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ABSTRACT Target tracking based on Siamese network has reached the state-of-the-art performance.
However is still limited in semantic feature extraction. In this paper, we propose a novel method to distinguish
positive and negative samples. Taking deep neural network as the backbone, we fuse the feature maps from
different layers and feed it to RPN (Region Proposal Network). In addition, we use a loss term for loss
function to achieve self-adjusting and learn more discriminative embedding features of target objects with
similar semantics. In the tracking stage, one-shot detection is used as the reference, fix the first frame as the
weight of tracking to track the subsequent frames. Our method has achieved outstanding performance on
several benchmark data set, such as: OTB2015, VOT2016, VOT2018, and VOT2019 et al.

INDEX TERMS Target tracking, siamese network, feature pyramid, region proposal network.

I. INTRODUCTION

Visual target tracking has received more and more attention
in the past decades and has been a very active research field.
It has been widely used in two-way fields such as visual
monitoring [1], human-computer interaction [2], pedestrian
tracking [43], and augmented reality [3]. Despite recent
advances, it is still recognized as a challenging task due to a
variety of factors, including changes in light, occlusion, and
background clutter.

In recent years, most of the visual tracking algorithms are
related to deep learning [4], [5]. Compared to the correlation
filtering methods [6]-[9], the deep learning methods are more
popular. Especially in recent years, the single target tracking
method based on the Siamese network [10]-[15] has attracted
extensive attention in society. In the initial stage of offline,
siamFC tracker [11] adopts the full convolution network
structure to train the deep conv network, aiming to solve the
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more common similarity learning problem, and then conduct
online evaluation during the tracking process.

In order to ensure the tracking efficiency, the Siamese
similarity function of offline learning is usually fixed in
the running time [10], [11]. CFNet tracker [13] and DSiam
tracker [12] update the tracking model by running aver-
age templates and fast conversion modules respectively. The
SiamRPN tracker [14] introduces the area recommenda-
tion network after the Siamese network and performs joint
classification and regression for tracking. The DaSiamRPN
tracker [15] further introduces an interference-sensing mod-
ule and improves the recognition capability of the model.
SiamRPN++ tracker [16] eliminates damage from transla-
tion invariance and breaks the limitation of space invariance
when using deep networks. These Siamese trackers draw the
visual object tracking problem as learning general similarity
graph through the relationship between the feature repre-
sentation learned in the target template and the search area.
In SiamMask [17], the tracking of objects is actually the block
of the object mask, so the object mask is extracted first, and
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then the object is tracked according to the object’s mask.
SiamDW [18] are of different kinds of backbone were studied
in detail, and points out the padding is how to affect the
precision in the process of training, target tracking. ATOM’s
work [19] is divided into two tasks, classification task and
assessment tasks. The classification task is to separate the
foreground and the background image, get a rough idea
of target location.Assessment task is through the bounding
box,which can be used to predict the state of the target.
By decomposing the visual tracking task into two sub prob-
lems: the classification of the pixel category and the regres-
sion of the object bounding box at that pixel, SiamCAR [44]
proposed a novel full convolution twin network to solve
the end-to-end visual tracking problem in a per-pixel way.
Due to the parameter complexity caused by the introduction
of RPN, SiamBAN [40] avoids many super-parameters and
more flexible. Re-identification [41] article adopts the com-
bination of identification loss and triplet loss, but rather than
simply adding the weight loss coefficient before two losses
as the total loss, it proposes its own dynamic loss training.
Zhong et al. [42] proposed a hierarchical tracker, which is
based on the combination of coarse-level data-driven search
and fine-level coarse-to-fine verification to learn movement
and tracking. At a rough level, the data-driven motion model
learned from deep loop reinforcement learning provides a
rough location for their tracker.

Although these Siamese trackers have gained excellent
tracking performance, especially in terms of balanced pre-
cision and speed. But even well-performing Siamese tracker,
such as SiamRPN [14],whose tracking accuracy of distractors
still has significant difference on similar targets. However,
these trackers operate on the cross-correlation between the
feature maps generated on the two branches of the network.
The proposed methods ignore the influence of the feature
maps generated in the middle of the network on different
categories of tracking objects. Under the inspiration triggered
by this observation, we analyze the existing Siamese trackers
and find out that the core reason is that the convolutional
layer of different levels represents the target of different
aspects, the deep feature map contains more semantic features
and can be used as a similar category detector. The lower
level contains more discriminant information and can better
separate the target from the background.

