without
considering the decoding order.

We analyze the decoding complexity using integer addition
and XOR operation. Complexities of each integer addition
and each XOR operation between two binary integer values
are considered as 1, respectively and then integer additions
and XOR operations among l values are done by l− 1 serial-
ized operations between two integers in the binary form. The
complexity of preprocessing stage will be counted by occur-
rence of integer additions as in Fig. 7 and the complexity for
search of τ ′s with high correlation values is ignored because
it has low complexity. For each iteration of decoding pro-
cess, both CNU and VNU operations are performed, where
CNU operation requires (dc − 1)(n − k) integer additions as
in Fig. 8 and VNU operation requires (dc − 2) XOR for each
decodable erasure symbol as in Fig. 9. In order to compute the
decoding complexity by the numerical analysis, we consider
XOR and integer addition operations as 1, respectively, where
numerical approachwill be used for the following discussions
including Figs. 11, 13, and 16 in Section IV.

E. TS-AGD IN THE ERROR CHANNEL
In this subsection, we propose a new method of low-
complexity TS-AGD in the error channel motivated by OSD.
In order to use TS-AGD in the erasure channel, we treat
n − k bits except MRI bits as erasures regardless of their
linearly independent columns. Then, TS-AGD decodes the
codeword until decoding successfully or reaching a stopping
set. If stopping set is found, the decoder treats one of the
remaining erasures with the maximum reliability as non-
erasure and it can proceed to erasure decoding. In this way,
the decoder always obtain a decoded codeword.

Generally, many of the n − k columns are linearly depen-
dent and thus, linearly independent n − k columns after
many iterations in OSD should contain several less reliable
bits as MRI bits. Instead, we consider an alternative method
to decode the received codewords using the n − k bits as
erasures and change the erasure bit to non-erasure bit only
when stopping set exists after iterations.

For complexity of TS-AGD, it is definitely lower than
OSD. As aforementioned in Section II-B, the operations
related with high decoding complexity of OSD are matrix
inversion and the iterations by searching n − k linearly
independent columns. For the matrix inversion with O(n3),
TS-AGD is lower because it is based on the iterative decod-
ing with O(n) for iterations. Also, the iterated operation by
searching n − k linearly independent columns for matrix
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FIGURE 7. Complexity analysis of preprocessing operation for TS-AGD.

FIGURE 8. Complexity analysis of CNU operation for AGD and TS-AGD.

FIGURE 9. Complexity analysis of VNU operation for AGD and TS-AGD.

inversion is not required in the TS-AGD. For FER perfor-
mance in the error channel, TS-AGD has comparable per-
formance to OSD for the codes that TS-AGD has near-ML
performance such as extended Golay and high-rate BCH
codes, which will be given in the numerical analysis of the
next section.

IV. NUMERICAL ANALYSIS FOR TS-AGD
In this section, the proposed TS-AGD is shown to be near-
ML performance for some cyclic codes in the erasure channel
such as extended Golay codes and double and triple-error cor-
recting BCH codes. For extended Golay codes, the proposed
modification of parity-check matrix can achieve the decoding
performance identical to that of the ML decoder. For double-
and triple-error correcting BCH codes, AGD and TS-AGD
have the near-ML decoding performances. Regarding decod-
ing complexity, additional complexity by preprocessing stage
for TS-AGD may increase the decoding complexity but for
long codelength, overall decoding complexity of TS-AGD
becomes lower than that of AGD.

A. (24, 12, 8) EXTENDED GOLAY CODE
Extended Golay code is not a cyclic code, but it is cyclic
except for the last parity bit. Thus, we can apply the AGD and
the proposed TS-AGD. For comparison, we will use parity-
check matrix H[24,12],∗ in [8].
A systematic parity-checkmatrixHsys is constructed where

the 12 × 12 submatrix by the first 12 columns is iden-
tity matrix, i.e., parity check sequence of Hsys is sp(t) =
(111111111111000000000000). The modified parity-check
matrix based on the three proposed criteria can be given as

Hm =



100010000000011000111010
010010100100001010100010
001000000010011010100110
000100100110011000010010
000011100010001000001110
000010110000010010010110
000010001110000000110110
000000100101010000101110
000000100010100010111010
000010000110010110001010
000000000100001011011110
000010100110011010111101



(12)

where the first 11 standard column vector indices are deter-
mined by the cyclic difference set with parameters (23, 12, 5)
and the last standard vector is located in the extended bit. The
last row ofHm has the Hamming weight of 12, which is larger
than the minimum Hamming weight 8. Thus, we can further
modify it by replacing the last row by sum of the first row and
the last row as

HA =



100010000000011000111010
010010100100001010100010
001000000010011010100110
000100100110011000010010
000011100010001000001110
000010110000010010010110
000010001110000000110110
000000100101010000101110
000000100010100010111010
000010000110010110001010
000000000100001011011110
100000100110000010000111



(13)

where the last row has the minimum Hamming weight 8 but
the first column is not a standard vector. The further modifi-
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TABLE 1. The undecodable erasure patterns by the modified H for the (24,12,8) binary extended Golay code.

cation is done by replacing the i-th row with the sum of the
i-th row and the last row of Hm, 1 ≤ i ≤ 11 and the last row
with the first row of Hm as

HB =



100000100110000010000111
010000000010010000011111
001010100100000000011011
000110000000000010101111
000001000100010010110011
000000010110001000101011
000000101000011010001011
000010000011001010010011
000010000100111000000111
000000100000001100110111
000010100010010001100011
100010000000011000111010



. (14)

In fact, the first columns of HA and HB have Hamming
weight 2. Then the parity check sequences of Hp, HA, and
HB are given as

sp,Hm (t) =
(
111101011001100101000001

)
(15)

sp,HA (t) =
(
011101011001100101000001

)
(16)

sp,HB (t) =
(
011101011001100101000000

)
. (17)

In the (24, 12, 8) extended Golay code, any of the modified
parity check matrices cannot achieve the same performance
as that of the ML decoder. However, the TS-AGD by adding
redundant check equations toHB can give us the same decod-
ing performance as the ML decoder, which is given as

HC =
(
HB
H ′A

)
(18)

where H ′A is a submatrix composed of nine rows out of
the first 11 rows of HA. Fig. 10 shows the relationship among
the various modified parity check matrices. Table 1 shows the
decoding performance of the proposed TS-AGD and AGD
with Hsys, Hm, HA, HB, HHehn, and HC , where HC shows
decoding performance identical to that of theML decoder and
better decoding performance than the decoding algorithm by
Hehn. In AGD, decoding complexity of the modified H ’s is
lower than HHehn except Hc as in Fig. 11, where HC is the
highest decoding complexity due to additional rows of the
parity-checkmatrix. For the number of iterations of TS-AGD,
Hm andHA are lower than others because |Sp| = n−k , which

FIGURE 10. Modifications of the parity-check matrix in the (24,12,8)
extended binary Golay code.

FIGURE 11. Decoding complexity of AGD and TS-AGD for (24,12,8)
extended Golay code.

is larger than the others. For decoding complexity, decoding
complexity of TS-AGD is lower than that of AGD for low
erasure probabilities. Among the modified H ’s of TS-AGD,
the decoding complexity is proportional to the number of
iterations except HC .

B. HIGH-RATE BINARY BCH CODES
Binary primitive BCH codes are widely used due to
large designed distance and guaranteed decoding perfor-
mance for certain number of errors and erasures. However,
BCH codes require inherently high decoding complex-
ity and their performance is degraded for large n and k .
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The proposed TS-AGD can overcome the disadvantages
of BCH codes by the low-complexity decoding with
improved performance compared to AGD. Here, the pro-
posed TS-AGD for the double-error correcting (n, k, d) =
(63, 51, 5), (127, 113, 5), (255, 239, 5) and triple-error cor-
recting (63, 45, 7), (127, 106, 7), (255, 231, 7) BCH codes is
numerically analyzed in the erasure and error channel.