In order to solve this problem and obtain a more general-
ized Siamese tracker, a feacture pyramid Siamese network is
proposed and it is experimentally proven that feature maps
of different depths have different representation features.
Experimental results are shown in Figure 1. The deeper con-
volutional layer captures more semantic features of objects,
while the lower layer provides more detailed external features
to better distinguish objects from backgrounds. The proper
fusion of these different features helps to separate the target
from the interference term.

In addition, few of these methods can clearly put forward
very effective solutions to distinguish between targets and
interferences. Based on the problem, this paper proposes

VOLUME 8, 2020

FIGURE 1. Heat map from our backbone network: (a) is the original
image selected from OTB and VOT datasets, and (b) is the heat map
output through our network, each column comes from a certain
convolution layer in different blocks.

a loss function to increase the differentiating effect between
targets and distractors, and experiments show that our method
has certain effects on differentiating distractors.

Our main contributions are summarized as follows:

1. The feature pyramid fusion method is proposed, which
combined with the deep network backbone to retain more
tracking target features.

2. Depth-wise cross correlation is adopted to solve the
asymmetric problem, and loss items embedded in discrim-
inating instances are introduced into the loss function for
distinguishing objects with the same semantic class or similar
appearance.

3.The proposed trained tracking network is tested on
OTB2015, VOT2016, and VOT2018. The expected aver-
age overlap on VOT2016 improved by 2.9% compared to
SiamRPN. The precision on OTB2015 improved by 5.3%
compared to DaSiamRPN.

Il. RELATED WORKS

We mainly introduced the recent trackers, especially those
based on Siamese networks and briefly reviewed three
aspects related to our works: deep network trackers based
on Siamese networks, RPN detection and pyramid feature
extraction, and one-time learning.

A. DEEP NETWORK ANALYSIS

Recently, Siamese networks have attracted great attention in
the field of visual tracking because of their balanced accuracy
and speed [11]-[13], [20], [21]. GOTURN [21] used Siamese
network as feature extractor and fully connected layer as
fusion tensor. By using the prediction bounding box in the
last frame as the only proposal, it is a regression method.
Re3 [20] used circular networks to get better functional-
ity from template branching. Inspired by relevant methods,
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SiamFC [11] introduced relevant layers as tension tensors
and greatly improved the accuracy. CFNet [13] added a cor-
relation filter to the template branch, making the Siamese
network shallower but more efficient. However, both SiamFC
and CFNet use shallow layers network.

Since the shallow layer network cannot fully obtain the fea-
ture information of the object, it is hard for previous Siamese
network tracker [10], [11] to achieve good performance,
such as single and one-sided feature extraction. But some
research have shown that training Siamese trackers simply by
using deeper networks. Such as ResNet does not contribute
to improvements of performance. SiamRPN++ [16] points
out that there are two inherent limitations when utilize deep
network for tracking training:

1) The contraction part and feature extractor used in
Siamese tracker have inherent limitations on strict translation
invariance. as (1) shows:

f@x)=f@x[Ag] ey

where [ A1;] is a translation shift sub-window operator, which
can ensure effective training and inference.

2) The contraction part has inherent limitations on struc-
tural symmetry, f (z, x' ) =f (x/ , z), which is suitable for
similarity learning.

B. FP AND RPN

Feature Pyramid(FP) was proposed in FPN [22] network,
which can solve the problem of similar semantic goals well,
because it utilizes the context information (high-level seman-
tic information) after top-down model. For similar semantic
feature targets, FPN increases the resolution of feature maps
(i.e. operating on larger feature maps to obtain more useful
information about similar targets). This method is used in the
tracking network to increase the feature semantic information
extraction of different objects. The regional proposal network
was first proposed in the faster R-CNN [23].

Compare to RPN, traditional proposal extraction methods
were time-consuming. For example, selective search [24]
takes two seconds to process an image. Not only that, but
the recommendations are not enough to test. The enumeration
of multiple anchor points and the shared convolution feature
enable the proposal extraction method to achieve high quality
and time efficiency. RPN is able to extract more accurate pro-
posals due to foreground - background classification and bor-
der box regression monitoring. There are several fast R-CNN
variants with RPN. R-FCN [25] takes into account the loca-
tion information of components. Compared with two-stage
detectors, improved RPN versions such as SSD [26] and
YOLO9000 [27] are effective detectors. Because of its high
speed and excellent performance, RPN has many successful
applications in detection and feasibility in tracking.

C. ONE-SHOT LEARNING

In recent years, one-shot learning in deep learning has
attracted more and more attention. One-shot learning is used
in face recognition in the early stage, by training a similarity
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function, to achieve the detection and matching of one sam-
ple at a time. Bayesian statistical method and meta-learning
method are two main methods to solve this problem. In [28],
the probability model represents the object category, and the
Bayesian estimation is adopted in the inference stage. The
meta-learning method is to acquire the ability to learn, and to
realize and control own learning.

Single detection is regarded as a discrimination task
in [29]. Its purpose is to find the parameter W that minimizes
the average loss £ of the prediction function ¥ (x; W). It is
calculated on the data set of n samples x; and the correspond-
ing label ¢;.

L1
min ~ i;ﬁ (W (xi; W), €)) @

A meta learning process is used to learn the parameter W
of predictor from a single template z. The (z; W’) is maped
to the feed-forward function w of W. Make z; become a batch
of template samples, and then express the problem as follow:

R /
min — ;C (¥ (xi; 0 (zis W) L €3) (3)

As mentioned above, z represents template patch, x repre-
sents detection patch, function ¢ of Siamese feature extrac-
tion subnet and function ¢ of region recommendation subnet,
and then one-time detection task can be expressed as follow:

1 n
min— > LE @ W)@ W), ) (@)
i=1

The template branch in the Siamese subnet can be reinter-
pret as a training parameter to predict the kernel of the local
detection task, which is usually the learning of the learning
process. In this interpretation, the template branch is used to
embed category information into the kernel, and the detection
branch performs the detection using the embedded informa-
tion. During the training phase, the meta-learner does not
need any supervision other than a pair of border box supervi-
sion. In the inference phase, pruning the Siamese framework
leaves only the detection branch beyond the initial frame and
is therefore very fast. The target patch from the first frame is
sent to the template branch and pre-computed to the detection
kernel. A single detection can be perform in other frames.

Ill. OUR NETWORK: FPSiamRPN FRAMEWORK

In this section, we describe our proposed FPSiamRPN frame-
work, as shown in Figure 2. Similar to SiamRPN, the frame-
work includes Siamese subnets for feature extraction and
regional proposal subnets for proposal generation. In our
work,the deep network ResNet50 [30] is adopted with the
addition of feature pyramid extraction as the backbone.
It includes two branches in the area region proposal net-
work subnet (RPN subnet). One is responsible for forest-
background classification, and the other is used to improve
candidate box. A deeply separable structure(the Deep-wise
cross-correlation) is adopted for classification and regression,
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FIGURE 2. lllustration of our proposed framework. The Siamese network have two branch. One is for
template and the other is for search, the outputs of the backbone sent to the RPN to get the regression
and classification. The RPN architecture is shown on top right corner.

FIGURE 3. Training pairs extracted from the same video: exemplar image
z and corresponding search image x from same video.

which uses 10 times fewer parameters than the original RPN
network, and has the same performance.

A. OUR METHOD WITH SIAMESE NETWORK

The tracking algorithm [10], [11] based on Siamese network
sets visual tracking as a cross-correlation problem and learns
the similarity score map from a deep model with a Siamese
network structure, in which one branch is used to learn feature
representation of the target and the other is for search area.
The target box is usually given in the first frame of the
sequence and can be thought of as an example z. Purpose
is found the most similar instances in the frame of x in
embedded semantic space ¢ (-). Feature mapping relationship
is shown as follows:

f@x)=¢@*dx)+b &)

where b is the offset of the similar value. The images can be
obtained from the dataset of annotated videos by extracting
samples and searching for images focused on the target,
as shown in Figure 3. The images are extracted from two
frames of the video, both of which contain the object, which
are cropped and resized to fit the input size of our net-
work architecture. Classes that ignore objects during training.
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z represents the exemplar and x represents the search images.
When a sub-window extends beyond image, the missing por-
tions are filled with the mean RGB value.