In general, sp(t) of the BCH code is generated by the
cyclic difference set but there are some cases that the cyclic
difference set does not exist for the parameters of the BCH
code. Instead Sp can be constructed using the union of cyclo-
tomic cosets of the finite field as an alternative construc-
tion method. In this case, sp(t) does not have constant but
relatively low values of autocorrelation. Thus, this construc-
tion method of sp(t) also results in good decoding perfor-
mance. For (63, 51, 5) and (63, 45, 7) BCH codes, Sp is
constructed using cyclotomic cosets whose coset leaders are
{α, α3} and {α, α3, α11}, where α is a primitive element of
F26 . Similarly, Sp’s of (127, 113, 5) and (127, 106, 7) BCH
codes use cyclotomic cosets whose coset leaders are {α3, α5}
and {α3, α5, α11}, where α is a primitive element of F27 .
Lastly, Sp’s of (255, 239, 5) and (255, 231, 7) BCH codes
use cyclotomic cosets whose coset leaders are {α7, α11}, and
{α7, α11, α13}, where α is a primitive element of F28 .

For comparison of the codes with n = 63, 127, FER per-
formance of ML is used as a numerical calculated values by
Monte-Carlo method. However, we use a (260, 234) regular
LDPC code for comparison of n = 255 because it requires
high complexity to induce the FER performance of ML using
Monte-Carlo method.

FIGURE 12. Frame error rate of (63,51), (127,113), (255,239)
double-error correcting BCH codes by AGD and TS-AGD for Hm and Hsys.

1) DOUBLE-ERROR CORRECTING BCH CODES
Here, we analyze FER performance and decoding complex-
ity of AGD and TS-AGD for double error correcting BCH
codes in the erasure channel. For the modification of parity-
check matrix, Hm and Hsys are compared, where the opti-
mization of the upper bound by the second criterion leads
to improve the decoding performance for these codes. First,
FER performance is given in Fig. 12 showing that there is

FIGURE 13. Decoding complexity of (63,51), (127,113), (255,239)
double-error correcting BCH code by AGD and TS-AGD for Hm and Hsys.

little difference among Hm, Hsys, and ML. Note that FER
performance of AGD and TS-AGD are identical because both
of them try all the cyclic shifted cases before they declare
decoding failure. However, decoding complexity in Fig. 13
shows that Hm has lower decoding complexity than Hsys
and their gap becomes larger for long codelength. For the
decoding complexity of AGD and TS-AGD, TS-AGD has
lower complexity than AGD and their gap becomes larger for
long codelength. Therefore, the proposed TS-AGD with Hm
has lowest decoding complexity for these codes.

In the error channel, FER performance of OSD, TS-AGD,
and HDD of (127, 113) BCH code is given in Fig.14,
where TS-AGD has better performance than HDD but little
degraded performance than OSD. However, TS-AGD can
decode the code with lower complexity and thus, TS-AGD
can be used for the lower complexity applications.

FIGURE 14. FER performance of OSD, TS-AGD, and HDD of (127,113)
double-error correcting BCH codes in the error channel.

2) TRIPLE-ERROR CORRECTING BCH CODES
For FER performance of the triple-error correcting BCH
codes, Fig. 15 shows that there is little difference among
Hm, Hsys, and ML, but their gap is larger than that of the
double-error correcting BCH codes. Note that FER perfor-
mance of AGD and TS-AGD is identical because both of
them try to all the cyclic shifted cases before they declare
decoding failure. However, decoding complexity in Fig. 16
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FIGURE 15. Frame error rate of (63,45), (127,106), (255,231) triple-error
correcting BCH codes by AGD and TS-AGD for Hm and Hsys.

FIGURE 16. Decoding complexity of (63,45), (127,106), (255,231)
triple-error correcting BCH codes by AGD and TS-AGD for Hm and Hsys.

FIGURE 17. FER performance of OSD, TS-AGD, and HDD of (63,45)
triple-error correcting BCH code in the error channel.

shows that Hm has lower decoding complexity than Hsys
and their gap becomes larger for long codelength. For the
decoding complexity of AGD and TS-AGD, TS-AGD has
lower complexity than AGD and their gap becomes larger for
long codelength. Therefore, the proposed TS-AGD with Hm
has lowest decoding complexity for these codes.