The influence of center bias is droped by overcoming
translability. The deep network is used for visual tracking.
ResNet50 is applied as our backbone in our work. The orig-
inal ResNet [30] has a 32 pixels step size, which is not
suitable for dense Siamese network prediction. The original
ResNet50 network is shown in Table 1.

TABLE 1. The detail data display of each layer in ResNet50 network
structure. In the front in parentheses is convolution kernel size, followed
by the channel number.

ResNet50
7 x 7, 64, stride2
3 x 3, max pool, stride2
[Tx1,6d
3x3,64
1x1,2561x3
[1x1,128
3x3,128
1x1,512]1x4
[1x1,256
3x3,256
1x1,10241x6
[1x1,512
3x3,512
1x1,2048 1x3

outout size
112x 112

56 x 56

Layer name
convl

conv2_x

conv3_x 28 x 28

conv4_x 14 x 14

convy_x 7x7

In our work, conv4 and conv5 blocks is improved to unit
space step size, the effective step length of the last two blocks
is reduced from 16 pixels and 32 pixels to 8 pixels, and
increasing the acceptance range by expanding convolution.
Then we fuse the outputs of conv2, 3 and 4 blocks with the
features of conv3, 4 and 5 up-sampling, and convoluted the
channels to 256 by 1 x 1 convolution, as shown in Figure 4.
In addition, we find out that careful fine-tuning of ResNet
will improve performance. By setting the learning rate of
the ResNet extractor 10 times smaller than the regional RPN
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FIGURE 4. The detail description of our method and how we fuse the feature map in different layers.

portion, the feature representation can be made more suitable
for tracking tasks.

B. A NOVEL LOSS TERM FOR DISTINGUISHING
SIMILAR OBJECTS
We use depth-wise cross correlation to obtain the classifi-
cation and regression channels. For k anchors, the network
needs to output 2k channels for classification and 4k chan-
nels for regression. The goal of our learning algorithm is to
train discriminant feature embedding applicable to multiple
objects of the same category. The existing Siamese series of
networks cannot extract the deeper semantic features well.
Although DaSiamRPN [15]reduces the effects of similar dis-
tractors by proposing a distractor recognition model and uses
NMS on box-selecting,if objects are too closed to each other,
only the box with the highest score will be retained and all
the boxes around will be discarded by using NMS to discard
the box. Therefore, when lots of distractors are close to the
tracking object, most of the distractors will be lost and the
influence of distractors on target cannot be eliminated well.

At the present stage of tracking, most target tracking algo-
rithms can’t distinguish distractors and target well, which
becomes a big problem in target tracking. In order to reduce
the influence of distractors on target tracking, a discriminant
example is proposed to distinguish the embedded loss of
similar objects. Firstly, cross-correlate the template branch p
of the Siamese subnet with the search branch z to get the score
of target, which is represented by s (p, z). Then, m anchors
are generated around the target in the search branch z, and
calculated the scores of all anchor areas d with the search area
Z, as Zf\;l s (d;, z), sending the output characteristics into
softmax function for binary classification, it determines the
classification of tracking target with the surrounding objects.
The proposed formula is descripted as follow:

exp (s (p, 2))
Oinst Z:n:] oxp (5 (diy 2) (6)

In which oj,s (+) is used to compare the positive score
of the tracking target with all the resulting anchor objects
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(including target object). According to the definition of soft-
max, it shows that the bigger the value of oj, (- ), the greater
the probability of being a target. For all the data with batch N,
the following discriminating instance embedding loss is pro-
posed, in which 0 is hyperparameter, for smooth the loss in
training stage:

N
1
Lin = le 10g (Ginst () + 0) @)
=
From the formula, the value in the log is the softmax value
correctly classified by this group of data. So we need to small

the loss of this sample to make the softmax value larger.

ResNet50

'7\ bbox pred
‘ Feature map' n

pooling ( N
L s prob

FIGURE 5. The lightweight network structure. The purpose is to extract
the different detection boxes on the image, in which ResNet50 comes
from the search branch x in Siamese network. The convolution kernel size
is 3 x 3, and we use padding as 1 to ensure that the output feature map
size is consistent with the input.

conv

1) ANCHOR GENERATION DETAILS

It has been proved that the candidate objects obtained from
the image frame is actually the object detection to the object
in the image. A lightweight network is proposed to extract the
distractors on target which is similar to the target detection,
for generating anchors and selecting the candidate box. Our
network structure consists of two convolution layers, a pool-
ing layer and a batch normalization layer. The kernel size
used in the convolution layer is 3 x 3, padding sets as 1,
and the stride sets as 1. The proportion of anchor adopts the
proportion of anchor in RPN. The proposed network structure
is shown as Figure 5.
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By inputting the feature map into the lightweight detection
network, the bounding boxes of distractors on the image
are generated, then calculate the proposed cross-correlation
score vazl s (d;, ). It implements the embedding of unique
features of the tracking target and can effectively distinguish
similar objects that may appear around the tracking target.

For classification and regression, two branches [¢ (2)]
and [¢ (z)]reg is used through the search area in the z channel,
which do the corresponding convolution operation with two
branches [¢ (x)] s and [¢ (x)],,, in template image x. At last,
obtaining the classification score is the dimension w x h x 2k
and regression score is the dimension wx hx4k. For classified
loss function, cross entropy loss function L. is used as
follows.

Les = —[ylogy + (1 —y)log (1 —y)] ®)

where y represents the ground truth, y’ represents the estimate
value. We use {Ax, Ay, Ay, Ah} to represent center point and
the shape of the anchor, and get {§[0],&[1], 6[2], 8 [3]}
through normalization. When using multiple anchor points
to train the network, we still use the smooth £1 loss and
regression normalization coordinates, which are shown as
follows:

2,2 1
0.50“x~, x| < —

smoothp; = 51 ®
x| — 352" x| > 52

Finally, the loss function is optimized as follows:
loss = L5 + )\ﬁreg + o Lingt (10)

where A, o are hyperparameter to balance the three parts, and
L,eg is calculated as follows:

3

Lyeg = Zsmoothcl (81i], o) (11
i=0

C. ONLINE TRACK

The output of the template branch is used as the weight to
track the subsequent frames. The two kernels generated in
the template branch are pre-calculated on the initial frame
and fixed during the whole tracking period. In the detection
frame, we obtain the classification and regression output from
the previous propagation, and generate multiple candidate
frames.In our work,we also use SiamRPN [14] to extracte
candidate boxes. Meanwhile, sine window is used and pro-
portional change penalty to rearrange the scores of candidate
boxes to get the best score. After the abnormal value is lost,
adding cosine serial port can restrain large displacement.The
proposed penalty item, which control the size, and proportion
change are descripted as follows:

penalty = Gormax(. 5 Jsmax(3.5.) (12)

where k is a hyperparameter, x represents ratio between the
height and width of the proposal, and x’ represents the ratio
of the last frame. s and s’ represent the overall size of the
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proposal and the last frame, which are calculated as (12), and
the s is calculated as follow:

s=yW+p) x (h+p) (13)

where w and h represent the width and height of the target,
p is the padding, the value is (w + h)/2. After that, the clas-
sification score is multiplied by the time penalty, the first k
candidate boxes are reordered, and then non maximum sup-
pression is performed to obtain the final tracking boundary
box. After the final bounding box is selected, the target size
is updated by linear.

IV. EXPERIMENT

A. EXPERIMENTAL DETAILS

1) TRAINING

The backbone of our architecture is pre trained image tags
on ImageNet [31]. We train the network on the training set
of COCO [32], ImageNet det [31], and VID [31] datasets.
The training set size is more than 150GB. In training and
testing,a single scale image representation template is used
with 127 pixels and 255 pixels for the search area. After
using ImageNet make pre train the Siamese subnet. The
random gradient descent (SGD) optimizer is used to train
FPSiamRPN end-to-end. Some data enhancement is used to
train the regression branch,such as affine transformation.