In the error channel, FER performance of OSD, TS-AGD,
and HDD of (63, 45) BCH code is given in Fig. 17. TS-AGD
has better performance than HDD but worse performance

than OSD in low Eb/N0. However, FER performance of
HDD and TS-AGD outperforms that of OSD in high Eb/N0
contrary to (127, 113) BCH code because less reliable bits are
included in k MRI bits in order to satisfy linear independence
of the corresponding columns as n − k is larger. On the
average, OSDs of (127, 113) and (63, 45) BCH codes treat
(k + 1.588)-th and (k + 1.76)-th reliable bit as least reliable
MRI bit. In contrary, TS-AGD firstly uses most reliable k bits
and substitute other bits only when the stopping set exists
and thus, TS-AGD is less influenced by less reliable bits.
Also, TS-AGD can decode the code with lower complexity
and thus, TS-AGD can be used for the lower complexity
applications.

V. CONCLUSION
In this paper, a new TS-AGD for binary cyclic codes was
proposed by modifying their parity-check matrix. Modifi-
cation criteria of the parity-check matrix was proposed and
the proposed TS-AGD algorithms were shown to be able
to reduce the average number of iterations and the decod-
ing complexity. The extended Golay and BCH codes were
considered for the proposed TS-AGD algorithms, where they
achieve the near-ML and OSD performances with low decod-
ing complexity in the erasure and error channels.

APPENDIX
PROOF OF MAXIMIZATION OF THE UPPER
BOUNDS IN (10) AND (11)
The objective functions to be minimized are as follows:
1) For RH (τ ) = |Se|, the objective function is∑

τ1,τ2

(2|Sp|+a(τ1,τ2)−n
|Se|

)
.

2) For RH (τ ) = |Se| − 1, the objective function is∑
τ1,τ2

(
n− |Sp| − a(τ1, τ2)

1

)2(2|Sp| + a(τ1, τ2)− n
|Se| − 2

)
+

(
a(τ1, τ2)

1

)(
2|Sp| + a(τ1, τ2)− n

|Se| − 1

)
. (19)

It is easy to check that the following constraints are used for
optimization:
(i) For all τ1 and τ2, 0 ≤ a(τ1, τ2) ≤ n− |Sp|.
(ii) For any τ2,

∑n−1
τ1=0 a(τ1, τ2) = (n− |Sp|)2.

(iii) For any τ , a(τ, τ ) = n− |Sp|.
(iv) |Se| ≤ |Sp|.
Let g(x, y) be a function defined by

g(x, y) =


∏y−1

i=0

x − i
i+ 1

, if x ≥ y+ 1

0, otherwise
(20)

where x and y are real numbers. In fact, we have that g(x, y) =(x
y

)
for x, y ∈ Z+. It is easy to check that g(x, y) is a convex

function. First, the objective function forRH (τ ) = 0 is convex
because g(2|Sp| − n+ a(τ1, τ2), |Se|) =

(2|Sp|−n+a(τ1,τ2)
|Se|

)
.

At this point, we will prove that the objective function for
RH (τ ) = 1 is convex for 1

9 <
|Sp|
n ≤ 1 and |Se| ≥ 3 but

it does not mean that the case of |Sp|n ≤
1
9 is not a convex.
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Clearly, the convexity of (19) can be proved by the convexity
of summands. Then, the summand of (19) can be rewritten as

a(τ1, τ2)g(2|Sp| − n+ a(τ1, τ2), |Se| − 1)
+ (n− |Sp| − a(τ1, τ2))2g(2|Sp| − n+ a(τ1, τ2), |Se| − 2).

(21)

Using g(x, y) = x−y+1
y g(x, y − 1) for x ≥ y − 1, (21) can

be modified as

(a(τ1, τ2)(2|Sp| + a(τ1, τ2)− n− |Se| + 2)
+ (|Se| − 1)(n− |Sp| − a(τ1, τ2))2)g(2|Sp| − n
+ a(τ1, τ2), |Se| − 2). (22)

The convexity of (22) can be proved by its second derivative.
Let

f (a) = a(τ1, τ2)(2|Sp| + a(τ1, τ2)− n− |Se| + 2)
+ (|Se| − 1)(n− |Sp| − a(τ1, τ2))2. (23)

Then, (22) can be expressed as the product of f and g. Then
the convexity of (22) can be proved by deriving the following
inequality

(fg)′′ = f ′′g+ 2f ′g′ + fg′′ ≥ 0. (24)