The same object in two adjacent frames does not change
much.We select fewer anchors in the tracking task than in
the detection task. Therefore, only one scale of anchors with
different proportions is used. In our experiment, the value of
anchoring ratio is set [0.33, 0.5, 1, 2, 3].

The strategy of selecting positive and negative training
samples is also very important in our framework. Here we
use the criteria used in the object detection task. In our
work, IoU and two thresholds [#h];; and [th];, is used as
the measurement. Positive samples are defined as anchors
with IoU > [th];; and its corresponding basic facts. Negative
numbers are defined as anchors that satisfy loU < [th],,. The
parameter [th],, is set to 0.3 and [th]y; is set to 0.6. We also
set up a training pair of up to 16 negative samples and a
total of 64 samples. Our experiments are implemented using
PyTorch on a PC with an Intel i7, 8G RAM, NVidia GTX
2080ti.

2) EVALUATION

We focus on short-term single target tracking of
OTB2015 [33], VOT2016 [34] and VOT 2018 [35]. Each
dataset has 60 videos, and OTB2015 has 100 videos. All the
tracking results use the reported results to ensure a fair
comparison.

B. ABLATION EXPERIMENTS
1) BACKBONE ARCHITECTURE
The choice of feature extractor is important as the
number of parameters and types of layers directly affect
memory, speed, and performance of the tracker. We com-
pare different network architectures for the visual tracking.
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Singerl Footballl car24 bird1

MountainBike

FIGURE 6. Further qualitative results of our method on sequences from the visual object tracking benchmark OTB2015. Green box represents the

ground-truth and the yellow box represents our track box.

In our work, AlexNet, ResNet18, ResNet34, ResNet50, and
ResNetFPN(our backbone) are used as backbones. We report
performance by Area Under Curve (AUC) of success plot on
OTB2015 with respect to the leading accuracy on ImageNet.

Table 2 illustrates that by replacing AlexNet to our back-
bone, the performance improves a lot on VOT2018 dataset.
Besides, experimental results show that finetuning the back-
bone part is critical, which yields a great improvement on
tracking performance.

2) PYRAMID FEATURE AGGREGATION

To investigate the impact of pyramid feature aggregation,
we first train three variants with single RPN on ResNet50.
We empirically found that conv4 in ResNet50 alone can
achieve a competitive performance with 0.344 in EAO. Com-
pare to pyramid feature aggregation(combine L3, L4, L5),
pyramid feature aggregation yields a 0.363 EAO score on
VOT2018, which is 7.7% higher than that of the single layer
baseline.
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TABLE 2. Ablation study of the proposed tracker on VOT2018 and
OTB2015. L3, L4, L5 represent conv3,conv4,conv5, respectively. Finetune
represents whether the backbone is trained offline. UP/DW means up
channel correlation and depthwise correlation.

Backbone L3L4L5 Finetune Corr VOT2018 OTB2015
UP 0.313 0.633
AlexNet DW 0.322 0.641
VAV UP 0.335 0.621
ResNetFPN NV v uP 0.342 0.633
Y- Vv DW 0.332 0.643
N~ v DW 0.344 0.648
—— v DW 0.325 0.639
ResNet-50 A v DW 0.337 0.651
v - V4 DW 0.335 0.646
Vi Vv DW 0.354 0.658
DW 0.355 0.654
ResNetFPN(ours) \\? v v v DW 0.363 0.662

3) DEPTHWISE CORRELATION
We compare the original up-channel cross correlation
layer with the proposed depthwise cross correlation layer.
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FIGURE 7. Success and precision plots show a comparison of our tracker
with state-of-the-art trackers(GradNet,DaSiamRPN,SiamRPN++,SRDCF,
SiamFc,CFNet) on the OTB2015 dataset.
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FIGURE 8. The expected average overlap(EAO) score in VOT2016. The
proposed FPSiamRPN method campare with SoamRPN, CCOT, TCBB, SSAT,
MLDF, Staple, EBT, SRBT, and SiamFC. Large value is better.
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FIGURE 9. Performance and speed of our tracker and some
state-of-the-art trackers in VOT2016. More closed to top means higher
precision, and more closed to right means faster. FPSiamRPN is able to
rank 1st in EAO.

As shown in the Table 2, the proposed depthwise correlation
gains 2.2% improvement on VOT2018 and 1.2% improve-
ment on OTB2015, which demonstrates the importance of
depthwise correlation. This is partly beacause a balanced
parameter distribution of the two branches makes the learning
process more stable, and converges better.

C. RESULTS ON 0OTB2015

OTB2015 [33] contains 100 video sequences for tracking,
and has been very perfect and authoritative. The evaluation
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TABLE 3. Detail information about several published state-of-art
trackers’ performances in VOT2016. Red, blue and green represent 1st,
2nd and 3rd respectively.

Tacker EAO 1T Accuracy T  Failure | EFO 7
SiamRPN  0.3441 0.56 1.08 233
C-COT [5] 0.53 0.85 0.507
Staple [36]  0.2952 0.54 135
EBT [37] 0.2913 0.47 0.9 3.011

SiamFC 0.2889 0.53 7.395

SiamRN 0.2766 1.37 5.44

FPSiamRPN  (.354 0.609 0.67 322
0.4 a
w P o ShanPN 035
- & «® FPSauRPN 0363
: 9 DPT [0.356]
025 o DeepSTRCF [0.343]
02 L O CPT [0339)

015 > < + SASiam R [0.337)
N F° 4 DeSiamRPN [0.32
o # DLSTpp [0.323)

0.05
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FIGURE 10. The expected average overlap(EAO) score in VOT2018. The
proposed FPSiamRPN method campare with SiamRPN, DPT, DeepSTR,
CPT, SA_Siam_R, DaSiamRPN, DLSTpp. Large value is better.

results mainly rely on two indicators: accuracy and success
rate. The precision plot shows the percentage of frames that
the tracking results are within 20 pixels from the target. The
success plot shows the ratios of successful frames when the
threshold varies from O to 1, where a successful frame means
its overlap is larger than given threshold. The area under curve
of success plot is used to rank tracking algorithm.

The standardized OTB benchmark provides a fair and
robust testing platform. The Siamese based tracker formulate
the tracking as a one-shot detection task without any online
update, so its performance is inferior on this benchmark with-
out resetting. However, the limited representation of shallow
networks is the main obstacle to the Siamese tracker from
exceeding the top-performing method, such as SiamFC [11].

In the experiment, we compared our method with a series
of related tracking methods. Qualitative results of FPSi-
amRPN for OTB2015 sequences are shown in Figure 6.
As shown in the Figure 7,comepare to the GradNet [38],
SiamRPN++ [16], DaSiamRPN [15], SRDCF [39],
SiamFC [11], CFNet [13], FPSiamRPN can be ranked at
the top in success plot and precision plot. (The result of
SiamRPN++ is trained by using our training datasets). From
Figure 7, the proposed algorithm can achieve high accuracy
and success rate.

D. RESULTS ON VOT2016

VOT2016 [34] dataset consists of 60 sequences. Perfor-
mance is evaluated based on accuracy (the average overlap
at successful tracking) and robustness failure times. The
expected average overlap (EAO) is used to evaluate the
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FIGURE 11. Further qualitative results of our method on sequences from the visual object tracking benchmark VOT2016. Green box represents the

ground-truth and the yellow box represents our track box.

TABLE 4. Comparison with the state-of-art in terms of expected average overlap (EAO), robustness and accuracy on the VOT2018 benchmark. Our trackers
obtains a well performance among the top-ranked methods.Red, blue and green represent 1st, 2nd and 3rd respectively.