It is not difficult to derive the s-derivative of g(x, y) in terms
of x as

g(s)(x, y) =
∑

S,|S|=s

∏
i∈[0,y−1]\[S]

x − i
i+ 1

. (25)

Using the geometric-harmonic mean inequality

(x1x2 . . . xn)
1
n ≥

n
1
x1
+

1
x2
+ . . .+ 1

xn

(26)

with xi = (x − i+ 1) and n = y, we have

(g(x, y))
1
y ≥

bg(x, y)
g′(x, y)

(27)

y

(g(x, y))
1
y

g(x, y) ≤ g′(x, y). (28)

In general, g(s)(x, y) is the summation of polynomials factored
into y−s+1 polynomials of degree one. Using (27) and (28),
(22) can be modified as

b− s+ 1

(g(a, b− s+ 1))
1

b−s+1

g(s−1)(a, b) ≤ g(s)(a, b). (29)

Using (29), we have

(fg)′′ = f ′′g+ 2f ′g′ + fg′′

≥
(|Se| − 3)2

g(2|Sp| − n+ a(τ1, τ2), |Se| − 3)
2

|Se|−3

f

+
2(|Se| − 3)

g(2|Sp| − n+ a(τ1, τ2), |Se| − 3)
1

|Se|−3

f ′ + f ′′g

≥

(
(|Se| − 3)2

g(|Sp|, |Se| − 3)
2

|Se|−3

f

+
2(|Se| − 3)

g(|Sp|, |Se| − 3)
1

|Se|−3

f ′ + f ′′
)
g. (30)

Let w = 2(|Se|−3)

g(|Sp|,|Se|−3)
1

|Se|−3
. Then, it is enough to show that

w2f + 2wf ′ + f ′′ ≥ 0. (31)

It is easy to check that w is an increasing function for |Se| and
|Se|
|Sp|

and a decreasing function for |Sp|. Then, left hand side of
(31) can be rewritten as

L(a) = w2
(
(|Se| − 1)

(
n− |Sp| − a(τ1, τ2)

)2
+ a(τ1, τ2)(−n+ 2|Sp| − |Se| + a(τ1, τ2)+ 2)

)
+ 2w(−2n|Se|+n+|Se|(2|Sp| + 2a(τ1, τ2)−1)+2)

+ 2|Se|. (32)

At this stage, it is necessary to prove that L(0) > 0 and that
its discriminant is negative in terms of a. It is easy to check
that L(a) is linear in terms of |Se|with a negative slope. Thus,
L(a) has its minimum value at the maximum value of |Se|.
If |Se| = |Sp|, we have

L(0) = w2(|Sp| − 1)(n− |Sp|)2 + w(n(2− 4|Sp|)

+ 4|Sp|2 − 2|Sp| + 4)+ 2|Sp| ≥ 0. (33)

Let z = |Sp|
n . Then for sufficiently large values of n and p,

(33) can be written as

L(0)
n2w
= w(|Sp| − 1)(1− z)2 − 4|Sp| + 4|Sp|2

≥
(
(w(|Sp| − 1)+ 4)z− w(|Sp| − 1)

)
(z− 1)

= (w(|Sp| − 1)+ 4)
(
z−

w(|Sp| − 1)
w(|Sp| − 1)+ 4

)
(z− 1).

(34)

Clearly, (34) is positive for a sufficiently large p. Thus,
we have L(0) ≥ 0. Next, the discriminant is written as

D = w4n2 − 10w4n|Sp| + 4w4n+ 9w4
|Sp|2

− 4w4
|Sp| + 4w4

+ 8w2
|Sp|2 < 0. (35)

It can also be reduced with sufficiently large values of n and
p, whose simplified inequality is given as

(9w4
+ 8w2)z2 − 10w4z+ w4 < 0. (36)

For 1
9 < z < 1, it is easy to derive D < 0 for a large value

of w. Thus we prove the convexity of (22) for the proposed
convexity region.

Using the solution of the optimization program cvx
for (22), its minimum value occurs at

a(τ1, τ2) =
(n− |Se| + 1)2 − n− |Se| + 1

n− 1
for all τ1 and τ2,

(37)

which means that the autocorrelation values of sp(t) are
constant.
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