‘ DLSTpp DaSiamRPN  SA_Siam R CPT  DeepSTRCF SiamRPN DRT  Ours

EAO 1 0.325 0.326 0.337 0.339 0.345 0.383 0.356  0.363
Accuracy 1 0.543 0.569 0.566 0.506 0.523 0.586 0.519  0.596
Robustness | 0.224 0.337 0.258 0.239 0.215 0.276 0.201  0.302

overall performance, which considers two kinds of preci-
sion. Besides, the speed is evaluated with a normalized
speed (EFO).And we compared some published state-of-
art trackers, Figure 8 illustrates the EAO ranking. And fur-
ther, the results of detail information about several published
state-of-art trackers’ performances in VOT2016 are shown
in Table 3. In order to show our tracker can achieve a superior
performance when operating at high speed. Figure 9 shows
the performance and speed of the state-of-the-art trackers.
Qualitative results of FPSiamRPN for VOT2016 sequences
are shown in Figure 11. In our work,most of the sequences
are ones with the distractors.

E. RESULTS ON VOT2018 AND VOT2019

We test our FPSiamRPN tracker on VOT2018 dataset [35]
in comparison with some state-of-the-art methods. VOT2018
dataset is one of the most recent datasets for evaluating
online model-free single object trackers, and includes 60 pub-
lic sequences with different challenging factors. Following
the evaluation protocol of VOT2018, the expected average
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overlap (EAO), accuracy and robustness are adopted to com-
pare different trackers. The detailed comparisons are reported
in Table 4. Figure 10 illustrates the EAO ranking in VOT2018.
From Figure 10,in some cases, the proposed FPSiamRPN
method is rank the second best campare with some state-of-
the art methods. However, experimental results of the pro-
posed method is very good in most cases.

From Table 4, the proposed FPSiamRPN method achieves
the top-ranked performance on accuracy and achieves
the second-ranked performance on the expected average
overlap criteria. Especially, our FPSiamRPN tracker out-
performs all existing trackers. Our tracker achieves a sub-
stantial improvement over the tracker(SiamRPN) with a gain
of 1.7% in accuracy. Qualitative results of FPSiamRPN for
VOT2018 sequences are shown in Figure 12.

In our work, the proposed method focus on reducing the
impact of distractors on the target object in target tracking,
and ignore some detailed features of the target. Some exeri-
mental results from benchmark data set on VOT2019 [46],
the performance of EAO, accuracy, and failure not very good.
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FIGURE 12. Further qualitative results of our method on sequences from the visual object tracking benchmark VOT2018. Green box represents the

ground-truth and the yellow box represents our track box.

FIGURE 13. The above is the failed scene of tracking in dataset VOT2019.
Our method is not enough to distinguish multiple targets in the blurred
line of sight, and there is still some drift problem in distinguishing objects
with high similarity.

TABLE 5. Detail information about several published state-of-art
trackers’ performances in VOT2019. Red, blue and green represent 1st,
2nd and 3rd respectively.

Tacker EAO T  Accuracy T  Failure |

SiamRPN++ [16] 0.285 0.599 0.482
SA_Siam_R [46] 0.252 0.563 0.507
SiamCRF_RT [46]  0.262 0.549 0.346
SPM [45] 0.275 0.577 0.507
SiamBAN [40] 0.327 0.602 0.396

Ours 0.283 0.578 0.567

The experimental results are shown as Table 5. From
Table 5, our EAO and accuracy is lower than the traditional
methods.

VOLUME 8, 2020

V. CONCLUSION

In this paper, the Siamese region proposal network based
on hierarchical pyramid feature fusion (FPSiamRPN) is pro-
posed, which is end-to-end offline trained with large-scale
image pairs from CoCo and ImageNet. FPSiamRPN can auto-
matic adjust the bounding boxes and get more accurate pro-
posal by applying box refinement procedure. In the tracking
stage, one-shot detection as the reference is used. In experi-
ment part, our method can achieve beautiful robust and good
performance in OTB2015, VOT2016 and VOT2018 real-time
challengers with high speed.

Due to selection box on the target detection adopt the
principle of distinguishing the target and the distractors,
the proposed method still has some limitations. Such as: if
the selection of candidate box doesn’t accurate,which will
affect the calculation of the target probability with softmax.
Meanwhie, the learning of the target features may be more
generalized. In our work, we show some failure situations.
Please see failure results in Figure 13. From Figure 13,
the proposed method is not enough to distinguish multi-
ple targets in the blurred line of sight. The results show
still some drift problem in distinguishing objects with high
similarity.
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